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Global existence and gradient eStimates
for some quasilinear parabolic equations
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1 Introduction

In this talk we treat the initial-boundary value problem for some types of qua,silineaf
parabolic equations of the form:

u — div{o(|Vul)Vu} + g(u, Vu) =0  z€Q, t>0 (1.1)

u(z,0) = 'U.g.(.’L'), t€Q u(z,t)=0, €, t>0 v(1.2)

where Q is a bounded domain in R with a smooth, say, C2 lbboundaryBQ.

We are interested in smoothing effects near ¢ = 0 and asymptotic behaviours as
t — 0o as well as the global existence of solutions. We would emphasize that our
perturbations g(w, Vu) heavily depends on Vu, which is different from the usual
ones g(u). '

First, we consider the case o(|Vul?) = |Vu|™,m > 0, and g(u, Vu) = b(u) - Vu
with [b(u)| < ky|ul?.

In this case the principal term is often called m-Laplacian and the perturbation
describes a convection effect with velocity field b(u). Concerning the initial data we
only assume ug € L(), ¢ > 1, while we want to derive estimates for |Ve(t) oo, t >
0. So, nonlinear semigroup theory , if it could be applied to our equations, would
not be sufficient for our purpose. We carry out careful analysis based on Gagliardo-
Nirenberg inequality to derive desired apriori estimates . Qur results seems to be
new even for the unperturbed ,most standard equation with b(u) = 0 (cf. Alikakos
and Rostamian [1], Nakao [11}).

Secondly, we consider the case : ¢ = |Vu| and g = £|Vu|'*#,8 > m. This
perturbation is stronger than usual ones g = g(u) and to prove the global existence
of solutions careful gradient estimates are essentially required. Further, to gurantee
the convergence of approximate solutions we need some estimates for second order
derivatives , which is an essential difference from the case g = g(u). We can compare
our results with some known results for the case ¢ = g(u) which not necesarily
monotone increasing (cf. M.Tsutsumi [20], M.Otani [18],H.Ishii [8]. M.Nakao [12,13,



92

- Y.Ohara [16,17] etc.) The third problem we consider is the case:c = 1/4/1+ |Vul?
and g = %|Vu|'*?, 3 > 0. In this case the principal term is no longer coercive and
hence, to controle the perturbation is more delicate. Of course, if we assume that
~ the initial data is sufficiently smooth and small, it is not difficult to prove global -
existence of ‘smooth and small amplitude solutions. But, we want to treat not so
smooth initial data. In fact, we prove that if uo belongs to Wy with a certain
po > 0 and || Vugl|1,p, is sufficiently small , then there exists a unique global solution

in some class satisfying
V)l < Ct~fe™

with £ = N/(2pg — 3N) and some X > 0.

Our result is a generalization of our recent work [15] where nonperturbed equa-
tion is considered. There are many intersting papers treating quasilinear parabolic
equations of the mean curvature type ( N.Trudinger [19], C.Gerhardt [7], K.Ecker
[5], G.Lieberman [10] etc.). But, no result concerning smoothing effect seems to be
known for the equation with a strong perturbation |Vu[?, power nonlinearity of Vu.

Almost throughout the paper we assume that the mean curvature H(z) of the
boundary 02 is nonpositive with respect to the outward normal, This is essentlally
used to derive a priori estimastes for ||Vu(t)||,, p >> 1.

This talk is based on my joint works [3,4,14] with Caisheng Chen ( Hohai Univ.,
Nanjing, P.R. China) and Y.Ohara (Yatsusiro College of Technology, Yatsusiro,
Kumamoto).

2 Statement of results

We first consider :
Case 1. U(]V@)[z) = |Vu|™,m > 0, and g(u, Vu) = b(u) - Vu with

[b(u)| < koluol?, B > m.

We begin with existence and estimates for || Va(t)||ms2 and |[u(t)]|co-

Theorem 1 [14] Let wo € L% q > 1. Then, the problem (1.1)-(1.2) admits a
unique solution u(t) in the class '

L5o.((0,00); Wo ™) Wy ((0,00); L) (N C(R; Ll)nL°°<R+ Iﬂ>

satisfying ‘ y
IVe(®)fmez < Co(T+8)"Y™A +t7#), t>0 (2.1)

and :

[u(B)lloo € Co(1+ &)~/™(1+17), >0 (2.2)



93

where we set E
A= N/(mN + q(m + 2)),

o= (26— m— mg/N)

and

14 2(a—1)t + (2 )+
-  m+2 '

To derive estlmates for !|Vu(z‘)||oo we need the following important assumption

Hyp A. When N > 2, 89 is of C2-class and the mean curvature H(z) of 6 at
z € 00 with respect the outward normal is nonpositive.

Theorem 2 [14] Under the hypotheszs Hyp.A the solutions u(t) in Theorem 1
" belong further to L2 ((0,00); Wo'™ and satisfy the estimates-

NVl <CA+)7(1+17F), t>0
if a < 1, and
IVu®lleo < Ce(14+8)?(14+£77¢) t>0)ifa>1and p< a—1+(m+2)(Na+2)/mN,
where 2p + Nmaz{1, a}

£= mN + 2m + 4
and € is an arbitraryly smallpositive number.

, 7 = max{1/m, (28 —m)/m?}

Remark. When m = 0, (1 + ¢)~1/™ should be replaced by e~* with some & > 0.
Case 2: o(|Vul?) = [Vu|™, m > 0, and g(u, Vi) = +|Vu[**, 8 > m.
In this case we can prove :

Theorem 3 4 Let py > max{m +2,N(3 —m)} Then, under Hyp.A,there exists

g0 > 0 such that if ug € Wy (Q) and []Vug“po < &g, then the problem (1.1)-(1.2)
admits a solution u(t) in the class

7, ((0,00); WE(€)) N W2 ((0,00); L)) 1 L= (BHWo™(©),
satisfying '

IVu®)llo < C

(14 e N/@rotmN) ) (1 4 g)=Y/m ¢ >0,
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Remark. (1) In Theorem 1, uniqueness is open. (2) We have further

ou|™* du 1,2 2‘ 2 .
sl o € Wik (0,000 @) N L (0,00, Hy(@), i=1,2+, N,
Case 8: o(|V[?) = =L and g(u, Vu) = £[Vu[*4, > 0.

v/ 14| Vuj?

In this case our principal term is often called as 'mean curvature type’. Asis
mentioned in the introduction this is not coercive in the sense that

. Jo o(|Vuf?)|Vul*dz
- limygyz—00 Q. V|3 g

“and the treatment of our strong perturbation is very delicate. We have the following
result.

Theorem 4 [5] Let pp > max{N(3 + a),2(m + 1), 2a + 5} . Then, under Hyp.A
there ezists € > 0 such that if ug € W™ (Q) and ||Vuollz < €0, then the problem
(1.1)-(1.2) admits a unique solution u(t) in the class

L (RY Wo(Q))nw™? (RF; LX(@))nL? (R+A; W2+5(02) )L ((0, 00); Wo (),

(k = (po — 3)/(po + 3)), satisfying the estimates

“V“’(t)”po < C'HVUoHpo e—Aot, t =0,
7 ()1 ds < O Vugly) e

L7 1O 1t < C(IVrolle) < 00

and
IVa(®lloo < CUIVtollp) t~E=3 % 0 < £ < o0,

where C denotes general constants independent of u(t), C(||Vuollp,) denotes con-
stants depending on || Vuolly, and Ao = Xo(eo — || Vug||p,) > 0. '
3 Outline of the proofs of Theorems

For the proofs of Theorems we derive apriori estimates for assumed smooth solu-
tions u(t), which will be sufficient for our purpose by limiting procedure of suitable
approximate solutions.

Outline of the proof of Theorem 1
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Multiplying the equation by |ul?~?u ( sign,(u) if ¢ = 1) we have easily
Nu®lly < Hluollg, 0 < < oo, | (3.1)

where we note

_ /Qb(u) -Vulu|%udr =0,g >1
which comes from a special nonlinearity of convection.
Similarly, multiplying the equation by |u[P~2u we have
nu(t)n” + -—lllul(”*""/ TG <0 (3.2)

Here, by Gagliardo—Nirenberg inequality, we see

| llufly < G4/ GAm) |y 10| gy ) (m42) | (et 26 Gt m)
with _
' m+ 2 : g l-p!
p+m N71—(m+2)~1+ (p+m)-1(m+2)g~1
Combining this with (3.1) and (3.2) we have

d 5 . _1
@+ Cpllu) |20+ < 0

and hence, '
lu®l, < Cot™*,0 <t <1
with
__ Np-9
P op(g(m+2) + mN

As is conjectured from this estimate , we apply Moser’s technique to prove the
estimate

)) p’p = I)Ap‘

lut)||low < Ct>,0<t < 1

where we recall A = N/(g(m + 2) + mN).
More easily we can prove

lu®)|loo < CA+HTV™ ¢t >1.

Next, multiplying the equation by u; and u, respectively, a.nd comblnmg the
resulting identities we can prove

O < [ ||Vl ds, (3.3)

where

I [Vu(t)]? dsd
: __/Q/O o(s)dsdz.
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Since _
lu(®)]|e < Ct2@-0*

- and

/Q 28| Vufde < Ct=°T(1)

we obtain from (3.3)
%F(t) + Ct*@*q)*Pz(t) < Ct°I(t), ‘ (3.4)

which gives the desired estimate for ||Vu(t)|lm+2,0 <t < 1.
More easily, we can prove the desired estimate for ||Vu(t)||m+2,t > 1.
We see also '

/t lus(s)|12 ds < ,CO(T)W 0<t<T

- with y = p(m + 2) + (e = 1)*.
A standard argument gives further

[[w1(t) — w2 ()1 < [Jus(0) — u2(0) |1

for two assumed solutions u;(t), uz(f) , which proves the uniqueness. Similarly,
applying this to suitable approximate solutions u.(t) we can see that u.(t) converges
to «(t) unifromly in L}(Q).

Applying monotonicity argument we can prove that the limit function u(f) is a
desired solution.

Outline of the proof of Theorem 2

To prove the estimate for || Vu(t)||eo We multiply the equation by by —div{|Vu[P2Vu},p >
m + 2, and integrate by parts to get

-———IIVu( NP+ — /IVUI”*’" 2| D%u |2dm+—0(£~——2—/ |VuPr™= 4 (|Vul?) 2dz

(N -1) /3 _H@)|VulrtmdS < /Q op? /Q W |VufP-mde - (3.5)
and , by our assumption H(z) < 0 (see [6]),
L8 upll + LIvaemRE, < ot [ WP vaprmas (36
pdt Pp ’ Q
with some Cy, Cy > 0 independent of p,p 2 m + 4. (When N=1 a modification is

needed.)
Let p; = m + 2 and we define a sequence {p,} by

Iy = 2Pp-1 — M.
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'Thén, by GagliardQ-Nirenberg inquality, we have
IVl < GO G|t 2 2 ety
with 4, =‘N(1 - m/pn)/(N + 2). From this we can prove' that _
| IVa@llps Smt™™ 0<t<1 (@38)
with & = p and &, defined by ‘

_ (ot m)(1 = 0)ns

gn Pn +m — p,0,
. 0r ‘ a(pn +m) 1,
+max , - —
{pn +m — Onpn’ p(pn +m — ann) p'n.} ‘
1 : . :
= ot m—pog, e+ m)(1 = 0n)6n1 + 0n) + max{0, (pn + m)(@ —1)/pa}}-

| | (3.9)
N, is defined by
’ rr’n =.{(2An)_Pn/ﬂn(1 + (pn + m)(e;:l _ 1)€n_1)1’n/ﬁn
+20n{1 + (pn + m)(@;l _ 1)-§n_1}—-1 ni(f’n+m)(1—971)/(Pn+m~Pn9n)}l/pu

with certain constants A,, B, and C,, depending on p,.
We can prove that {7,} is bounded and

lilnnﬁobgn = £

( under some conditions on /3), which proves the estimate for 0 < ¢ < 1 in Theorem
2. Similarly, we can prove the estimate of |Vu(t)||o for ¢ > 1.

Outline of the proof of Theorem 3

For the equation considered in Theorem 3 we have the inequality (3.5) with the
right hand side is replaced by Cp? [, |Vu|?$+P~™ du.
Further, if we assume py > max{N( — m), 2} we can prove

lwo(®)llz, < CLpgIVu®)lz ™ lwo@) i, (3.9)

1d
IO+ Co

where wo(t) = |Vu|(m+eo)/ 2. This inequality implies that
Vel < IVe®)llp t =0, (3.10)

under the assumption

Co

)1/2(po—m)_ :
Cipd '

Vtollpy < €0 = (
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On the basis of the inequalities ((3.9) and (3.10) we use Moser’s technique to

prove
V() ]l < Ct~ N/ CrotmN) g < ¢ < 1.

‘Similarly, we obtain the desired estimate for [|Vu(t)|loo, ¢ = 1.

To show the convergence of appropriate approximate solutions u®(t), € > 0, to
a desired solution u(t) we must establish further a priori estimates including some
second order derivatives of u(f), which will assure the convergence

9(Vue(1)) — g(Vu(t)) in I£,((0,00); LP(Q),p 2 2.

The following estimates are rather easily derived:

T o ' ' ‘
[ [ IV B Do) s < OIT =24, = N/ (3o + ),

(3.11)
and

T R
/ /Q |ug(s)|Pdzds < C(||Vugllpy, T)t ™ @PH2polntL,
t

Multiplying the equation by —%{div(IVu(t)lmVu(t)) — g(Vu)} and using the above
estimates we can prove that '

T
f /Q V()™ Vus(s) Pdwds < C([Vgllpe, &, T) < 00, (3.12)

for any e < T.
(3.11) and (3.12 ) are sufficient for our purpose.

Outline of the proof of Theorem 4

In this case of the mean curvature type nonlinearity we obtain , instead of (3:6),

1d p .
]—)Ellvu(t)llpr p“ F(IVuP)|%, < Cp? (|Vull? + | VulZE ) | F(Vul)E,

(3.13)
provided that p > N(8 + 3), where we set

F(v)=p /0 (14 )~ a4y,
We fix po > N(a + 3) and write Fo(t) for F(t)with p = pg. Then, we have
Livatlie < {~Co+ 30 (IVul® + Va2 ) | Fo(|Vuf?) 2
< Iu) s < {~Co+ 130 (I9ullZ + VUl } IR TuP)l,

From this we conclude

V)l < I Vttpolle ™", 2o > 0,



if || Vug||p, < €0 for some .
Noting

A) IDZ’U,ll_-M dr < A{(l + IVUIZ)—3/2 ‘D2u'2}(1+ﬁ.)/2 1+ lvu|2)3(1+n)/4 dr

2y-3/2| 2 2' \@+)/2 (e 213(14+x)/2(1—r) (1=x)/2
< {/0(1+ IVaf2)~%/2|D%| da:} {/9(14— [Vauf?) dx}

. (14k)/2
< OVl { f 1+ [Vu?) 52 D2 d)

with £ = (po — 3)/(po + 3) , we obtain
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d ' | | | | '
aIIVU(t)llﬁ + Col| | VulP?|} ., < C(IVuollp) P Vult) |2 (3.14) -

for some A > 0 independent of p. Applying Moser’s technique to (3.14) we can derive
the desired estimates in Theorem 4 for ||Vu(t)||co. Once the local boundedness of
[Vu(t)|loo is established the convergence of suitable approx1mate solutions to the
solution is easier than m — Laplacian case.

An open problem

In Theorems 3,4 we assumed that the initial data uy belong to Wg™ for some
Po > 0 and ||Vu”p0 are small , while in Therems 1, 2 we require only uy € L%, ¢ > 1.

It seems interesting problem to show global existence and some smoothing effect to
the equation

w— Au=|Vul’, 3> 1,
with initial data ug € L2 with some ¢,q > 1.
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