NONLOCAL NONLINEAR SYSTEMS OF TRANSPORT EQUATIONS IN WEIGHTED L^1 SPACES: AN OPERATOR THEORETIC APPROACH

TOSHIYUKI YAMAGUCHI (山口 利幸)

Department of Mathematics, Faculty of Science, Hiroshima University

1. Introduction

This report is concerned with a nonlocal nonlinear transport system of the form

(NNS)
$$\begin{cases} \partial_t \boldsymbol{u} + z'(t)\partial_x \boldsymbol{u} = \boldsymbol{\varphi}(t, x, \boldsymbol{u}, z(t)), & (t, x) \in (0, T) \times \mathbb{R}, \\ z(t) = L\Big(\int_{-\infty}^{+\infty} \boldsymbol{w}(x) \cdot \boldsymbol{u}(t, x) dx\Big), & t \in [0, T]. \end{cases}$$

Here $\boldsymbol{u}\equiv(u^i)_{i=1}^N\colon [0,T]\times\mathbb{R}\to\mathbb{R}^N$ and $z\colon [0,T]\to\mathbb{R}$ are unknown, $0< T<\infty$ is arbitrary, N is a given positive integer and z' stands for the time derivative of z. The left-hand side of the evolution equation in (NNS) is called the material derivative of \boldsymbol{u} and governed by a function $\boldsymbol{\varphi}\equiv(\varphi^i)_{i=1}^N\colon [0,T]\times\mathbb{R}\times\mathbb{E}\times\mathbb{R}\to\mathbb{R}^N$. The set \mathbb{E} is defined as $\{\boldsymbol{v}=(v^i)_{i=1}^N\in\mathbb{R}^N\mid v^i\geq 0 \text{ and } \sum_{i=1}^Nv^i\leq 1\}$ and $\boldsymbol{\varphi}$ is assumed to be continuous in $(t,\boldsymbol{u},z); \boldsymbol{\varphi}$ need not be continuous in x. The function z is represented as a nonlocal nonlinear term determined by an \mathbb{R} -valued, continuous and decreasing function L on an open interval (a,b) and an \mathbb{R}^N -valued weight function $\boldsymbol{w}\equiv(w^i)_{i=1}^N$ on \mathbb{R} . Accordingly, solutions \boldsymbol{u} to (NNS) are sought in such a way that $\boldsymbol{u}(t,x)\in\mathbb{E}$ for a.e. $x\in\mathbb{R}$ and $a<\int_{-\infty}^{+\infty} \boldsymbol{w}(x)\cdot\boldsymbol{u}(t,x)dx < b$ for $t\in[0,T]$.

In case of N=4, Comincioli et al. [10] have shown the existence and uniqueness of classical solutions to (NNS) for the following case: The function φ has the form

$$\varphi^{i}(t,x,u^{1},u^{2},u^{3},u^{4},z) = \sum_{j=i\pm 1} \left[a_{ij}(t,x)u^{j} - a_{ji}(t,x)u^{i} \right], \quad i = 1, 2, 3, 4,$$

which is linear in $u = (u^1, u^2, u^3, u^4)$ and is smooth in (t, x), $w(x) = (0, 0, x - \delta, x)$ (δ a given constant) and

$$L(\tau) = -\log(1+\tau) + \log\left(1 + \int_{-\infty}^{+\infty} w(x) \cdot u_0(x) dx\right),$$

 $a=-1,\,b=+\infty,$ where $\boldsymbol{u}_0(\cdot)$ is an initial-function.

The system (NNS) is regarded as a mathematical model which describes the cross-bridge mechanism in muscle contraction, if N, φ , L and w are specified in an appropriate way and an initial condition

(IC)
$$u(0,x) = u_0(x), \quad x \in \mathbb{R}$$

is imposed in such a way that the initial-function u_0 is compactly supported and satisfies the compatibility condition

(I)
$$u_0(x) \in \mathbb{E}$$
 a.e. in \mathbb{R} and $a < \int_{-\infty}^{+\infty} w(x) \cdot u_0(x) dx < b$.

In order to formulate more reasonable models, it is preferable that the function φ and initial-function u_0 should be nonsmooth and even discontinuous. Therefore it is not always expected to obtain classical solutions to the initial-value problem (NNS)-(IC).

The general class of (NNS) can be treated, but we here focus our attention on the so-called four-state cross-bridge model. Our objective are introduce a notion of weak solution to the evolution problem (NNS)–(IC) for the case N=4 and discuss the uniqueness and global existence of the weak solutions under suitable assumptions on w, φ , L and condition (I).

For the model equations for the two-state cross-bridge model and other models, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 19, 20] and the references therein.

The plan of this report is as follows. In Section 2 we state assumptions on the data of (NNS) and our main results. In Section 3 we investigate the semilinear evolution equation, which is the first equation for given $z(\cdot)$. In addition, we reduce the initial-value problem (NNS)-(IC) there. In Section 4 we demonstrate the existence result by the fixed point argument. In Section 5 we prove the uniqueness result.

We give only outlines of our discussion in the report. For the details and more general assumptions on the data of (NNS), we refer to [20].

2. Main results

In this section we mention assumptions on the data, definition of weak solution to (NNS)-(IC) and existence and uniqueness results through an abstract framework.

First, we put the following condition for the weight function $\boldsymbol{w} \equiv (w^1, w^2, w^3, w^4)$.

(W) $w^1(x) = w^2(x) \equiv 0$, and $w^3(x)$ and $w^4(x)$ are strictly increasing and bi-Lipschitz continuous over \mathbb{R} .

Each component $u^i(t,x)$ of the unknown function u(t,x) represents the density of cross-bridges of the position x in the ith state at t. In addition, it is required that the function $x \mapsto w(x) \cdot u(t,x)$ is integrable for the nonlocal term in (NNS) to make sense. Hence it is convenient to employ the following types of weighted L^1 spaces:

$$L^1(w^i) = \left\{ v \colon \mathbb{R} \to \mathbb{R} \,\middle|\, \text{measurable and } \int_{-\infty}^{+\infty} \lvert v(x) \rvert (1 + \lvert w^i(x) \rvert) dx < \infty \right\},$$
$$|v|_{w^i} = \int_{-\infty}^{+\infty} \lvert v(x) \rvert (1 + \lvert w^i(x) \rvert) dx.$$

In order to treat our problem in an operator theoretic fashion, we introduce the product space

$$X = L^{1}(w^{1}) \times L^{1}(w^{2}) \times L^{1}(w^{3}) \times L^{1}(w^{4}),$$

$$||v|| = |v^{1}|_{w^{1}} + |v^{2}|_{w^{2}} + |v^{3}|_{w^{3}} + |v^{4}|_{w^{4}} \text{ for } v = (v^{1}, v^{2}, v^{3}, v^{4}) \in X.$$

Furthermore, we have to introduce the weighted Sobolev spaces $W^{1,1}(w^i)$ and the "weighted L^{∞} spaces" $L^{\infty}(w^i)$:

$$\begin{split} W^{1,1}(w^i) := & \{v \in L^1(w^i) \mid v' \in L^1(w^i)\}, \quad |v|_{w^i}^{1,1} := |v|_{w^i} + |v'|_{w^i}; \\ L^\infty(w^i) := & \left\{v \colon \mathbb{R} \to \mathbb{R} \ \middle| \ \text{measurable and} \ |v(x)| \le \frac{C}{1 + |w(x)|} \ \text{a.e. for some} \ C > 0 \right\}, \\ & \|v\|_{w^i} := \text{ess.} \sup_{x \in \mathbb{R}} |v(x)|(1 + |w(x)|). \end{split}$$

We then refer to standard four-state linear models and consider a typical case in which the nonlinear function $\varphi = (\varphi^1, \varphi^2, \varphi^3, \varphi^4)$ is of the following form:

$$\varphi^{i}(t,x,u^{1},u^{2},u^{3},u^{4},z) = \sum_{j=i\pm 1} \left[a_{ij}(t,x)(u^{j})^{p_{ij}} - a_{ji}(t,x)(u^{i})^{q_{ji}} \right], \quad i = 1, 2, 3, 4.$$

Here we introduce the cyclic rule on the indices: $i \equiv j \pmod{4}$, that is, for instance, $5 \equiv 1$ and $0 \equiv 4$. Furthermore, the functions $a_{i,i\pm 1}(t,x)$, i = 1, 2, 3, 4, have the forms

$$a_{i,i\pm 1}(t,x) = \begin{cases} f_{i,i\pm 1}(x), & i = 1, 2, \\ \gamma(t)f_{i,i\pm 1}(x), & i = 3, 4, \end{cases}$$

and the functions $\gamma(t)$ and $f_{i,i\pm 1}(x)$, $i=1,\,2,\,3,\,4$, satisfy the condition (F1) below:

(F1) γ , $f_{i,i\pm 1}$ are all nonnegative, $\gamma \in C([0,T])$, $f_{i,i\pm 1} \in L^1(w^i) \cap L^{\infty}(\mathbb{R})$, i = 1, 2, $f_{34} \in L^1(w^3) \cap L^{\infty}(\mathbb{R})$, $f_{32} \in L^1(w^3) \cap L^{\infty}(w^3)$, $f_{43} \in L^1(w^4) \cap L^{\infty}(\mathbb{R})$ and $f_{41} \in L^1(w^4) \cap L^{\infty}(w^4)$. Moreover, the powers $p_{i,i\pm 1}$ and $q_{i,i\pm 1}$ of nonlinearity satisfy $p_{i,i\pm 1} \geq q_{i,i\pm 1} \geq 1$, i = 1, 2, 3, 4.

On the function L, we impose the following condition which implies the maximal monotonicity of $-L^{-1}$ and is stronger than the local Lipschitz continuity of L:

(L) $-\infty \le a < b \le +\infty$, $L \in C(a,b)$ is strictly decreasing and satisfies $L(a+0) = +\infty$ and $L(b-0) = -\infty$. Furthermore, to each r > 0 there corresponds $\beta_r > 0$ such that

$$(1 + \lambda \beta_r)|L(\tau_1) - L(\tau_2)| \le |L(\tau_1) - L(\tau_2) - \lambda(\tau_1 - \tau_2)|$$
for $\lambda > 0$ and $\tau_1, \tau_2 \in [L^{-1}(r), L^{-1}(-r)].$

The above-mentioned evolution problem may be reformulated in an operator theoretic manner. To this end, we first define

$$(S(\sigma)v)(x) := v(x - \sigma) \text{ for } x \in \mathbb{R}, \ v \in X, \ \sigma \in \mathbb{R}.$$

Then the one-parameter family $\{S(\sigma)\}_{\sigma\in\mathbb{R}}$ is a C_0 -group in X of type ω : $||S(\sigma)|| \leq e^{\omega|\sigma|}$ for $\sigma\in\mathbb{R}$, where

$$\omega = \max_{1 \le i \le 4} \operatorname{ess.sup} \frac{(w^i)'(x)}{1 + |w^i(x)|},$$

and its generator $-\Lambda \colon \mathcal{D}(\Lambda) \subset X \to X$ is given by

$$\mathcal{D}(\Lambda) = W^{1,1}(w^1) \times W^{1,1}(w^2) \times W^{1,1}(w^3) \times W^{1,1}(w^4),$$

(2.1)
$$\Lambda \boldsymbol{v} = ((v^1)', (v^2)', (v^3)', (v^4)') \text{ for } \boldsymbol{v} = (v^1, v^2, v^3, v^4) \in \mathcal{D}(\Lambda).$$

We also define a continuous linear functional f on X by

$$f(v) = \int_{-\infty}^{+\infty} w(x) \cdot v(x) dx.$$

In addition, we put $D = \{ v \in X \mid v(x) \in \mathbb{E} \text{ a.e.} \}$ and define a nonlinear mapping $F \colon [0,T] \times D \times \mathbb{R} \to X$ by

(2.2)
$$F(t, \boldsymbol{u}, z) = \varphi(t, \cdot, \boldsymbol{u}(\cdot), z) \text{ for } (t, \boldsymbol{u}, z) \in [0, T] \times D \times \mathbb{R}.$$

We then can rewrite (NNS) to the following nonlinear evolution system in X

$$\begin{cases} u'(t) + z'(t)\Lambda u(t) = F(t, u(t), z(t)), & t \in (0, T) \\ z(t) = L(\mathfrak{f}(u(t))), & t \in [0, T] \end{cases}.$$

We now formulate a notion of weak solution to the problem (NNS)-(IC).

Definition. A pair of functions $(z, u) \in C([0, T]) \times C([0, T]; X)$ is called a weak solution to (NNS)-(IC), if $u(t) \in D$ and a < f(u(t)) < b for $t \in [0, T]$, and

$$u(t) = S(z(t) - z(0))u_0 + \int_0^t S(z(t) - z(\tau))F(\tau, u(\tau), z(\tau))d\tau,$$

$$z(t) = L(\mathfrak{f}(u(t))), \qquad t \in [0, T],$$

are satisfied.

Our existence theorem may be stated as follows:

Theorem 1 (existence). Assume that (W), (F1) and (L) hold. Let $u_0 \in X$ satisfy (I). Then there exists a weak solution (z, u) to (NNS)-(IC) such that the functions z(t) and f(u(t)) are Lipschitz continuous on [0, T].

In order to obtain a uniqueness theorem, we necessitate imposing an additional condition on φ as stated below.

(F2) For any r>0 there is a constant $C_r>0$ such that

$$\int_{-\infty}^{+\infty} |f_{ij}(x+\sigma_1) - f_{ij}(x+\sigma_2)|(1+|w^i(x)|+|w^j(x)|)dx \le C_r|\sigma_1 - \sigma_2|$$
for $|\sigma_1|$, $|\sigma_2| \le r$, $j = i \pm 1$ and $i = 1, 2, 3, 4$.

Theorem 2 (uniqueness). Assume (F2) in addition to (W), (F1) and (L). If (z_j, u_j) , j = 1, 2, are weak solutions to (NNS), then we have

$$|z_1 - z_2|_{\infty} \le C||S(-z_1(0))u_1(0) - S(-z_2(0))u_2(0)||,$$

where C is a constant which may depend on $|z_j|_{\infty}$, $||u_j(0)||$, j = 1, 2. In particular, weak solutions to (NNS) are uniquely determined by the initial data.

These theorems are proved in Sections 4 and 5.

3. SEMILINEAR EVOLUTION EQUATIONS

This section is devoted to solving the semilinear evolution equations in X for given function $z(\cdot)$:

(SE;z)
$$u' + z'(t)\Lambda u = F(t, u, z(t)), \qquad t \in (0, T).$$

Here Λ is the linear operator defined by (2.1) and F the nonlinear mapping defined by (2.2). We also reduce the evolution problem (NNS)–(IC) in the last of this section.

For each $z \in W^{1,\infty}(0,T)$ and almost all $t \in (0,T)$, define a linear operator $A_z(t)$ in X by

$$\mathcal{D}(A_z(t)) := \begin{cases} \mathcal{D}(\Lambda), & \text{if } z'(t) \neq 0, \\ X, & \text{if } z'(t) = 0, \end{cases} A_z(t) := -z'(t)\Lambda.$$

Moreover, for each $z \in C([0,T])$, put $U_z(t,s) = S(z(t)-z(s))$, $t,s \in [0,T]$, where $\{S(\sigma)\}_{\sigma \in \mathbb{R}}$ is the C_0 -group generated by $-\Lambda$. Then we easily obtain the following proposition.

Proposition 3.1. Let $z \in C([0,T])$. Then the two-parameter family $\{U_z(t,s)\}_{t,s\in[0,T]}$ of continuous linear operators in X satisfies the following properties.

- (i) $(t,s) \mapsto U_z(t,s)$ is X-strongly continuous on $[0,T] \times [0,T]$.
- (ii) $U_z(t,s)U_z(s,r) = U_z(t,r), \ U_z(s,s) = I \text{ for any } r, \ s, \ t \in [0,T].$
- (iii) $U_z(t,s)Y \subset Y$, and $(t,s) \mapsto U_z(t,s)$ is Y-strongly continuous on $[0,T] \times [0,T]$, where $Y := \mathcal{D}(\Lambda)$ is endowed with the graph-norm of Λ .

(iv) If $z \in W^{1,\infty}(0,T)$ and $u \in Y$, then

$$U_z(t,s)\boldsymbol{u}-\boldsymbol{u}=\int_s^t A_z(\tau)U_z(\tau,s)\boldsymbol{u}d\tau=\int_s^t U_z(t,\tau)A_z(\tau)\boldsymbol{u}d\tau,\quad (t,s)\in [0,T]\times [0,T].$$

(v) The operator $U_z(t,s)$ is invertible and $U_z(t,s)^{-1} = U_z(s,t)$ for any $t, s \in [0,T]$. Thus, $\{U_z(t,s)\}_{t,s\in[0,T]}$ is a unique evolution operator in X generated by $\{A_z(t)\}_{t\in[0,T]}$.

Let $0 \le s < \varsigma \le T$ and $z \in C([s,\varsigma])$. A function $u \in C([s,\varsigma];X)$ is said to be a weak solution to (SE;z) on $[s,\varsigma]$, if $u(t) \in D$ and the following integral equation is satisfied:

$$\boldsymbol{u}(t) = S(z(t) - z(s))\boldsymbol{u}(s) + \int_{s}^{t} S(z(t) - z(\tau))F(\tau, \boldsymbol{u}(\tau), z(\tau))d\tau, \quad t \in [s, \varsigma].$$

We easily have the following proposition by (F1) and (2.2).

Proposition 3.2. The continuous mapping $F: [0,T] \times D \times \mathbb{R} \to X$ defined by (2.2) has the following properties.

(i) F is Lipschitz continuous in u: there is a constant K such that

$$||F(t, \boldsymbol{u}, z) - F(t, \boldsymbol{v}, z)|| \le K||\boldsymbol{u} - \boldsymbol{v}||$$
 for $t \in [0, T], \ \boldsymbol{u}, \ \boldsymbol{v} \in D$ and $z \in \mathbb{R}$;

(ii) F satisfies the so-called subtangential condition:

$$\liminf_{h\downarrow 0} h^{-1}d(\boldsymbol{u}+hF(t,\boldsymbol{u},z),D)=0 \text{ for } (t,\boldsymbol{u},z)\in [0,T]\times D\times \mathbb{R},$$

where d(v, D) stands for the distance from v to D, that is, $d(v, D) = \inf_{u \in D} ||v - u||$; (iii) F grows at most linearly in u: there are a constant M and an X-valued function $\mathcal{F} \in C([0, T]; X_+)$ such that

$$-Mu \leqslant F(t, u, z) \leqslant \mathcal{F}(t) + Mu \text{ in } X \text{ for } (t, u, z) \in [0, T] \times D \times \mathbb{R}.$$

Here \leq denotes the standard order relation in X and X_+ the positive cone of X.

Our first goal is to prove the following theorem.

Theorem 3.3. Let $0 \le s < \varsigma \le T$, $z \in C([s,\varsigma])$ and $u_s \in D$. Then the initial-value problem for (SE;z) on $[s,\varsigma]$ with initial condition $u(s) = u_s$ possesses a unique weak solution u_z .

Proof. We employ the method of characteristic line. Setting $v_z(t) := S(-z(t))u_z(t)$, we reduce the problem for (SE;z) with $u_z(s) = u_s$ to the initial-value problem for the following ordinary differential equation

(ODE;z)
$$v'(t) = S(-z(t))F(t, S(z(t))v(t), z(t)), \quad t \in [s, \varsigma]$$

with initial data $S(-z(s))u_s$ or equivalent integral equation

$$v(t) = S(-z(s))u_s + \int_s^t S(-z(\tau))F(\tau, S(z(\tau))v(\tau), z(\tau)), \quad t \in [s, \varsigma].$$

Put $G(t, \mathbf{v}) := S(-z(t))F(t, S(z(t))\mathbf{v}, z(t))$ for $(t, \mathbf{v}) \in [s, \varsigma] \times D$. Then noting that $\{S(\sigma)\}_{\sigma \in \mathbb{R}}$ is a C_0 -group in X, we can check that $G: [s, \varsigma] \times D \to X$ is continuous and quasi-dissipative in the following sense

$$(1-\lambda C)\|\boldsymbol{v}_1-\boldsymbol{v}_2\|\leq \|\boldsymbol{v}_1-\boldsymbol{v}_2-\lambda[G(t,\boldsymbol{v}_1)-G(t,\boldsymbol{v}_2)]\| \text{ for } \lambda>0, \ t\in[s,\varsigma], \ \boldsymbol{v}_1,\ \boldsymbol{v}_2\in D.$$

Here C is a constant which depends on $\sup_{\tau \in [s,\varsigma]} |z(\tau)|$. We also see that G satisfies the subtangential condition:

$$\liminf_{h\downarrow 0} h^{-1}d(\boldsymbol{v}+hG(t,\boldsymbol{v}),D)=0 \text{ for } t\in [s,\varsigma], \ \boldsymbol{v}\in D,$$

by definition of G and Proposition 3.2 (i) and (ii). Hence we may apply [17, Corollary 1.1], and get a unique classical solution $v_z \in C([s,\varsigma];D) \cap C^1([s,\varsigma];X)$ to the initial-value problem for (ODE;z) on $[s,\varsigma]$ under the initial condition $v_z(s) = S(-z(s))u_s$. The function $u_z(t) := S(z(t))v_z(t)$ gives a desired, unique weak solution to the initial-value problem for (SE;z). \square

We next define a continuous linear functional $\mathfrak g$ on X as follows

$$\mathfrak{g}(\boldsymbol{v}) = -\int_{-\infty}^{+\infty} \boldsymbol{w}'(x) \cdot \boldsymbol{v}(x) dx,$$

where $w'(x) = ((w^1)'(x), (w^2)'(x), (w^3)'(x), (w^4)'(x))$. Then it is clear that \mathfrak{g} is the unique extension of $f\Lambda$ to X, and that for each $v \in X$

(3.1)
$$f(S(\sigma)v) = f(v) - \int_0^{\sigma} g(S(\tau)v)d\tau, \quad \sigma \in \mathbb{R}.$$

Lemma 3.4. Let $0 \le s < \varsigma \le T$, $u_s \in D$, and let $u_z \in C([s,\varsigma];D)$ be a weak solution to the initial-value problem for (SE;z) on $[s,\varsigma]$ with $u_z(s) = u_s$. Then $z \mapsto \mathfrak{f} u_z$ is a continuous mapping from $C([s,\varsigma])$ into itself, where $C([s,\varsigma])$ is equipped with the supremum-norm $|\cdot|_{\infty}$. In addition, if $z \in W^{1,\infty}(s,\varsigma)$, then we have $\mathfrak{f}(u_z(\cdot)) \in W^{1,\infty}(s,\varsigma)$ and

$$(\mathfrak{f}\boldsymbol{u}_z)'(t) = -z'(t)\mathfrak{g}(\boldsymbol{u}_z(t)) + \mathfrak{f}F(t,\boldsymbol{u}_z(t),z(t))$$
 a.e. $t \in (s,\varsigma)$.

Proof. Suppose that $z_n \to z$ in $C([s,\varsigma])$ and that u_z and u are weak solutions to $(SE;z_n)$ and (SE;z) with $u_n(s) = u(s) = u_s$, respectively. Put $v_n(t) = S(-z_n(t))u_n(t)$ and v(t) = S(-z(t))u(t). Then v_n (resp. v) is a unique solution to $(ODE;z_n)$ with $v_n(s) = S(-z_n(s))u_s$ (resp. (ODE;z) with $v(s) = S(-z(s))u_s$) as stated in the proof of Theorem 3.3. By definition of F and Proposition 3.2 (i) we see that

$$\begin{aligned} \|v_{n}(t) - v(t)\| \\ &\leq \|[S(-z_{n}(s)) - S(-z(s))]u_{s}\| + C \int_{s}^{\varsigma} \|[S(z_{n}(\tau)) - S(z(\tau))]v(\tau)\|d\tau \\ &+ \int_{s}^{\varsigma} \|[S(-z_{n}(\tau)) - S(-z(\tau))]F(\tau, S(z(\tau))v(\tau), z(\tau))\|d\tau + C \int_{s}^{t} \|v_{n}(\tau) - v(\tau)\|d\tau, \\ &\quad t \in [s, \varsigma], \end{aligned}$$

where C is a constant which depends on $\sup_m |z_m|_{\infty}$. Using Gronwall's Lemma, and then taking the limit, we know that $v_n \to v$ in $C([s,\varsigma];X)$ as $n \to \infty$. Moreover, it follows from (3.1) that

$$\begin{aligned} |\mathfrak{f}(u_n(t)) - \mathfrak{f}(u(t))| &= |\mathfrak{f}(S(z_n(t))v_n(t)) - \mathfrak{f}(S(z(t))v(t))| \\ &\leq \|\mathfrak{f}\|e^{\omega \hat{r}}\|v_n(t) - v(t)\| + \|\mathfrak{g}\|e^{\omega \hat{r}}|z_n(t) - z(t)|\|v(t)\|, \ t \in [s,\varsigma]. \end{aligned}$$

Here $\|\mathfrak{f}\|$ and $\|\mathfrak{g}\|$ denote the operator-norm of the continuous linear functionals \mathfrak{f} and \mathfrak{g} and $\hat{r} := \sup_m |z_m|_{\infty}$. Then taking the supremum over $[s, \varsigma]$ and the limit as $n \to \infty$, we know that $\mathfrak{f}u_n \to \mathfrak{f}u$ in $C([s, \varsigma])$, so the mapping $z \mapsto \mathfrak{f}u_z$ is continuous.

Next, let $z \in W^{1,\infty}(s,\varsigma)$. It is clear that for $v \in X$

$$\frac{d}{dt}\mathfrak{f}(S(z(t))v) = -z'(t)\mathfrak{g}(S(z(t))v)$$
 a.e. (s,ς)

holds by (3.1). Since the function $v_z(t) = S(-z(t))u_z(t)$ is a classical solution to (ODE;z), we see that

$$(\mathfrak{f}\boldsymbol{u}_{z})'(t) = (\mathfrak{f}S(z(t)))'\boldsymbol{v}_{z}(t) + \mathfrak{f}S(z(t))\boldsymbol{v}_{z}'(t)$$

$$= -z'(t)\mathfrak{g}(S(z(t))\boldsymbol{v}_{z}(t)) + \mathfrak{f}S(z(t))S(-z(t))F(t,S(z(t))\boldsymbol{v}_{z}(t),z(t))$$

$$= -z'(t)\mathfrak{g}(\boldsymbol{u}_{z}(t)) + \mathfrak{f}F(t,\boldsymbol{u}_{z}(t),z(t)) \quad \text{a.e. } (s,\varsigma),$$

and hence $(\mathfrak{f}u_z)'(\cdot) \in L^{\infty}(s,\varsigma)$. \square

The remain of this section is devoted to the reduction of the initial-value problem for (NNS) to equivalent problems. Given $u_s \in X$, consider the following initial-value problems: Seek $z \in C([s, \varsigma])$ satisfying the following nonlinear constraint

(NC)
$$a < f(\mathbf{u}_z(t)) < b \text{ and } z(t) = L(f(\mathbf{u}_z(t))), \quad t \in [s, \varsigma],$$

and $u_z(s) = u_s$; Seek $z \in C([s, \varsigma])$ satisfying the following functional equation

(FE)
$$z(t) = (I - \lambda L^{-1})^{-1} (z(t) - \lambda f(u_z(t))), \quad t \in [s, \varsigma]$$

for some $\lambda > 0$, independent of t, and $u_z(s) = u_s$. Here u_z is a unique weak solution to the initial-value problem for (SE;z) on $[s, \varsigma]$ with $u_z(s) = u_s$, which is obtained in Theorem 3.3, and I is the identity operator in \mathbb{R} . Note that an inverse mapping $(I - \lambda L^{-1})^{-1}(\cdot)$ of $I - \lambda L^{-1}$ is defined on all of \mathbb{R} as a single-valued function, since $-L^{-1}$ is maximal monotone.

Theorem 3.5. Let $0 \le s < \varsigma \le T$. Under the initial condition $u(s) = u_s$, the initial-value problems for (NNS), (NC) and (FE) on $[s,\varsigma]$ are equivalent in the following sense:

- (i) If (z, u) is a weak solution to (NNS), then z is a solution to (NC), and $u \equiv u_z$;
- (ii) If z is a solution to (NC), then (z, u_z) is a weak solution to (NNS);
- (iii) z is a solution to (NC) if and only if this function is a solution to (FE).

Here u_z is a unique weak solution to the initial-value problem for (SE;z) on $[s,\varsigma]$ with initial data u_s , which is obtained in Theorem 3.3.

Proof. We easily see from definitions of solutions and Theorem 3.3 that (i) and (ii) hold. (iii) If $z \in C([s,\varsigma])$ satisfies that $a < \mathfrak{f}(u_z(t)) < b$ and $z(t) = L(\mathfrak{f}(u_z(t)))$ for $t \in [s,\varsigma]$, then $a < \mathfrak{f}(u_z(t)) < b$ and $z(t) - \lambda \mathfrak{f}(u_z(t)) = (I - \lambda L^{-1})(z(t))$ on $[s,\varsigma]$ for all $\lambda > 0$. Here note that $L: (a,b) \to \mathbb{R}$ is a bijection by (L). Therefore, it follows that $(I - \lambda L^{-1})^{-1}(z(t) - \lambda \mathfrak{f}(u_z(t))) = z(t)$ on $[s,\varsigma]$ for all $\lambda > 0$. Conversely, if $z \in C([s,\varsigma])$ satisfies $(I - \lambda_0 L^{-1})^{-1}(z(t) - \lambda_0 \mathfrak{f}(u_z(t))) = z(t)$ on $[s,\varsigma]$ for some $\lambda_0 > 0$, then it is evident that $a < \mathfrak{f}(u_z(t)) < b$ and $z(t) = L(\mathfrak{f}(u_z(t)))$ for $t \in [s,\varsigma]$. (Thus, $z(\cdot)$ satisfies $(I - \lambda L^{-1})^{-1}(z(t) - \lambda \mathfrak{f}(u_z(t))) = z(t)$ on $[s,\varsigma]$ for all $\lambda > 0$.) \square

Remark 3.6. We observe from the above theorem that if (z, u_z) is a weak solution to (NNS), then z is a fixed point of the mapping $z \mapsto (I - \lambda L^{-1})^{-1}(z(\cdot) - \lambda \mathfrak{f}(u_z(\cdot)))$, and the converse is also true.

4. FIXED POINT ARGUMENT

In this section we give sketch of proof of Theorem 1 by using Schauder's Fixed Point Theorem step by step in time.

We again have to define continuous linear functionals on X:

$$\mathfrak{h}(v) = \sum_{i=3,4} \int_{-\infty}^{+\infty} v^{i}(x) dx, \quad \bar{\mathfrak{f}}(v) = \sum_{i=3,4} \int_{-\infty}^{+\infty} |w^{i}(x)| v^{i}(x) dx \text{ for } v = (v^{1}, v^{2}, v^{3}, v^{4}) \in X.$$

Then it is evident that

$$0 < C_1 \mathfrak{h}(v) \le -\mathfrak{g}(v) \le C_2 \mathfrak{h}(v)$$
 whenever $v = (v^1, v^2, v^3, v^4) \in X_+$ and $(v^3, v^4) \ne 0$,

where $C_1 = \min_{i=3,4} \operatorname{ess.inf}_{x \in \mathbb{R}}(w^i)'(x)$ and $C_2 = \max_{i=3,4} \operatorname{ess.sup}_{x \in \mathbb{R}}(w^i)'(x)$. In addition, put $\xi(t) = \sum_{i=3,4} \int_{-\infty}^{+\infty} |w^i(x)| (a_{i,i+1}(t,x) + a_{i,i-1}(t,x)) dx$. Then we have

$$|\mathfrak{f}F(t, \boldsymbol{u}, z)| \leq \xi(t) + M\overline{\mathfrak{f}}(\boldsymbol{u}) \text{ for } (t, \boldsymbol{u}, z) \in [0, T] \times D \times \mathbb{R}.$$

Here M is the same constant appeared in Proposition 3.2 (iii).

After a little long calculation we have the following technical estimates.

Lemma 4.1. Let $0 \le s < \varsigma \le T$, $z \in C([s,\varsigma])$ and u_z a weak solution to (SE;z) on $[s,\varsigma]$. Then we have:

(i)
$$e^{-M(t-s)}\mathfrak{h}(u_z(s)) \leq \mathfrak{h}(u_z(t)) \leq e^{M(t-s)}(\mathfrak{h}(u_z(s)) + \int_s^t \mathfrak{h}(\mathcal{F}(\tau))d\tau), t \in [s,\varsigma].$$

(ii)
$$g(u_z(t)) \le -C_1 e^{-M(t-s)} \mathfrak{h}(u_z(s)), t \in [s, \varsigma].$$

(iii) If $z \in W^{1,\infty}(s,\varsigma)$, then

$$\bar{\mathfrak{f}}(\boldsymbol{u}_{z}(t)) \leq e^{M(t-s)} \left[\bar{\mathfrak{f}}(\boldsymbol{u}_{z}(s)) + \int_{s}^{t} \bar{\mathfrak{f}}(\mathcal{F}(\tau)) d\tau + C_{2}|z|_{\infty} (t-s) e^{M(t-s)} \left(\mathfrak{h}(\boldsymbol{u}_{z}(s)) + \int_{s}^{t} \mathfrak{h}(\mathcal{F}(\tau)) d\tau \right) \right], \ t \in [s,\varsigma].$$

Sketch of proof of Theorem 1. Owing to Theorem 3.5, it suffices to show an existence of a solution to (FE). We divided the proof into two steps.

Let $u_0 \in D$ satisfy $a < \mathfrak{f}(u_0) < b$.

Step 1. In this step we assume that $u_0 = (u_0^1, u_0^2, u_0^3, u_0^4)$ satisfies $(u_0^3, u_0^4) \neq 0$. Put

$$\lambda_1 = \left[C_2 e^{MT} \left(\mathfrak{h}(\boldsymbol{u}_0) + \int_0^T \mathfrak{h}(\mathcal{F}(\tau)) d\tau \right) \right]^{-1}, \qquad \varrho_1 = C_1 e^{-MT} \mathfrak{h}(\boldsymbol{u}_0),$$

$$\kappa_1 = |\xi|_{L^{\infty}(0,T)} + M e^{MT} \left(\overline{\mathfrak{f}}(\boldsymbol{u}_0) + \int_0^T \overline{\mathfrak{f}}(\mathcal{F}(\tau)) d\tau \right) + M e^{MT} \lambda_1^{-1},$$

$$d_1 = \varrho_1^{-1} \kappa_1, \qquad \varsigma_1 = \min\{d_1^{-1}, T\}.$$

Then $0 < \varsigma_1 \le T$ and $\varsigma_1 \le d_1^{-1}$.

We define an operator $\Psi \colon \mathcal{K}_1 \to C([0,\varsigma_1])$ by

(4.1)
$$\mathcal{K}_1 = \{ \zeta \in W^{1,\infty}(0,\varsigma_1) \mid \zeta(0) = L(\mathfrak{f}(u_0)), \ |\zeta'|_{\infty} \le d_1 \},$$

$$(4.2) \qquad (\Psi\zeta)(t) = (I - \lambda_1 L^{-1})^{-1} (\zeta(t) - \lambda_1 \mathfrak{f}(\boldsymbol{u}_{\zeta}(t))), \ t \in [0, \varsigma_1] \text{ for } \zeta \in \mathcal{K}_1.$$

Here u_{ζ} is a unique weak solution to the initial-value problem for (SE; ζ) on $[0, \varsigma_1]$ with initial data u_0 . It is easy to check that \mathcal{K}_1 is a compact, convex subset of $C([0, \varsigma_1])$ equipped with $|\cdot|_{\infty}$. Use Ascoli-Arzelà's Theorem to see the compactness.

We next show

Lemma 4.2. The mapping $\Psi \colon \mathcal{K}_1 \to C([0,\varsigma_1])$ is well-defined and continuous.

Proof. Since $-L^{-1}$ is maximal monotone in \mathbb{R} by (L), the resolvent $(I - \lambda_1 L^{-1})^{-1}(\cdot)$ is defined on \mathbb{R} as a single-valued function and is a contraction operator in \mathbb{R} :

$$(4.3) |(I - \lambda_1 L^{-1})^{-1}(\zeta_1) - (I - \lambda_1 L^{-1})^{-1}(\zeta_2)| \le |\zeta_1 - \zeta_2| \text{ for } \zeta_1, \zeta_2 \in \mathbb{R}.$$

Hence for $z \in \mathcal{K}_1$ we see that $(\Psi z)(\cdot) \in W^{1,\infty}(0,\varsigma_1)$ by definition of Ψ and Lemma 3.4. In particular, $\Psi \colon \mathcal{K}_1 \to C([0,\varsigma_1])$ is well-defined.

To see the continuity of Ψ , let z_n , $z \in \mathcal{K}_1$ and $|z_n - z|_{\infty} \to 0$. Then it follows from (4.3) and Lemma 3.4 that

$$|\Psi z_n - \Psi z|_{\infty} \le |z_n - z|_{\infty} + \lambda_1 |\mathfrak{f} u_{z_n} - \mathfrak{f} u_z|_{\infty} \to 0.$$

Consequently, Ψ is continuous. \square

Furthermore, we obtain

Lemma 4.3. The mapping Ψ has values in \mathcal{K}_1 , that is, $\Psi \mathcal{K}_1 \subset \mathcal{K}_1$.

Proof. Let $z \in \mathcal{K}_1$. We have shown that $\Psi z \in W^{1,\infty}(0,\varsigma_1)$ in the proof of the previous lemma. Since $u_z(0) = u_0$ and $L^{-1}(z(0)) = \mathfrak{f}(u_0)$, we see $(\Psi z)(0) = (I - \lambda_1 L^{-1})^{-1}(z(0) - \lambda_1 \mathfrak{f}(u_0)) = z(0) = L(\mathfrak{f}(u_0))$.

Let us show that $|(\Psi z)'|_{\infty} \leq d$. Let $0 \leq t_1 < t_2 \leq \varsigma_1$. Then it follows from (4.3) and Lemma 3.4 that

$$|(\Psi z)(t_1) - (\Psi z)(t_2)| \leq \int_{t_1}^{t_2} \left[|z'(\tau)| |1 + \lambda_1 \mathfrak{g}(u_z(\tau))| + \lambda_1 |\mathfrak{f} F(\tau, u_z(\tau), z(\tau))| \right] d\tau.$$

Using Lemma 4.1 (i) and (ii), we see that

$$0 \le 1 + \lambda_1 \mathfrak{g}(\boldsymbol{u}_z(t)) \le 1 - \lambda_1 \varrho_1, \quad t \in [0, \varsigma_1].$$

Moreover, we get that

$$|fF(t, \boldsymbol{u}_{\boldsymbol{z}}(t), \boldsymbol{z}(t))| \leq \kappa_1, \quad t \in [0, \varsigma_1],$$

by Lemma 4.1 (iii). Consequently, we have

$$|(\Psi z)(t_1) - (\Psi z)(t_2)| \le [d_1(1 - \lambda_1 \varrho_1) + \lambda_1 \kappa_1](t_2 - t_1) = d_1(t_2 - t_1),$$

which implies $|(\Psi z)'|_{\infty} \leq d_1$ as desired. \square

Since Lemmas 4.2 and 4.3 allow us to apply Schauder's Fixed Point Theorem, we get a fixed point $\hat{z} \in \mathcal{K}_1$ of Ψ . This \hat{z} is a solution to (FE) on $[0, \varsigma_1]$ with $u_{\hat{z}}(0) = u_0$. It is clear from Lemma 3.4 that $\mathfrak{f}(u_{\hat{z}}(\cdot)) \in W^{1,\infty}(0,\varsigma_1)$. If $\varsigma_1 = T$, then \hat{z} is a global solution.

Let $\varsigma_1 < T$. Put

$$\begin{split} \lambda_2 &= \left[C_2 e^{M(T-\varsigma_1)} \Big(\mathfrak{h}(\boldsymbol{u}_{\hat{z}}(\varsigma_1)) + \int_{\varsigma_1}^T \mathfrak{h}(\mathcal{F}(\tau)) d\tau \Big) \right]^{-1}, \qquad \varrho_2 = C_1 e^{-M(T-\varsigma_1)} \mathfrak{h}(\boldsymbol{u}_{\hat{z}}(\varsigma_1)), \\ \kappa_2 &= |\xi|_{L^{\infty}(0,T)} + M e^{M(T-\varsigma_1)} \Big(\overline{\mathfrak{f}}(\boldsymbol{u}_{\hat{z}}(\varsigma_1)) + \int_{\varsigma_1}^T \overline{\mathfrak{f}}(\mathcal{F}(\tau)) d\tau \Big) + M e^{MT} \lambda_2^{-1}, \\ d_2 &= \varrho_2^{-1} \kappa_2, \qquad \varsigma_2 = \min\{\varsigma_1 + d_2^{-1}, T\}, \end{split}$$

and define

$$\mathcal{K}_{2} = \{ \zeta \in W^{1,\infty}(\varsigma_{1},\varsigma_{2}) \mid \zeta(\varsigma_{1}) = \hat{z}(\varsigma_{1}), \mid \zeta'|_{\infty} \leq d_{2} \},
(\Psi\zeta)(t) = (I - \lambda_{2}L^{-1})^{-1}(\zeta(t) - \lambda_{2}\mathfrak{f}(u_{\zeta}(t))), t \in [\varsigma_{1},\varsigma_{2}] \text{ for } \zeta \in \mathcal{K}_{2}.$$

Then in a way similar to the above, we may apply Schauder's Fixed Point Theorem, and obtain a solution $\bar{z} \in W^{1,\infty}(\varsigma_1, \varsigma_2)$ on $[\varsigma_1, \varsigma_2]$ with $u_{\bar{z}}(\varsigma_1) = u_{\hat{z}}(\varsigma_1)$. Setting

$$z(t) = \begin{cases} \hat{z}(t), & \text{if } t \in [0, \varsigma_1], \\ \bar{z}(t), & \text{if } t \in (\varsigma_1, \varsigma_2], \end{cases}$$

we easily see that

$$u_z(t) = \left\{ egin{array}{ll} u_{\hat{z}}(t), & ext{if } t \in [0, \varsigma_1], \\ u_{\bar{z}}(t), & ext{if } t \in (\varsigma_1, \varsigma_2], \end{array}
ight.$$

and that $z \in W^{1,\infty}(0,\varsigma_2)$ is a solution on $[0,\varsigma_2]$ with $u_z(0) = u_0$. Note that $\mathfrak{f}(u_z(\cdot)) \in W^{1,\infty}(0,\varsigma_2)$ by Lemma 3.4.

Repeat these arguments. We find from Lemma 4.1 that $\varsigma_n \geq \min\{(1+2^{-1}+\cdots+n^{-1})d_1^{-1},T\}$ after the repetition of the n times. The fact that $\sum_{k=1}^n k^{-1} \nearrow +\infty$ as $n\to\infty$ makes us finish the repetition finite times.

In this way, if $u_0 = (u_0^1, u_0^2, u_0^3, u_0^4)$ satisfies $(u_0^3, u_0^4) \neq 0$, then we have a solution on the whole interval [0, T]. In case of $0 \notin (a, b)$, the proof of Theorem 1 is complete. On the other hand, in case of a < 0 < b, we need Step 2 in addition to Step 1.

Step 2. In this step we assume that $u_0 = (u_0^1, u_0^2, 0, 0)$. We may assume L(0) = 0 without loss of generality.

Put

$$\lambda_{1} = \left[C_{2}e^{MT} \int_{0}^{T} \max\{\mathfrak{h}(\mathcal{F}(\tau)), 1\} d\tau \right]^{-1},$$

$$\kappa_{1} = |\xi|_{L^{\infty}(0,T)} + Me^{MT} \int_{0}^{T} \bar{\mathfrak{f}}(\mathcal{F}(\tau)) d\tau + Me^{MT} \lambda_{1}^{-1},$$

$$d_{1} = \kappa_{1}\beta_{1}^{-1}, \quad \varepsilon_{1} = d_{1}^{-1}(1 + \lambda_{1}\beta_{1})^{-1}, \quad \varsigma_{1} = \min\{\varepsilon_{1}, T\},$$

where β_1 is the constant appeared in (L) with r=1. Define an operator $\Psi \colon \mathcal{K}_1 \to C([0,\varsigma_1])$ by (4.1) and (4.2). Note that $L(\mathfrak{f}(u_0))$ vanishes.

Let $z \in \mathcal{K}_1$, and let $0 \le t_1 < t_2 \le \varsigma_1$. We claim that $|(\Psi z)(t_1) - (\Psi z)(t_2)| \le d_1(t_2 - t_1)$. Since $(I - \lambda_1 L^{-1})^{-1}(0) = 0$, z(0) = 0 and $u_0 = (u_0^1, u_0^2, 0, 0)$, we see that

$$|(\Psi z)(t_i)| \leq \int_0^{t_i} \left[|z'(\tau)| |1 + \lambda_1 \mathfrak{g}(\boldsymbol{u}_z(\tau))| d\tau + \lambda_1 |\mathfrak{f} F(\tau, \boldsymbol{u}_z(\tau), z(\tau))| \right] d\tau$$

by (4.3) and Lemma 3.4. Furthermore, it follows from Lemma 4.1 (i) and (ii) that

$$0 \le 1 + \lambda_1 \mathfrak{g}(\boldsymbol{u}_z(t)) \le 1, \quad |\mathfrak{f}F(t, \boldsymbol{u}_z(t), z(t))| \le \kappa_1 \text{ for } t \in [0, \varsigma_1],$$

and so $|(\Psi z)(t_i)| \leq 1$. Setting $\tau_i = \lambda_1^{-1}[(I - \lambda_1 L^{-1})^{-1} - I](z(t_i) - \lambda_1 \mathfrak{f}(u_z(t_i)))$, we know that $(\Psi z)(t_i) = L(\tau_i)$ and $L(\tau_i) - \lambda_1 \tau_i = z(t_i) - \lambda_1 \mathfrak{f}(u_z(t_i))$. Therefore, we see from (L) that

$$|(\Psi z)(t_1) - (\Psi z)(t_2)| \le (1 + \lambda_1 \beta_1)^{-1} |L(\tau_1) - L(\tau_2) - \lambda_1(\tau_1 - \tau_2)|$$

$$\le (1 + \lambda_1 \beta_1)^{-1} \int_{t_1}^{t_2} [|z'(\tau)|| 1 + \lambda_1 \mathfrak{g}(\boldsymbol{u}_z(\tau))| + \lambda_1 |\mathfrak{f} F(\tau, \boldsymbol{u}_z(\tau), z(\tau))|] d\tau$$

$$\le d_1(t_2 - t_1)$$

as claimed.

Hence using Schauder's Fixed Point Theorem, we obtain a solution $\hat{z} \in W^{1,\infty}(0,\varsigma_1)$ on $[0,\varsigma_1]$. If $\varsigma_1 = T$, the proof is complete. Let $\varsigma_1 < T$. If $u_{\hat{z}}(\varsigma_1) = (u_{\hat{z}}^1(\varsigma_1), u_{\hat{z}}^2(\varsigma_1), u_{\hat{z}}^3(\varsigma_1), u_{\hat{z}}^3(\varsigma_1), u_{\hat{z}}^4(\varsigma_1))$ satisfies $(u_{\hat{z}}^3(\varsigma_1), u_{\hat{z}}^4(\varsigma_1)) \neq 0$, then returning to Step 1 we can extend $\hat{z}(t)$ to [0, T]. If $u_{\hat{z}}(\varsigma_1) = (u_{\hat{z}}^1(\varsigma_1), u_{\hat{z}}^2(\varsigma_1), 0, 0)$, then choosing $\varsigma_2 = \min\{\varsigma_1 + \varepsilon_1, T\}$ for the above ε_1 and defining

$$\mathcal{K}_{2} = \{ \zeta \in W^{1,\infty}(\varsigma_{1},\varsigma_{2}) \mid \zeta(\varsigma_{1}) = \hat{z}(\varsigma_{1}), \mid \zeta'|_{\infty} \leq d_{1} \},
(\Psi\zeta)(t) = (I - \lambda_{1}L^{-1})^{-1}(\zeta(t) - \lambda_{1}\mathfrak{f}(u_{\zeta}(t))), \ t \in [\varsigma_{1},\varsigma_{2}] \text{ for } \zeta \in \mathcal{K}_{2},$$

we prolong $\hat{z}(t)$ to $[0, \varsigma_2]$. Repeat these arguments.

In this way we gain a solution z on the whole interval [0,T] such that z, $\mathfrak{f}u_z\in W^{1,\infty}(0,T)$. Thus, Theorem 1 has been completely proved. \square

5. Proof of the uniqueness theorem

In this section we establish the uniqueness result for (NNS).

Proof of Theorem 2. Let (z_j, u_j) , j = 1, 2, be weak solutions to (NNS) on [0, T]. Recall that u_j is a unique weak solution to the initial-value problem for $(SE; z_j)$ on [0, T] with initial data $u_j(0)$: $u_j \equiv u_{z_j}$. We first show (2.3). Since $z_j(t) = L(\mathfrak{f}(u_j(t)))$, j = 1, 2, we see that

(5.1)
$$\beta_{\hat{r}}|z_1(t) - z_2(t)| \le |\mathfrak{f}(u_1(t)) - \mathfrak{f}(u_2(t))|, \quad t \in [0, T],$$

by the local Lipschitz continuity of L, cf. (L). Here $\hat{r} \geq \max\{|z_1|_{\infty}, |z_2|_{\infty}\}$.

Put $v_j(t) = S(-z_j(t))u_j(t)$. Then v_j is a solution to (ODE; z_j) on [0, T] with $v_j(0) = S(-z_j(0))u_j(0)$. We claim that

(5.2)
$$|\mathfrak{f}(u_1(t)) - \mathfrak{f}(u_2(t))| \le ||\mathfrak{f}|| e^{\omega \hat{r}} ||v_1(t) - v_2(t)||, \quad t \in [0, T].$$

Indeed, we suppose that $z_1(t) < z_2(t)$ at t, then we see $\mathfrak{f}(u_1(t)) > \mathfrak{f}(u_2(t))$ at t, since L is strictly decreasing. In addition, $\sigma \mapsto \mathfrak{f}(S(\sigma)v_1(t))$ is nondecreasing by (3.1). Hence it

follows that

$$\begin{split} |\mathfrak{f}(u_1(t)) - \mathfrak{f}(u_2(t))| &= \mathfrak{f}(u_1(t)) - \mathfrak{f}(u_2(t)) \\ &= \mathfrak{f}(S(z_1(t))v_1(t)) - \mathfrak{f}(S(z_2(t))v_1(t)) \\ &+ \mathfrak{f}(S(z_2(t))v_1(t)) - \mathfrak{f}(S(z_2(t))v_2(t)) \\ &\leq \|\mathfrak{f}\|e^{\omega \hat{\tau}}\|v_1(t) - v_2(t)\| \quad \text{at } t \end{split}$$

as claimed.

Next, claim that

$$(5.3) ||v_1(t) - v_2(t)|| \le C\Big(||v_1(0) - v_2(0)|| + C\int_0^t |z_1(\tau) - z_2(\tau)|d\tau\Big), t \in [0, T],$$

where C depends on $\hat{r} \geq \max\{|z_1|_{\infty}, |z_2|_{\infty}\}$. Definition of F and condition (F2) provide with the local Lipschitz continuity of $\sigma \mapsto S(-\sigma)F(t, S(\sigma)u, \sigma)$: For each r > 0 there is a constant C(r) such that

$$||S(-\sigma_1)F(t,S(\sigma_1)\boldsymbol{u},\sigma_1) - S(-\sigma_2)F(t,S(\sigma_2)\boldsymbol{u},\sigma_2)|| \le C(r)|\sigma_1 - \sigma_2|$$

for $t \in [0,T]$, $\mathbf{u} \in D$ and $\sigma_1, \sigma_2 \in [-r,r]$. Using the local Lipschitz continuity of $\sigma \mapsto S(-\sigma)F(t,S(\sigma)\mathbf{u},\sigma)$ combined with the Lipschitz continuity of $\mathbf{u} \mapsto F(t,\mathbf{u},\sigma)$, we have

$$\|v_1(t) - v_2(t)\| \le \|v_1(0) - v_2(0)\| + C \int_0^t |z_1(\tau) - z_2(\tau)| d\tau + C \int_0^t \|v_1(\tau) - v_2(\tau)\| d\tau.$$

By Gronwall's Lemma we get (5.3).

Therefore, it follows from (5.1)–(5.3) that

$$|z_1(t)-z_2(t)| \leq C\Big(\|oldsymbol{v}_1(0)-oldsymbol{v}_2(0)\| + C\int_0^t |z_1(au)-z_2(au)|d au\Big), \quad t \in [0,T],$$

and then apply Gronwall's Lemma to obtain (2.3).

It remains to show that (2.3) implies the uniqueness. Assume $u_1(0) = u_2(0)$. Then it is obvious that $z_1 \equiv z_2$ by (2.3). Noting that a weak solution to (SE;z) is at most one for $z \in C([0,T])$, we conclude $u_1 \equiv u_{z_1} \equiv u_{z_2} \equiv u_2$. \square

We conclude with the final remarks.

Remark. We can show that the unknown u(t,x) is compactly supported in x under the additional assumptions similar to [12, 14]. We can also discuss continuous dependence of u(t,x) on initial data in a way similar to [16].

REFERENCES

- 1. G. Allain and P. Colli, A mathematical study of a muscle contraction model in which the fibre is a continuum of elements, Adv. Applied Math. 9 (1988), 104-126.
- 2. P. Colli, A mathematical model of heterogeneous behavior of single muscle fibres, J. Math. Biol. 24 (1986), 103-118.
- 3. _____, On a nonlinear and nonlocal evolution equation related to muscle contraction, Nonlinear Anal. TMA 13 (1989), 1149-1162.
- 4. P. Colli, V. Comincioli, G. Naldi and A. Torelli, A mathematical study of the plasticity effects in muscle contraction, Appl. Math. Optim. 22 (1990), 1–26.
- 5. P. Colli and M. Grasselli, Mathematical study of a nonlinear transport-diffusion problem related to muscle contraction, Differential Integral Equations 3 (1990), 837–849.
- 6. _____, Parabolic perturbation of a nonlinear hyperbolic problem arising in physiology, J. Differential Equations 101 (1993), 178-212.
- 7. V. Comincioli and A. Torelli, Mathematical aspects of the cross-bridge mechanism in muscle contraction, Nolinear Anal. TMA 7 (1983), 661-683.
- 8. _____, A mathematical model of contracting muscle with viscoelastic elements, SIAM J. Math. Anal. 19 (1988), 593-612.
- 9. _____, A mathematical study of a continuum-state cross-bridge model of muscle contraction, Math. Methods Appl. Sci. 10 (1988), 289–302.
- V. Comincioli, A. Torelli, C. Poggesi and C. Reggiani, A four-state cross bridge model for muscle contraction. Mathematical study and validation, J. Math. Biol. 20 (1984), 277–304.
- 11. L. Gastaldi and F. Tomarelli, A nonlinear and nonlocal evolution equation describing the muscle contraction, Nonlinear Anal. TMA 11 (1987), 163-182.

- 12. N. Kato and T. Yamaguchi, Nonlinear nonlocal differential equations related to muscle contraction mechanism, Nonlinear Anal. TMA 30 (1997), 3909-3915.
- 13. _____, Nonlinear nonlocal transport-diffusion equations arising in physiology, to appear in Nihonkai Math. J.
- 14. _____, Nonlinear nonlocal hyperbolic equations arising in physiology, to appear in Adv. Math. Sci. Appl.
- 15. T. Matsumoto, Time-dependent nonlinear perturbations of analytic semigroups in Banach spaces, Adv. Math. Sci. Appl. 7 (1997), 119-163.
- 16. T. Matsumoto, S. Oharu and T. Yamaguchi, A nonlinear nonlocal transport system related to the cross-bridge mechanism of muscle contraction, preprint.
- 17. N. H. Pavel, Semilinear equations with dissipative time-dependent domain perturbations, Israel J. Math. 46 (1983), 103-122.
- 18. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer-Verlag, New York, 1983.
- 19. A. Torelli, A non linear hyperbolic equation related to the dynamics of cardiac muscle, Portugal. Math. 41 (1982), 171–188.
- 20. T. Yamaguchi, Nonlocal nonlinear systems of transport equations in weighted L^1 spaces: an operator theoretic approach, preprint.