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NONLOCAL NONLINEAR SYSTEMS OF
TRANSPORT EQUATIONS IN WEIGHTED L' SPACES:
AN OPERATOR THEORETIC APPROACH
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1. INTRODUCTION

This report is concerned with a nonlocal nonlinear transport system of the form |

Oyu + 2/ (t)0,u = (t, z,u,2(t)), (t,z)€ (0,T) xR,
(NNS) +oo

A(t) = L( w(z)- u(t,:c)d:c), te0,T].
-0 .

Here u = (u¥)Y,;: [0,7] x R — R" and z: [0,T] — R are unknown, 0 < T' < oo is
arbitrary, N is a given positive integer and 2z’ stands for the time derivative of z. The
left-hand side of the evolution equation in (NNS) is called the material derivative of u
and governed by a function ¢ = (¢*)};: [0,T] X RXE x R — R". The set E is defined
as {v= ()X, e RV | pi > 0 and Zf__l v* < 1} and ¢ is assumed to be continuous
in (t,u,2); ¢ need not be continuous in z. The function z is represented as a nonlocal
nonlinear term determined by an R-valued, continuous and decreasing function L on an
open interval (a,b) and an RN-valued weight function w = (w*)Y; on R. Accordingly,
solutions u to (NNS) are sought in such a way that u(t,z) € E for ae. z € R and
a< ff:: w(z) - uw(t,z)dz < bfor t € [0,T].

In case of N = 4, Comincioli et al. [10] have shown the existence and uniqueness of

classical solutions to (NNS) for the following case: The function ¢ has the form

o (L, z, ut, u?, ud vt 2) = Z [aij(t,a:)uj — ajz-(t,x)ui]; i=1,2, 3,4,
: j=i%l
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which is linear in u = (u!, 4?43, 4*) and is smooth in (¢,z), w(z) = (0,0,z — 6,z) (6 a
given constant) and

+o0

L(t) = —log(1+7) +log(1‘+ w(z) - uo(:c)d:v),

a = —1, b = 400, where up(-) is an initial-function.
The system (NNS) is regarded as a mathematical model which describes the cross-
bridge mechanism in muscle contraction, if N, ¢, L and w are specified in an appropriate

way and an initial condition
(IC) ’U,(O, :II) = 'U'O(x)7 r€eR

is imposed in such a way that the initial-function 1 is compactly supported and satisfies

the compatibility condition

(I) uo(z) eEae.inRand a < f:";’ w(z) - ug(z)dz < b.
In order to formulate more reasonable models, it is preferable that the function ¢ and
initial—functioﬁ ug should be nonsmooth and even discontinuous. Therefore it is not
always expected to obtain classical solutions to the initial-value problem (NNS)—-(IC).

The general class of (NNS) can be treated, but we here focus our attention on the
so-called four-state cross-bridge model. Our objective are introduce a notion of weak
solution to the evolution problem (NNS)—(IC) for the case N = 4 and discuss the
uniqueness and global existence of the weak solutions under suitable assumptions on w, »
@, L and condition (I).

For the model equations for the two-state cross-bridge model and other models, see
[1,2,3,4,5,6,7 8,9, 11, 12, 13, 14, 15, 16, 19, 20] and the references therein.

The plan of this report is as follows. In Section 2 we state assumptions on the data
of (NNS) and our main results. In Section 3 we investigate the semilinear evolution
equation, which is the first equation for given z(-). In addition, we reduce the initial-
value problem (NNS)-(IC) there. In Section 4 we demonstrate the existence result by

the fixed point argument. In Section 5 we prove the uniqueness result.
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We give only outlines of our discussion in the report. For the details and more general

assumptions on the data of (NNS), we refer to [20].

2. MAIN RESULTS

In this section we mention assumptions on the data, definition of weak solution to
(NNS)—(IC) and existence and uniqueness results through an abstract framework.
First, we put the following condition for the weight function w = (w!,w?, w3, w*).
(W) wl(z) = w?(z) =0, and w3(z) and w*(z) are strictly increasing and bi-Lipschitz
continuous over R. |
Each component u*(¢,z) of the unknown function u(f,z) represents the density of
cross-bridges of the position z in the ith state at t. In addition, it is required that the
function z +— w(z) - u(t, ) is integrable for the nonlocal term in (NNS) to make sense.
Hence it is convenient to employ the following types of weighted L! spaces:
+00
L (w) = {v: R — IRI measurable and lo(z)](1 + |wi(z)])dz < oo},

— 00

+o0 '
[olws = [ [o(@)|(1 + [w'(2)])dz.

—00
In order to treat our problem in an operator theoretic fashion, we introduce the

product space

X = L'(w") x L'(w?) x L'(w®) x L' (w?),

vl = [0 wr + 02wz + [03|ws + [v}ws for v = (v}, 02,03, 0%) € X.

Furthermore, we have to introduce the weighted Sobolev spaces Wh1(w') and the

“weighted L™ spaces” L™ (w'):

Wit (wt) := {v € L*(w®) | v € L} (w?)}, |o|*}

|'U wi T+ |’Ullwi;

wi =

L®(w?) := {v R — Ri measurable and |v(z)| < 1 +l a.e. for some C > 0},

€3]
|vll s := ess.sup |v(z)|(1 + Iw(a:)l)
z€R-
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We then refer to standard four-state linear models and c;onsider a typical case in
which the nonlinear function ¢ = (¢!, ¥?, %, %) is of the followiﬁg form:
Otz ut, u?, ud, ul, z) = Z [a,:j(t,a:)(uj)p"jb—aﬁ(t, a:)(ui)qf‘], i=1, 2, 3, 4.
J=i%l
Here we introduce the cyclic rule on the indices: i = J (mod 4), that is, for instance,
5 =1 and 0 = 4. Furthermore, the functions a;;41(¢,z), i = 1, 2, 3, 4, have the forms

fiix1(z), i=1,2,
‘ ’Y(t)fi,i:izl(x)a ¢ = 3, 4,
and the functions y(t) and f;;11(z), i =1, 2, 8, 4, satisfy the condition (F1) below:

0;,i+1(t, ) = {

(F1) 7, fiix1 are all nonnegative, v € C([0,T]), fiit1 € L'(w*) NL®(R), i = 1, 2,
fas € LY(w3) N L®(R), fa3 € Ll(wé) N L (w3), fa3 € L'(w?*) N L*(R) and
fa1 € LY(w*) N L (w*). Moreover, the powers p; ;1 and g; ;11 of nonlinearity
satisfy pii+1 > a1 2 1,i=1,2, 3, "

On the function L, we impose the following condition which implies the maximal

monotonicity of —L~1 and is stronger than the local Lipschitz continuity of L:
(L) —0 < a <b< 400, L € C(a,b) is strictly decreasing and satisfies L(a +0) =
+00 and L(b — 0) = —oco. Furthermore, to each r > 0 there corresponds Br>0
such that

(1 +AB:)|L(11) = L(r2)| < |L(11) = L() — A1 — 72))|

for A\>0and 71, 2 € [Lnl(r),L—l(‘T)]-

The above-mentioned evolution problem may be reformulated in an operator theoretic

manner. To this end, we first define
(S(o)v)(x) = v(x —o)forzeR, ve X, c eR.

Then the one-parameter family {S(0)},cr is a Co-group in X of type w: ||S(c)|| < el!
for ¢ € R, where

(w?) (x)
W = max ess.sup ——————,
1<i<4 - zer - 1+ [wi(z)]
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and its generator —A: D(A) C X — X is given by

D(A) = Whi(w!) x Wh(w?) x Whi(w?) x Whi(w?),
(2.1)
Av = (@), @), (0%, (v*)') for v = (v},0%,2%,9") € D(A).
We also define a continuous linear functional f on X by

+oo.
flv)= | w(z)- v(z)de.

In addition, we put D = {v € X | v(z) € E a.e.} and define a nonlinear mapping
F:[0,T]x DxR— X by
(2.2) F(t,u,z) = @(t,-,ul-), z) for (t,u,z) € [0,T] x D x R.

We then can rewrite (NNS) to the following nonlinear evolution system in X
{ u'(t) + 2 (t)Au(t) = F(¢t, u(t), z()), te(0,T),

z(t) = L(f(u(1))), t€[0,T7.
" We now formulate a notion of weak solution to the problem (NNS)-(IC).

Definition. A pair of functions (z,u) € C([0,T]) x C([0, T; X) is called a weak solution
to (NNS)-(IC), if u(t) € D and a < f(u(t)) < b for ¢ € [0,7], and

u(t) = S(z(t) — 2(0))uo + /O t S(2(t) — 2(r))F(r, u(r), z(7))dr,

z(t) = L(f(u(t))), te[0,T],
are satisfied.

Our existence theorem may be stated as follows:

Theorem 1 (existence). Assume that (W), (F1) and (L) hold. Let ug € X satisfy (I).
Then there exists a weak solution (z,u) to (NNS)—(IC) such that the functions z(t) and
f(u(t)) are Lipschitz continuous on [0, T]. '
In order to obtain a uniqueness theorem, we necessitate imposing an additional con-
dition on ¢ as stated below.
~ (F2) For any r > 0 there is a constant C, > 0 such that
V(o) e+ o)+ 1w @]+ o @) < Crlos — o

for [o1], |og| <1, j=ixtlandi=1, 2, 3, 4.
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Theorem 2 (uniqueness). Assume (F2) in addition to (W), (F1) and (L). If (25, 15),
J =1, 2, are weak solutions to (NNS), then we have

(2.3) |21 = 22|00 < C|S(=21(0))12(0) — S(—22(0))u2(0)],

where C' is a constant which may depend on |zj|c, ||u;(0)|l, 5 = 1, 2. In particular,
weak solutions to (NNS) are uniquely determined by the initial data.

These theorems are proved in Sections 4 and 5.

3. SEMILINEAR EVOLUTION EQUATIONS

This section is devoted to solving the semilinear evolution equations in X for given

function z(-):
(SE;z) v + 2 (t)Au = F(t,u,z2(t)), te(0,7).

Here A is the linear operator defined by (2.1) and F' the nonlinear mapping defined by
(2.2). We also reduce the evolution problem (NNS)—(IC) in the last of this section.
For each z € W1 (0,T) and almost all ¢ € (0, T'), define a linear operator A,(t) in

X by .
D(A), if () #0,
X, if 2/(t) = 0,

Moreover, for each z € C([0,T]), put U,(t,s) = S(2(t) — 2(s)), t, s € [0,T], where

D(A, (L)) = { A (t) == —2' (DA

{S(0)}ser is the Cy-group generated by —A. Then we easily obtain the following

proposition.

Proposition 8.1. Let z € C([0,T]). Then the two-parameter family {U,(t, 8)}+ scjo,1]
of continuous linear operators in X satisfies the following properties.

(@) (¢,5) = U,(t,s) is X-strongly continuous on [0,T] x [0, T].

(ii) U,(t, 8)U,(s,7) = U, (t,7), U.(s,s) = I for any r, s, t € [0, T).

(iii) U,(t,s)Y C Y, and (t,s) = U,(t,s) is Y-strongly continuous on [0,77 x [O,T],
where Y := D(A) is endowed with the graph-norm of A.
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(iv) If z € WH(0,T") and w €Y, then

t t
ULt 8)u —u = / AL (F)U,(r, s)udr = / U (t7) Ay (r)udr, (ts) € [0,T] x [0, T.

(v) The operator U,(t,s) is invertible and U,(t,s)™! = U,(s,t) for any t, s € [0, T].

Thus, {U,(t, 8)}+,s(0,1] Is a unique evolution operator in X generated by {A, () }iejo,m-

Let 0 < s <¢ < T and z € C([s,s]). A function u € C([s,s]; X) is said to be a weak

solution to (SE;z) on [s,¢], if u(t) € D and the following integral equation is satisfied:

t .
u(t) = 5(2(2) — 2(s))u(s) + / S(2(t) — 2(r))F(r,w(r), 2(r))dr, ¢ € [s,¢]-

We easily have the'following proposition by (F1) and (2.2).

Proposition 8.2. The continuous mapping F: [0,T] x D x R — X defined by (2.2)
has the following properties.

(i) F is Lipschitz continuous in u: there is a constant K such that
|1F(t,u,z) — F(t,v,z)|] <K|u—v| fort€[0,T], v,ve D and z € R;
(ii) F satisfies the so-called subtangential condition:
]iI}Lllidlf h"id(u:+ hF(t,u,z),D) =0 for (t,u,2) € [0,T) x D xR,

where d(v, D) stands for the distance from v to D, that is, d(v, D) = infyep ||v — ulj;
(iii) F grows at most linearly in u: there are a constant M and an X-valued function

F € C([0,T]; X4) such that
—Mu < F(t,u,2) < F(t)+ Mu in X for (t,u,2) € [0,7] x D x R.

Here < denotes the standard order relation in X and X, the positive cone of X.

Our first goal is to prove the following theorem.
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Theorem 3.3. Let 0 < s < ¢ < T, z € C([s,s]) and us € D. Then the initial-value
problem for (SE;z) on [s,] with initial condition u(s) = u, possésses a unique weak

solution u,.

Proof. We employ the method of characteristic line. Setting v,(t) := S(—z(t))u,(t),
we reduce the problem for (SE;z) with w,(s) = u; to the initial-value problem for the
following ordinary differential equation

(ODE;2) V' (t) = S(—2(1) F(t, S(2(t))v(t), 2(t)), tE€ [s,4]
with initial data S(—z (s))'u,s or equivalent integral equation

t .
v(t) = S(—2(s))us + / S(=2()F (7, 5(2(r))v(r), 2(7), € [s,].

Put G(t,v) := S(—2(t))F(t,S(2(t))v, 2(t)) for (t,v) € [s,¢] x D. Then noting that
{S(0)}ser is a Cp-group in X, we can check that G: [s,s] x D — X is continuous and

quasi-dissipative in the following sense
(1 =A0)|Jvy = val| < [Jv1 —v3 = A[G (¢, v1) — G(t, v3)]|| for A >0, t € [s,¢], v1, v2 € D.

Here C is a constant which depends on SUP,¢[s,q 12(7)|- We also see that G satisfies the

subtangential condition:
m}?Lionf h™1d(v 4 hG(t,v), D) =0 for t € [s,5], v € D,

by definition of G and Proposition 3.2 (i) and (ii). Hence we may apply [17, Corollary
1.1}, and get a unique classical solution v, € C([s,s]; D) N C*([s,c]; X) to fhe initial-
value problem for (ODE;z) on [s, s] under the initial condition v,(s) = S(—2(s))us. The
function w,(t) := S(2(t))v,(t) gives a desired, unique weak solution to the initial-value

problem for (SE;z). O

We next define a continuous linear functional g on X as follows

+o0
g(v) =— [ w'(z)- v(z)de,

-0
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where w'(z) = ((w') (z), (W?) (), (w3)(z),(w*) (z)). Then it is clear that g is the

unique extension of fA to X, and that for each v € X

(3.1) | f(S(o)v) =f(v) — /: g(S(r)v)dr, o€R.

Lemma 8.4. Let 0 < s < ¢ < T, us € D, and let w, € C([s,5]; D) be a weak

solution to the initial-value problem for (SE;2) on [s,¢] with u,(s) = us. Then z — fu,

is a continuous mapping from C([s,<]) into itself, where C([s,s]) is equipped with the

supremum-norm |-|oo. In addition, if z € W1 (s, ), then we have f(u,(-)) € W*(s,¢)
and '

(Fu.) (8) = —2' (H)g(uz(t)) +FF(t, ux(t), 2(2)) a-e. t € (5,5).

Proof. Suppose that z, — z in C([s,s]) and that u, and u are weak solutions to |
(SE;z,) and (SE;z) with u,(s) = u(s) = u,, respectively. Put v,(t) = S(—2,(t))un(?)
and v(t) = S(—z(t))u(t). Then v, (resp v) is a unique solution to (ODE;z2,) with
v,(s) = S(—;zn(s))us (resp. (ODE;Z) with v(s) = S(—z(s))u, ) as stated in the proof
of Theorem 3.3. By definition of F' and Propositioﬁ 3.2 (i) we see that

o(t) — v(®)]
< IS (-2n(6) — SNl +C [ 8(n(r) = SIw(r)ar
< t
+ / 1[S(=2a(7)) = S(=2(P)F(r, S ((r))v(r), =(r)) ldr +C / o () — v(r)dr,
t € l[s,s],

where C is a constant which depends on sup,, |zm|c. Using Gronwall’s Lemma, and
then taking the limit, we know that v, — v in C([s,s]; X) as n — co. Moreover, it
follows from (3.1) that |

[f(un (2)) — F(u(®))] = [§(S (2 () vn(t)) — (S (2(t)v ()]

< Iflle“" lva(t) — v@) + liglle*" |22 (@) — zD)Ilw (@), ¢ € [s,5]-
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Here ||f]| and ||g|| denote the operator-norm of the continuous linear functionals f and g
and 7 := sup,, |Zm|co. Then taking the suprenium over [s,¢] and the limit as n — oo,
we know that fu, — fu in C([s,]), so the mapping z — fu, is continuous.

Next, let z € W% (s,¢). It is clear that for v € X

%f(S’(z(t))'v) =~/ 8(S(zH)w) ae. (s,5)

holds by (3.1). Since the function v,(t) = S(—z(t))u,(t) is a classical solution to
(ODE;z), we see that

(fuz) () = (1S (2(2))) v (2) + FS(2(t))0, (2)
= =2/ ()a(S(2(t))v. () + 5(z(0)S(=z()F(t, S(2(t))v.(2), 2(t))
= “z’(t)g(uz(t)) + (¢t us(t), 2(¢) ae. (s,),

and hence (fu,)'(-) € L®(s,5). O

The remain of this section is devoted to the reduction of the initial-value problem
for (NNS) to equivalent problems. Given u, € X , consider the following initial-value

problems: Seek z € C({s, <]) satisfying the following nonlinear constraint
(NC) a <f(u,(t)) <band 2(t) = L(f(u,(t)), tes,q],

and u,(s) = u,; Seek z € C ([s,<]) satisfying the following functional equation
(FE) 2(t) = (I = ALY 7 2(t) - M(u.(2))), t€ [s,¢]

for some \ > 0, independent of ¢, and u,(s) = u,. Here u, is a unique weak solution
to the initial-value problem for (SE;z) on [s,] with u,(s) = wu,, which is obtained
in Theorem 3.3, and [ is the identity operator in R. Note that an inverese mapping
(I —AL7%)7!() of I — AL™! is defined on all of R as a single-valued function, since

—L~1 is maximal monotone.
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Theorem 8.5. Let 0 < s < ¢ < T. Under the initial condition u(s) = u,, the initial-
value problems for (NNS), (NC) and (FE) on [s, ] are equivalent in the following sense:
(i) If (z,u) is a weak solution to (NNS), then z is a solution to (NC), and u = u.;

(ii) If z is a solution to (NC), then (z,1u,) is a weak solution to (NNS);

(iii) z is a solution to (NC) if and only if this function is a solution to (FE).

Here u,, is a unique weak solution to the initial-value problem for (SE;2) on [s,s] with

. initial data u,, which is obtained in Theorem 3.3.

Proof. We easily see from definitions of solutions and Theorem 3.3 that (i) and (ii) hold.
(iii) If z € C([s,s]) satisfies that a < f(u,(t)) < b and 2(t) = L(f(u,(?))) for t €
[5,6], then a < f(u,(t)) < b and 2(t) — M(u,(t)) = (I — AL™1)(2(t)) on [s,¢] for all
A > 0: Here note that L: (a,b) — R is a bijection by (L). Therefore, it follows that
(I = ALY 1(2(t) — M(u,(2))) = 2(t) on [s,¢] for all A > 0. Conversely, if z € C([s,s])
satisfies (I — AoL~1)"1(2(t) — Aof(u,(t))) = 2(t) on [s,¢] for some Ay > 0, then it is
evident that a < f(u,(t)) < b and 2(t) = L(f(u,(t))) for t € [s,¢]. (Thus, z() satisfies
(I = AL71)(2(t) — Af(u,(t))) = z(t) on [s,¢] for all A >0.) [

Remark 3.6. We observe from the above theorem that if (z,u,) is a weak solution to
(NNS), then z is a fixed point of the mapping z +— (I — AL™1)71(2(-) — AM(u,(-))), and

the converse is also true.

4. FIXED POINT ARGUMENT

In this section we give sketch of proof of Theorem 1 by using Schauder’s Fixed Point
Theorem step by step in time. .

We again have to define continuous linear functionals on X:

+m. — +m . . .
h(v) = Z / v (z)dz, f(v)= Z / [w(z) vt (z)dz for v = (v!,v?,0%,v*) € X.
=340 i=3,47 7

Then it is evident that

0 < C1(v) < —g(v) < C3h(v) whenever v = (v!,v?,v%,v*) € X, and (1,3,1}) # 0,



73

where C1 =min;—3 4 ess.infyer (w?) (x) and Co =max;_3 4 ess.supyer(w?) (z). In addi-

tion, put £(t) = 3,5, ey [w' (@) (@3,i41(t, €) + ii1(t, 2))dz. Then we have
(1P (2w, 2)] < €(2) + MF(w) for (t,u,2) € [0,T] x D x R.
Here M is the same constant appeared in Proposition 3.2 (iii).
After a little long calculation we have the following technical estimates.

Lemma 4.1. Let 0 < s < ¢ < T, z € C([s,s]) and u, a weak solution to (SE;z) on

[s,¢]. Then we have:

() MO (u,(5)) < By (8) < M0 (hwy(5)) + L H(F())dr), ¢ € [5,].
(i) g(uz(t)) < —Cre™ME=)y(u,(s)), t € [s,4].

(iii) If z € WL (s,¢), then

— -— t -
Fua(t)) < M9 [f(uz(S)) + [ i

+ C2|z]oo (t — S)eM(t"s)(b(“z(S)) +/:[)(‘7:(T))d7'>} t € [s,5].

Sketch of proof of Theorem 1. Owing to Theorem 3.5, it suffices to show an existence
of a solution to (FE). We divided the proof into two steps.
Let ug € D satisfy a < f(ug) < b.

Step 1. In this step we assume that ug = (uf, u, ud, u) satisfies (u3, ud) # 0. Put

T -1
A = [CzeMT<b(uo) + [ b(f(r))dr)] = Cie M),
0
— T_.
k1 = (€l (0,1 + MM (Fluo) + /0 F(F(r))r ) + MeMTATY,
d1 = oy 'k, 1 = min{d; ', T}. ‘

Then 0 <¢; < T and ¢; < djL.

We define an operator ¥: Ky — C([0,¢;]) by

41)  Ki={CeW"(0,51) | ¢(0) = L(f(u0)), I¢'|oo < di},
42) (@) = (I =MLY HCER) — MF(uc(2)), t € [0,5] for ¢ € Ky
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Here u, is a unique weak solution to the initial-value problem for (SE;() on [0, 1] with
initial data ug. It is easy to check that K; is a compact, convex subset of C([0,51])
equipped with |- |e. Use Ascoli-Arzelad’s Theorem to see the compactness.

We next show
" Lemma 4.2. The mapping ¥: K1 — C([0,¢1]) is well-defined and continuous.
Proof. Since —L~! is maximal monotone in R by (L), the resolvent (I — A;L~1)~1(-) is

defined on R as a single-valued function and is a contraction operator in R:

43)  I=ML™H ) = I~ ML) THR S [ —Cal for ¢1, G €R.

Hence for z € K1 we see that (¥z)(-) € W1*°(0,¢;) by definition of ¥ and Lemma 3.4.
In particular, ¥: K; — C([0,1]) is well-defined. |
To see the continuity of ¥, let 2,, z € K1 and |z, . Z|eo — 0. Then it follows from

(4.3) and Lemma 3.4 that
[ ¥z, — ¥z|oo < |20 — 2loo + A1lfez, — fUz]eo — 0.

Consequently, ¥ is continuous. O

Furthermore, we obtain
‘Lemma 4.8. The mapping ¥ has values in Ky, that is, ¥K; C K.
Proof. Let z € K1. We have shown that ¥z € W*(0,¢) in the proof of the previous
lemma. Since u,(0) = ug and L~1(2(0)) = f(uo), wesee (¥z)(0) = (I-A; L™1)~1(2(0)-
A1f(uo)) = 2(0) = L(F(uo))-

Let us show that [(T2)|eo < d. Let 0 <3 < tg < ¢1. Then it follows from (4.3) and
Lemma 3.4 that |

. t2 »
- (E2)(8) — (P2)(t2)] S/t [12' (ML 4+ Mgz ()| + MIFF (7, u,(7), 2(7))| ] dr.

. 1

Using Lemma 4.1 (i) and (ii), we see that

0 <1+4+Mg(us(t)) <1-Xo1, te[0,ql
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Moreover, we get that

TP uat), 2(0))| < k1, t € [0,41),

by Lemma 4.1 (iii). Consequently, we have

[(T2)(t1) — (2)(t2)] < [di(1 — A1) + Aikar] (b2 — 1) = da (b2 — 1),
which implies |(¥2)|oo < d; as desired. O
Since Lemmas 4.2 and 4.3 allow us to apply Schauder’s Fixed Point Theorem, we get
a fixed point £ € K; of ¥. This 2 is a solution to (FE) on [0,¢;] with u(0) = ug. It is

clear from Lemma 3.4 that f(us(-)) € WH*(0,c;). If g = T, then 3 is a global solution.
- Let ¢¢ < T. Put

o= [T (st + [ 0FEO)] L = e T,

T
k2 = |€|Leoo) + M eM(T"g‘)G(uz (s1)) + / §f(F(r))dr ) + MeMTA;,

d2 = 951’_{’27 S2 = Iniﬁ{§1 + d2_1>T},
and define

Ko ={¢ € W"®(s1,62) | {(s1) = (1), [¢']oo < d2},
(TO(E) = (I = ALY 7HE(@) — Aaf(uc (), t € [s1, 6] for ¢ € K.

Then in a way similar to the above, we may apply Schauder’s Fixed Point Theorem,
and obtain a solution z € W™ (¢1,¢;) on [g1, 5] with uz(s1) = us(s;). Setting

(2, iteo,ql,
#t) = { 20), it (a5l

we easily see that
’U;g(t), if t € [07 g1]7

UL(L) = )

©) { uz(t), it € (51,

and that z € WH*(0,¢;) is a solution on [0, ¢s] with u,(0) = ug. Note that f(u,(-)) €
W1(0,5;) by Lemma 3.4.
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Repeat these arguments. We find frém Lemma 4.1 that ¢, > min{(1 +2"1 +..- +
n~1)d71, T} after the repetition of the n times. The fact that Y p_, k™" / -+oo as
n — oo makes us finish the repetition finite times.

In this way, if up = (ud, u3, ud, u}) satisfies (ud, u§) # 0, then we have a solution on
the whole interval [0, T]. In case of 0 & (a,b), the proof of Theorem 1 is complete. On
the other hand, in case of a < 0 < b, we need Step 2 in addition to Step 1.
~ Step 2. In this step we assume that uy = (u,u3,0,0). We may assume L(0) = 0
withéut loss of generality.

Put |

A= {czeMT /O " max(h(F(r)), 1}df]_1, |

T
k1 = €l (0.1 + MMT /O FF(r)dr + MeMTATY,

dy = k187, e1=di*(1+MB1)7Y, 61 =min{e;, T},

where (3; is the constant appeared in (L) with r = 1. Define an operator ¥: K; —
C([0,51]) by (4.1) and (4.2). Note that L(f(uo)) vanishes.

Let z € K1, and let 0 < t; < tp < ¢;. We claim that |(T2)(¢1)—(¥2)(t2)| < di(ta—t1).
Since (I — A\;L~1)~1(0) = 0, 2(0) = 0 and up = (u§,u3,0,0), we see that

t;

[(@2)(%:)] S/O [12/ (P11 + Mg (ua (T)ldr + A [FF (7, uz(7), 2(7)) ] dr
by (4.3) and Lemma 3.4. | Furthermore, it follows from Lemma 4.1 (i) and (ii) that
0<1+Mg(us(t) <1, [fF(E wa(t), 2(8))| < w1 for ¢ € [0,1], |

and so |(¥2)(t;)] < 1. Setting 7; = A\ [(I — A\ L~1) "1 = I](2(t;) — A1f(w,(t:))), we know
that (¥2)(¢;) = L(r;) and L(r;) — A7 = 2(8;) — A1f(u,(¢;)). Therefore, we see from (L)
that

[(T2)(t1) — (T2)(t2)] < (1 + MB1) 7 L(11) — L(12) — M1 — 72)]
. W

<(1+M6)7" / [12/ (L + Mg(us (1) + MFF (T, us(7), 2(7))|]dr

t1
<dj(ta —t1)
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as claimed.

Hence using Schauder’s Fixed Point Theorem, we obtain a solﬁtipn 2 e Wh*(0,¢)
on [0,¢1]. If g1 = T, the proof is complete. Let ¢y < T If uz(c1) = (ul (gl),"u,g (1), u3(s1),
u$(s1)) satisfies (u3(s1), ut(s1)) # O, then returning to Step 1 we can extend 2(t) to [0, 7.
If us(s1) = (u3(s1),u3(s1),0,0), then choosing ¢z = min{¢; +&;, T’} for the above ; and
defining

K2 ={( € Wh(s1,%) | (s1) = 2(s1), [¢']oo < di},
(T (@) = (I — ML™H7HCE) — Mf(uc®))), t € [s1,52] for ¢ € Ka,

we prolong 2(t) to [0, ). Repeat these arguments.
In this way we gain a solution z on the whole interval [0,T] such that z, ju, €
W1°°(0,T). Thus, Theorem 1 has been completely proved. [

5. PROOF OF THE UNIQUENESS THEOREM

In this section we establish the uniqueness result for (NNS).

Proof of Theorem 2. Let (z;,u;), j = 1, 2, be weak solutions to (NNS) on [0, T]. Recall
that u; is a unique weak solution to the initial-value problem for (SE;z;) on [0, 7] with
initial data u;(0): u; = u,,. We first show (2.3). Since 2;(t) = L(f(u;(t))), j =1, 2,

we see that -

(5.1) Brlz1(t) — z2(8)] < [f(ua (8)) — f(u2(®))], ¢ €[0,T],

by the local Lipschitz continuity of L, cf. (L). Here # > max{|21|co, | 22|00 }-
Put v;(t) = S(—z;(t))u;(t). Then v, is a solution to (ODE;2;) on [0, T] with v,(0) =
S (—2;(0))u;(0). We claim that

(5.2) [(1(2)) — flwa@)] < [Iflle* or () = v2 @), ¢ € [0,T].

Indeed, we suppose that z;(t) < z2(t) at ¢, then we see f(ui(t)) > f(uz(t)) at ¢, since L

is strictly decreasing. In addition, o + §(S(c)v;(t)) is nondecreasing by (3.1). Hence it
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follows that

|f(w1(2)) — f(uz(8))] = f(u(t)) — f(ua(t))
= f(S(21(t))v1(t)) — F(S(22(t))v1(2)) | |
+ (S (z2(2))v1(t)) — F(S(22(£))v2(t))

< [Iflle“ floi(®) — vl at

as ciaimed.

Next, claim that
i
(5:3)  lloi(t) —va(®)ll < C(llvn(0) — w(0)]| +C /0 [21(r) — za(r)ldr ), e [0, 7],

where C depends on 7 > max{|21]oo, |22|c0 }. Definition of F and condition (F2) provide
with the local Lipschitz continuity of o — S(—0)F(t,S(c)u,0): For each r > 0 there

is a constant C(r) such that
15(—01)F(t, S(o1)u, 01) — S(—=02) F'(t, S(02)u, 02)|| £ C(r)|or — o2l

for t € [0,T], w € D and 0y, 05 € [—-r,7]. Using the local Lipschitz continuity of
o +— S(—0)F(t,S(0)u, o) combined with the Lipschitz continuity of v — F(t,u,0), we

have

[o1() — va(®)]) < [|02(0) = w:(0)]| +C /0 (21(7) — za(7)ldr +C / [o1(7) — va(r)dr.

By Gronwall’s Lemma we get (5.3).
Therefore, it follows from (5.1)—(5.3) that

. ' t
26— 20)] < C(I02(0) = wa@ +C [ [ar) = 2()dr), e 0,11,

and then apply Gronwall’s Lemma to obtain (2.3).
It remains to show that (2.3) implies the uniqueness. Assume u;(0) = u2(0). Then
it is obvious that z; = z3 by (2.3). Noting that a weak solution to (SE;z) is at most one

for z € C([0,T]), we conclude u; = u,, = Uy, = Uy O
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We conclude with the final remarks.

Remark. We can show that the unknown u(t, z) is compactly supported in  under the

additional assumptions similar to [12, 14]. We can also discuss continuous dependence

of u(t, ) on initial data in a way similar to [16].

10.

11.
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