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1 Introduction
Conditional term rewriting has a wide range of applications both in equational rea-
soning and design of declarative programming languages. We address in this paper
decidable and undecidable properties of conditional term rewriting systems (CTRSs,
for short) with equations in conditions of rules. In particular, we deal with CTRSs
of serni-equational, join, and oriented type, in which conditions are interpreted as
convertibility, joinability, and reachability, respectively–these types of CTRSs have
been widely investigated in literature.

The paper is to show how known decidability results for subclasses of term rewrit-
ing systems (TRSs, for short) are extended in conditional setting. More precisely, we
examine for classes $C$ of TRSs having a decidable property $\phi$ , in which conditional
extensions of $C$ the property $\phi$ is undecidable, as well as in which extensions of $C$ the
property $\phi$ remains decidable. The properties considered in this paper are: convert-
ibility, joinability, reachability, ternination, and confluence–for these properties,
decision problems in term rewriting are rather well-established.

Comparing to sufficient criteria for termination, confluence, etc. of CTRSs, only
few $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ results are known in conditional term rewriting. This
situation is contrasting to that for $\mathrm{t}e\mathrm{r}\mathrm{m}$ rewriting where considerable efforts have been
dedicated to the study of $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}/\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ properties of subclasses of TRSs.
For example, it has been shown that all of the properties listed above are decidable
for left-linear right-ground TRSs. Furthermore, we believe that this approach gives
better understanding of expressiveness of CTRSs subjecting to various restrictions.

One of the best-known undecidability results in conditional term rewriting is that
one-step reduction of CTRSs is no longer $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}[3][10]$ . We will see this fact is
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quite severe in a sense that even in a limit $e\mathrm{d}$ conditional extension of a well-behaved
class of TRSs the situation is the same. Several criteria for decidability of one-
step reduction, which also imply termination, are known: e.g. decreasing $\mathrm{C}\mathrm{T}\mathrm{R}\mathrm{S}_{\mathrm{S}}[5]$ ,
deterministic quasi-reductive $\mathrm{C}\mathrm{T}\mathrm{R}\mathrm{S}_{\mathrm{S}}[6]$ . These criteria are, however, undecidable in
general, and tools to detect these criteria have been investigated. More similar to
our approach is a result in [3], which says that whether a given $\mathrm{t}e\mathrm{r}\mathrm{m}$ is normal is
decidable for orthogonal normal oriented CTRSs with subterm property. They proves
in fact decidability of innermost one-step reduction for these CTRSs–this property
is, however, out of scope of this paper.

Our decidability results are obtained mostly reducing the problem of CTRSs to
that of TRSs via a variety of translations. From this point of view, our approach is
very similar to [12], where modular aspects of properties of CTRSs are studied via
the corresponding “ultra”-properties on TRSs via several kinds of translations.

2 Preliminaries
We assume familiarity with the basic concepts and notations in term rewriting (which
can be found in e.g. [2], [11] $)$ .

Rules of the form $larrow r\Leftarrow u_{1}=v_{1},$
$\ldots,$ $u_{n}=v_{n}$ are called conditional rewrite

rules; the rule is right-ground if $r$ is ground (i.e. has no variables), lefl-linear if $l$ is
linear (i.e. every variable occurs at most once); the rule has right-ground conditions
if $v_{1},$ $\ldots$ , $v_{n}$ are ground, has lefl-linear conditions if $u_{1},$ $\ldots,$

$u_{k}$ are linear, has ground
conditions if $u_{1},$ $\ldots,$ $u_{n},$ $v_{1,\ldots,n}v$ are ground, and has at most one condition if $n\leq 1$ .
We say $\mathcal{R}$ is right-ground (left-linear) if all rules involved are right-ground (left-
linear, respectively); has right-ground (left-linear, ground) conditions if every rule
involved has right-ground (left-linear, ground, respectively) conditions. We assume
the number of rules of CTRSs are finite; thus a CTRS is written as $\mathcal{R}=\{l_{i}arrow$

$r_{i}\Leftarrow c_{i}|i\in I\}$ for a finite index set $I$ where $c_{i}$ stands for the conditions of the
rule. We denote by $\mathcal{R}_{u}$ the underlying TRS $\{larrow r|larrow r\Leftarrow c\in \mathcal{R}\}$ of $\mathcal{R}$ . We
assume in this paper that CTRSs have no extra-variables, i.e. every rule $larrow r\Leftarrow c$

in CTRSs satisfies $\mathrm{v}_{\mathrm{a}\mathrm{r}}(r)\cup \mathrm{v}_{\mathrm{a}}\mathrm{r}(c)\subseteq \mathrm{v}_{\mathrm{a}\mathrm{r}}(l)$ . Here and hereafter, $\mathrm{V}\mathrm{a}\mathrm{r}(\alpha)$ denotes the
set of variables appearing in the expression $\alpha$ . We will denote by $\equiv \mathrm{t}\mathrm{h}\mathrm{e}$ syntactical
equality of entities.

For each CTRS $R=\{l_{i}arrow r_{i}\Leftarrow c_{i}|i\in I\}$ , we define TRSs $\mathcal{R}_{k}$ for $k\in\omega$

inductively as follows:

$\mathcal{R}_{0}$ $=$ $\emptyset$

$\mathcal{R}_{k+1}$ $=$ $\bigcup_{i\in I}$ { $l_{i}\thetaarrow r_{i}\theta|\mathcal{R}_{k}\vdash u\theta=v\theta$ for all $u=v$ in $c_{i}$ }.

According to the interpretation of the predicate $\mathcal{R}_{k}\vdash s=t$ , we consider here several
types of CTRSs, which are summarized in Table 1. Here, $arrow \mathcal{R}_{k}*(^{*}rightarrow R_{k})$ is the transitive
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Table 1:

reflexive closure $\mathrm{o}\mathrm{f}arrow \mathcal{R}_{k}$ ( $rightarrow n_{k}$ , respectively). For each types of CTRSs 72, its rewrite
$\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-_{R}$ is defined as $\bigcup_{k\in\omega^{arrow_{R}}k}$ .

Wesay- a CTRS $\mathcal{R}$ has decidable one-step reduction if for any terms $s,$ $t$ , whether
$s-_{\mathcal{R}}t$ holds is decidable. Terms $s$ and $t$ are convertible if $srightarrow_{\mathcal{R}}t;*$ terms $s$ and $t$ are
joinable if $sarrow nuarrow**nt$ for some term $u$ ; a term $t$ is reachable from $s$ if $sarrow_{\mathcal{R}}t*$ . The
convertibility (joinability, reachability) is decidable for a CTRS $\prime \mathcal{R}$ if for any terms $s$

and $t$ whether $s$ and $t$ are convertible (resp. whether $s$ and $t$ are joinable, whether $t$

is reachable from $s$ ) is decidable.
The following proposition is an immediate consequence of these definitions.

Proposition 2.1 Let 7? be a semi-equational (join, oriented) CTRS such that its
convertibility (resp. joinability, reachability) is decidable. Then one-step reduction
of $\mathcal{R}$ is decidable.

An instance of Post’s Correspondence Problem (PCP, for short) is like this:

Let } $a_{1},$ $\ldots,$ $a_{m}$ } be an alphabet. Given a finite set $P$ of pairs of non-
empty words over this alphabet, namely $P=\{\langle p_{i}, q_{i}\rangle|1\leq i\leq n\}$ where
$p_{i},$ $q_{i}\in\{a_{1}, \ldots, a_{m}\}^{+}$ , is there a sequence $\delta_{1},$

$\ldots,$
$\delta_{k}\in\{1, \ldots, n\}$ such

that $ps_{1}\cdots ps_{k}=q_{\delta_{1}}\cdots q\mathit{6}_{k}$ ?

We identify the problem and the set $P$ ; and say $P$ is solvable if there exists such a
sequence. It is well-known that solvability of $P$ is undecidable even when $m=2[17]$ .
Thus, if we find for each $P$ over a fixed alphabet a CTRS $\mathcal{R}$ in the class $C$ so that $\mathcal{R}$

has the property $\phi$ if and only if $P$ has a solution (or so that $\mathcal{R}$ has the property $\phi$ if
and only if $P$ has no solutions) then it follows that whether $\phi$ holds for a CTRS in
$C$ is undecidable. In the succeeding proofs we will use the undecidability of PCP on
the fixed alphabets $\{0,1\}$ to derive our undecidability results. We also provide below
unary function symbols $\{0,1\}$ in our signature (on CTRSs) and a convention that a
term $a_{1}(\cdots(a_{l}(X))\cdots)$ is denoted by $\overline{w}(x)$ for each word $w=a_{1}\cdots a_{l}\in\{0,1\}^{+}$ .

3 Undecidability results for right-ground CTRSs
The following fact is well-known.
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Theorem 3.1 $([3][10])$ One-step reduction is undecidable for CTRSs.

It trivially follows from this theorem that convertibility, joinability, reachability,
termination, and confluence are all undecidable for CTRSs. These facts, however,

.are not surprising since these properties are undecidable also for TRSs.
On the other hand, for the class of (left-linear) right-ground TRSs a number of

decidability results has been obtained:

Theorem 3.2 ([4]) Convertibility is decidable for left-linear right-ground TRSs.

Theorem 3.3 ([16]) Joinability and reachability are decidable for right-ground
TRSs.

Theorem 3.4 ([9]) Termination is decidable for right-ground TRSs.

Theorem 3.5 $([4][15])$ Confluence is decidable for left-linear right-ground TRSs.

We will present in this section sharper undecidability results in conditional term
rewriting on convertibility, joinability, reachability, termination, and confluence by
clarifying these properties are undecidable for 1$e\mathrm{f}\mathrm{t}$-linear right-ground CTRSs.

First we show that for whichever type of left-linear right-ground CTRSs one-st $e\mathrm{p}$

reduction, convertibility, joinability, reachability, and termination are undecidable.
In fact, we even show a stronger result:

Theorem 3.6 One-st $e\mathrm{p}$ reduction, convertibility, joinability, reachability, and ter-
mination are undecidable for left-linear right-ground CTRSs of $\mathrm{s}e\mathrm{m}\mathrm{i}$-equational, join,
and oriented types having at most one left-linear right-ground condition for each rule.

Proof. . Let $P$ be a PCP $\{(pi, q_{i}\rangle|1\leq i\leq n\}$ with $p_{i},$ $q_{i}\in\{0,1\}^{+}$ . We consider the
following CTRS:

$\mathcal{R}\{$

$f(x, y)arrow C$ $\Leftarrow$ $eq(x, y)=true$
$f(x, y)arrow D$ $\Leftarrow$ $f(\overline{p_{1}}(X),\overline{q1}(y))=A$

$f(x, y)arrow D$ $\Leftarrow$ $f(\overline{p_{n}}(X),\overline{q_{n}}(y))=A$

$Earrow F$ $\Leftarrow$ $f(\epsilon, \epsilon)=B$

$Carrow A$

$Darrow A$

$Darrow B$

$eq(\epsilon, \epsilon)arrow true$

$eq(0(x), 0(y))arrow true$ $\Leftarrow$ $eq(x, y)=true$
$eq(1(X), 1(y))arrow true$ $\Leftarrow$ $eq(x,y)=true$ .

In CTRSs $\mathcal{R}$ of each types, the one-st $e\mathrm{p}$ reduction $Earrow RF$ occurs if and only if
$P$ admits a solution. From this it easily follows that the other properties are also
undecidable.
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Remark 1 We note that neither proof in [3] nor that in [10] works for right-ground
CTRSs.

Next we address confluence of left-linear right-ground CTRSs subjecting to the
same restriction. Observe that the example above is not effective to show undecid-
ability of confluence.

Theorem 3.7 Confluence is undecidable for left-linear right-ground CTRSs of semi-
equational, join, and oriented

$\mathrm{t}\mathrm{y}\mathrm{p}.\mathrm{e}\mathrm{s}$ having at most one left-linear right-ground con-
dition for each rule.

Proof. .Let $P$ be a PCP $\{\langle pi, q_{i}\rangle|1\leq i\leq n\}$ with $p_{i},$ $q_{i}\in\{0,1\}^{+}$ . Let

$\mathcal{R}\{$

$f(\overline{p_{1}}(\epsilon),\overline{q_{1}}(\epsilon))arrow A$

$f(\overline{p_{n}}(\epsilon),\overline{q_{n}}(\epsilon))arrow \mathrm{A}$

$f(\overline{p_{1}}(X),\overline{q_{1}}(y))arrow A$ $\Leftarrow$ $f(x, y)=A$

$f(\overline{p_{n}}(X),\overline{qn}(y))arrow A$ $\Leftarrow$ $f(x, y)=A$
$f(\epsilon, \epsilon)arrow true$

$f(0(X),0(y))arrow true$ $\Leftarrow$ $f(x, y)=true$
$f(1(X), 1(y))arrow true$ $\Leftarrow$ $f(x, y)=true$ .

For CTRSs $\mathcal{R}$ of each types, $P$ has no solutions if and only if $truearrow ntarrow \mathcal{R}$ $A$ for
no term $t$ if and only if 7? is confluent. 1

4 Decidability results for right-ground CTRSs
In CTRSs presented in the previous section, we admit at most one left-linear right-
ground condition per rule. Naturally, one may wonder what happens if conditions
are at all ground. We first give an answer to this.

Lemma 4.1 Let $\phi$ be a property of CTRSs, and $C$ be a class of (unconditional)
TRSs such that such that

1. $\phi$ is decidable for all $\prime \mathcal{R}\in C$ ,

2. $\mathcal{R}’\subseteq \mathcal{R}$ and $\mathcal{R}\in C$ imply $\mathcal{R}’\in C$ ,

3. convertibility (joinability, reachability) is decidable for all $\mathcal{R}\in C$ .

Then for every CTRS $\mathcal{R}$ of semi-equational (resp. join, and oriented) types having
ground conditions, if $\mathcal{R}_{u}\in C$ then $\phi$ is decidable for $\mathcal{R}$ .
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Proof. Let $\prime \mathcal{R}$ be a CTRS of semi-equational type having ground conditions. Let $C$

be a class of TRSs satisfying the conditions above and $\mathcal{R}_{u}\in C$ . We define a sequence
of TRSs $S_{0},S_{1},$

$\ldots$ by induction as follows:

$S_{0}sk+1$ $==$ $\emptyset\{’ larrow r|$

$larrow r\Leftarrow u_{1}=v_{1},$
$\ldots,$

$u_{n}=v_{n}\in \mathcal{R}$ ,
$u_{i^{rightarrow}S_{k}}v*i$ for all $i=1,$ $\ldots n$ }.

Since $S_{k}\subseteq \mathcal{R}_{u}$ , we know $S_{k}\in C$ and hence $u_{i}rightarrow s_{k}*v_{i}$ is decidable by our assumption.
Thus, $S_{0},$ $S_{1},$

$\ldots$ are effectively defined by induction on $k$ . Moreover, by definition,
$S_{0}\subseteq S_{1}\subseteq\cdots\subseteq \mathcal{R}_{u}$ holds. Suppose $\mathcal{R}$ has $l$ rules. Then, there are at most $l+1$

different TRSs in this sequence. It should be clear also from definition that $S_{i}=S_{i+1}$

implies $S_{i}=S_{j}$ for all $j\geq i$ . Hence, it follows that $S_{l}=S_{l+1}=\cdots$ .
By induction on $k$ , one easily verifies $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}arrow \mathcal{R}_{k}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{s}arrow S_{k}$ for each $k$ , and thus

we conclude $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}arrow n=\bigcup_{k\in\omega}arrow \mathcal{R}_{k^{=}}\bigcup_{k\in\omega}arrow s_{k^{=arrow}}S\iota$ . Since $S_{l}\subseteq \mathcal{R}_{u}$ , we know
$S_{l}\in C$ and thus $\phi$ is decidable for $S_{l}$ by our assumption. Therefore, $\phi$ is decidable
for $\mathcal{R}$ . 1

Using this lemma and Theor$e\mathrm{m}\mathrm{s}$ 3.2-3.5, it follows immediately,

Theorem 4.2 1. Convertibility and $\mathrm{c}o$nfluence are decidable for left-linear right-
ground CTRSs of semi-equational, join, and oriented types having ground con-
ditions.

2. Joinability, reachability, and termination are decidable for right-ground CTRSs
of join and oriented types having ground conditions.

3. Joinability, reachability, and termination are decidable for left-linear right-
ground CTRSs of semi-equational type having ground conditions.

It is very likely that we allowed a defined symbol $f$ to occur in conditions of rules
is a key for the undecidability results shown in the previous section. We next study
$\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}/\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ properties of (left-linear) right-ground CTRSs containing no
defined symbols in conditions of the rules.

The set $D$ of defined symbols is defined like this: $D=\{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{t}(l)|larrow r\Leftarrow c\in \mathcal{R}\}$ .
Here root $(l)$ is the function symbol occurring at the root position of $l$ . A rule $larrow r\Leftarrow$

$u_{1}=v_{1},$ $\ldots,$ $u_{n}=v_{n}$ is said to have constructor conditions if $u_{1},$ $\ldots,$ $u_{n},$ $v_{1},$ $\ldots$ , $v_{n}$

involve no defined symbols.

Theorem 4.3 1. Convertibility and confluence are decidable for left-linear right-
ground CTRSs of join and oriented types having at most one left-linear right-
ground constructor condition for each rule.
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2. Joinability, reachability, and termination are decidable for right-ground CTRSs
of join and oriented types having at most one left-linear right-ground construc-
tor condition for each rule.

Proof. Suppose that $\mathcal{R}=\{l_{i}arrow r_{i}\Leftarrow c_{i}|i\in I\}$ is a left-linear right-ground CTRS
of oriented type having at most one left-linear right-ground constructor condition for
each rule.

Let $l_{i}arrow r_{i}\Leftarrow c_{i}\in \mathcal{R}$ and suppose that $c_{i}$ equals $u_{1}=v_{1}$ By our assumption,
every variable occurs in $u_{1}$ at most once. Thus, since $u_{1}$ is a constructor term, one
can assume without loss of generality that there exists a unique ground substitution
$\sigma_{i}$ such that $\mathrm{d}\mathrm{o}\mathrm{m}(\sigma_{i})=\mathrm{V}\mathrm{a}\mathrm{r}(c_{i})$ and $u_{1}\sigma_{i}\equiv v_{1}$ . Let $S$ be a TRS $\{l_{i}\sigma_{i}arrow r_{i}|i\in I\}$ .
Then, it is not hard to show that the reduction relation of $S$ and $\mathcal{R}$ coincide, i.e.
$-_{s=}*arrow R*$ . Since $S$ is a left-linear right-ground TRS, for any ternls $s,$ $t$ whether
$srightarrow s*t$ holds is decidable by Theorem 3.2. Also, confluence of $S$ is decidable by
Theorem 3.5. For join type, it suffices to note that right-hand sides of conditions are
$\mathcal{R}_{u}$-normal form.

The other statements are proved similarly using Theorems 3.2-3.5.

This contrasts with 7? in the proof of Theorem 3.6 and with that in the proof of
Theorem 3.7 which breaks the additional requirement that conditions are constructor
terms.

5 Reachability of growing CTRSs
A TRS $\mathcal{R}$ is growing if for any $larrow r\in \mathcal{R}$ and for any position $p,$ $l/p\in \mathrm{V}\mathrm{a}\mathrm{r}(r)$

implies $|p|\leq 1$ . The following theorem is known.

Theorem 5.1 ([13]) Reachability is decidable for left-linear growing TRSs.

In this section, we present an extension of this result for conditional term rewriting.

Definition 5.2 For a conditional rewrite rule $larrow r\Leftarrow u_{1}=v_{1},$
$\ldots,$ $u_{n}=v_{n}$ and

$i\in I$ , let

$\mathcal{O}_{i}(larrow r\Leftarrow u_{1}=v_{1,\ldots,n} u=v)n$

$=$ $\{$

$\{larrow\nabla_{i}(u_{1}, \ldots, u_{n}, r), \nabla_{i}(v_{1}, \ldots, v_{n}, Z)arrow z\}$ if $n\geq 1$ ,
$\{larrow r\}$ if $n=0$ ,

where $z$ is a new variable and $\nabla_{i}$ is a new function symbol with the appropriate arity.
Suppose $\mathcal{R}=\{l_{i}arrow r_{i}\Leftarrow c_{i}|i\in I\}$ . Then we define

$\mathcal{O}(\mathcal{R})=\bigcup_{i\in I}\mathcal{O}_{i}(l_{i}arrow r_{i}\Leftarrow c_{i})$.
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Symbols in $\{\nabla_{i}|i\in I\}$ are called $\nabla$ -symbols. The set of terms containing no
$\nabla$-symbols is denoted by $\mathcal{T}$ .

From now on until Theorem 5.7, we assume that $\mathcal{R}$ is a left-linear CTRS of
oriented type having right-ground conditions.

Definition 5.3 Let $s\equiv C[g\sigma]_{p}arrow O(\mathcal{R})C[h\sigma]_{p}\equiv t$ with $garrow h\in \mathcal{O}(\mathcal{R})$ . Let
$q\in \mathrm{P}_{0}\mathrm{s}(t)$ . The antecedent of $q$ is a position in $s$ defined as follows:

1. If $p\neq q$ then $q\in \mathrm{P}\mathrm{o}\mathrm{s}(S)$ , and the antecedent of $q$ is $q$ .

2. Otherwise, i.e. $p<q$ .

(a) Suppose that there exists $p_{x}\in \mathrm{P}\mathrm{o}\mathrm{s}(h)$ such that $j/p_{x}\equiv x\in \mathcal{V}$ and $p.p_{x}\leq$

$q$ . Then, by linearity of $g$ , there exists a uniqu$e$ position $p_{x}’\in \mathrm{P}_{0}\mathrm{s}(g)$ such
that $g/p_{x}’\equiv x$ . The anteced$e\mathrm{n}\mathrm{t}$ of $q$ is the position $p.p_{x}’.(q\backslash px)$ .

(b) Otherwise, the anteced$e\mathrm{n}\mathrm{t}$ of $q$ is undefined.

Definition 5.4 1. A subterm $u$ of $t$ is called a $\nabla$-subterm of $t$ if root $(u)$ is a
$\nabla$-symbol.

2. Let $sarrow \mathcal{O}(\mathcal{R}\rangle$$*t$ with $s\in \mathcal{T}$ . We now define $v\mathrm{f}\sim \mathrm{o}\mathrm{r}$ each subterm $v$ of $t$ , and an
origin of $u$ for each $\nabla$-subterm $u$ of $t$ , by induction on the length of $sarrow \mathcal{O}(R*)t$ .

(a) Base step. Put $v\sim\equiv v$ for each subterm $v$ of $s$ . There is no $\nabla$-subterm of
$s$ by our assumption.

(b) Induction step. Suppose $sarrow \mathcal{O}(*\mathcal{R})warrow O(R)t,$ $w\equiv C[g\sigma]_{p}$ , and $t\equiv C[h\sigma]_{p}$

with $garrow h\in \mathcal{O}(\mathcal{R})$ . Let $u\equiv t/q$ be a $\nabla$-subt$e\mathrm{r}\mathrm{m}$ of $t$ .
$\mathrm{i}$ . If $p\not\leq q$ then the origin of $u$ is that of $w/q$ .

$\mathrm{i}\mathrm{i}$ . If $p=q$ then the origin of $u$ is $\overline{w/}p$ .
$\mathrm{i}\mathrm{i}\mathrm{i}$. Otherwise, i.e. $p<q$ . Then, by the definition of $\mathcal{O}(R)$ , there exists a

position $p_{x}\in \mathrm{P}\mathrm{o}\mathrm{s}(h)$ such that $h/p_{x}\in \mathcal{V}$ and $p.p_{x}\leq q$ . Thus, there
exists a unique antecedent $q’\in \mathrm{P}_{0}\mathrm{s}(w)$ of $q$ . The origin of $u$ is that
of $w/q’$ .

For each subterm $v$ of $t,$ $v\sim$ results from $v$ by rep.lacing all its maximal
V-subterms by their respective origins.

Lemma 5.5 Let $sarrow \mathcal{O}(n)*t$ with $s,t\in T$ . Then, $s-_{\mathcal{R}}*t$ .
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Proof. Let $s\in \mathcal{T}$ . By induction on the lenght of the reduction, one can prove
that $t’arrow \mathcal{R}t\sim*\sim$ for any $s’,$ $t’,t$ such that $s\sim_{\mathcal{O}}*(\mathcal{R})s’\underline{\triangleright}t’arrow \mathit{0}_{(}*R)t$ . Here $s’\underline{\triangleright}t’$ denotes
that $t’$ is a subterm of $s’$ . Then it follows that $\sim sarrow R*t\sim$ for any $s\in T$ and $t$ such
that $sarrow \mathcal{O}(*\mathcal{R})t$, and since $t\equiv t\sim$ when $t\in T$ , the statement of the lemma follows
immediately. 1

Remark 2 In the lemma above, our assumption that conditions of rewrite rules in
$\mathcal{R}$ are right-ground can not be dropped. To see $this_{f}$ let

$\mathcal{R}\{$

$a(c)arrow b(d)$

$A(x)arrow B$ $\Leftarrow$ $a(x)=b(x)$ .

Then we have $O(\mathcal{R})=\{a(c)arrow b(d), A(x)arrow\nabla_{2}(a(X), B), \nabla_{2}(b(x), z)arrow z\}$ , and
thus $A(c)arrow O(R)\nabla_{2}(a(C), B)arrow \mathcal{O}(\mathcal{R})\nabla_{2}(b(d), B)arrow \mathcal{O}(\mathcal{R})B$ holds. But since there is
no term $t$ satisfying $a(t)arrow_{R}b(*t))$ we have $A(t)-_{\mathcal{R}}*B$ for no term $t$ .

Remark 3 Our translation is very similar to that appeared in [3] although they
assume also orthogonality. Also, similar translations and preservation results have
been appeared in $[7]_{f}[\mathit{1}\mathit{8}]f[\mathit{1}\mathit{2}]$ . But neither of them is effective for our theorem below.

We define growingness of a CTRS as follows.

Definition 5.6 A CTRS $\mathcal{R}$ are said to be growing if for any $larrow r\Leftarrow c\in \mathcal{R}$ and for
any position $p\in \mathrm{P}_{\mathrm{o}\mathrm{S}}(l),$ $l/p\in \mathrm{V}\mathrm{a}\mathrm{r}(r)\cup \mathrm{V}\mathrm{a}\mathrm{r}(c)$ implies $|p|\leq 1$ .

Using Lemma 5.5, one easily shows

Theorem 5.7 Reachability is decidable for left-linear growing CTRSs of oriented
type having right-ground conditions.

This contrasts with $\mathcal{R}$ in the proof of Theorem 3.6, which breaks growingness
condition.

6 Termination of right-ground CTRSs
A proof analogous to that of decidability of termination of (right-)ground $\mathrm{T}\mathrm{R}\mathrm{S}\mathrm{s}[9]$

is effective to establish a relation between decidability of termination and that of
one-step reduction for right-ground CTRSs.1

The next lemma is proved in the same way as the one for TRSs.

lOriginal lemmas are presented under an additional (auxiliary) assumption that left-hand sides
of rewrite rules are also ground.
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Lemma 6.1 Let $\mathcal{R}=\{l_{i}arrow r_{i}\Leftarrow c_{i}|i\in I\}$ be a right-ground CTRS. If $\mathcal{R}$ is
non-terminating then th$e\mathrm{r}\mathrm{e}$ exists $i\in I$ such that $r_{i}$ is non-terminating.

The proof of the following lemma2 needs an alternation, for the original way in
[9] (which is adopt $e\mathrm{d}$ also in [11] and [2]) to use induction on the number of rewrite
rules does not work.

Lemma 6.2 Let $\mathcal{R}=\{l_{i}arrow r_{i}\Leftarrow c_{i}|i\in I\}$ be a right-ground CTRS. If 72 is
non-terminating then there exists $i\in I$ such that $r_{i}arrow c+[ri]$ .

Proof. Use the minimal infinite reduction sequence argument; see e.g. [14], [8]. 1

Theorem 6.3 Let $\mathcal{R}$ be a right-ground CTRS. If one-step reduction of $\mathcal{R}$ is decid-
able then termination is a decidable property of $\mathcal{R}$ .

Theorem 6.4 For any right-ground CTRS $\mathcal{R}$ if $\mathcal{R}$ is non-terminating then there
exists a natural number $k$ such that $\mathcal{R}_{k}$ is non-terminating.

Remark 4 The theorem above contrasts to $non-right_{-g}round$ case. Let

$\mathcal{R}\{$

$g(x)arrow g(f(x))$ $\Leftarrow$ $h(x)=b$
$h(a)arrow b$

$h(f(x))arrow b$ $\Leftarrow$ $h(x)=b$.

$Then_{2}$ for CTRSs $\mathcal{R}$ of each $types_{f}$

$\mathcal{R}_{0}$ $=$ $\emptyset$

$R_{1}$ $=$ $\{h(a)arrow b\}$

$\mathcal{R}_{2}$ $=$ $\mathcal{R}_{1^{\cup}}\{g(a)arrow g(f(a)), h(f(a))arrow b\}$

$\mathcal{R}_{3}$ $=$ $R_{2}\cup\{g(f(a))arrow g(f(f(a))), h(f(f(a)))arrow b\}$

$\mathcal{R}_{4}$ $=$ $\mathcal{R}_{3}\cup\{g(f(f(a)))arrow g(f(f(f(a)))), h(f(f(f(a))))arrow b\}$

are all terminatingf while $\mathcal{R}$ is non-terminating as:

$g(a)arrow ng(f(a))arrow \mathcal{R}g(f(f(a)))arrow_{R}\cdots$ .

By combining Proposition 2.1 and Theorems 5.7 and 6.3 we obtain

Corollary 6.5 Termination is decidable for left-linear right-ground growing CTRSs
of oriented type having right-ground conditions.

This contrasts with $\mathcal{R}$ in the proof of Theorem 3.6, which $\mathrm{b}\mathrm{r}e$aks growingness
condition.

2The original lemma shows $l_{i^{\pm]}}c[l_{i}$ instead of $r_{i}arrow C+[ri]$ .
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7 Conclusion
In this paper we studied $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ of convertibility, joinability,
reachability, termination, and confluence for subclasses of CTRSs of semi-equational,
join, and oriented types–in particular, those that are related to known decidabil-

$\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ results for (C)TRSs.
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