On the Extension Theorem for Linear Codes (線形符号の延長定理について)

Tatsuya MARUTA (丸田 辰哉)

Department of Information Systems Aichi Prefectural University Nagakute, Aichi 480-1198, Japan e-mail: maruta@ist.aichi-pu.ac.jp

Abstract. Hill and Lizak ([1]) proved that every $[n, k, d]_q$ code with gcd(d, q)=1 and with all weights congruent to 0 or d (modulo q) can be extended to an $[n+1, k, d+1]_q$ code. We give another elementary geometrical proof of this theorem.

1. Introduction

An $[n, k, d]_q$ code \mathcal{C} means a linear code of length n with dimension k whose minimum Hamming distance is d over the Galois field GF(q). The weight distribution of \mathcal{C} is the list of numbers A_i which is the number of codewords of \mathcal{C} with weight i. We only consider non-degenerate codes having no coordinate which is identically zero.

Let \mathcal{C} be an $[n, k, d]_q$ code with a generator matrix G. The code obtained by deleting the same coordinate from each codeword of \mathcal{C} is called a *punctured code* of \mathcal{C} . If there exists an $[n+1, k, d+1]_q$ code \mathcal{C}' whose punctured code is \mathcal{C} , \mathcal{C} is called *extendable* (to \mathcal{C}') and \mathcal{C}' is an *extension* of \mathcal{C} . Obviously, every $[n, 1, d]_q$ code is extendable.

As for the case when k=2, an $[n,2,d]_q$ code \mathcal{C} is equivalent to the code with a generator matrix of the form

$$\begin{bmatrix} 1\cdots 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & \cdots & 1 & \cdots & 1 & \cdots & 0 \\ 0\cdots 0 & \alpha & \cdots & \alpha & \alpha^2 & \cdots & \alpha^2 & \cdots & \alpha^{q-1} & \cdots & \alpha^{q-1} & 1 \cdots 1 \end{bmatrix},$$

where α is a primitive element of GF(q). Let t_0 , t_i $(1 \le i \le q-1)$, t_q be the number of columns $[1 \ 0]^T$, $[1 \ \alpha^i]^T (1 \le i \le q-1)$, $[0 \ 1]^T$ respectively, so that $t_0 + t_1 + \ldots + t_q = n$. Setting $s = \max\{t_0, t_1, \ldots, t_q\}$, we have $0 \le t_i \le s$ and s = n - d. So, \mathcal{C} is extendable iff there exists i $(0 \le i \le q)$ with $t_i < s$. Since \mathcal{C} is an $[s(q+1), 2, sq]_q$ code iff $t_0 = t_1 = \ldots = t_q = s$, we get

Theorem 1. An $[n, 2, d]_q$ code \mathcal{C} is not extendable iff n = s(q+1) and d = sq for some integer s.

Although it is not so easy to find if an $[n, k, d]_q$ code is extendable or not when $k \geq 3$ in general, it is well known that every $[n, k, d]_2$ code with d odd is extendable (by adding an overall parity check). The following so-called extension theorem is a generalization of this fact.

Theorem 2. (Hill & Lizak [1])

Let \mathcal{C} be an $[n, k, d]_q$ code with the weight distribution $\{A_i\}$. If $\gcd(d, q) = 1$ and if $i \equiv 0$ or $d \pmod q$ for all i with $A_i > 0$, then \mathcal{C} is extendable to an $[n+1, k, d+1]_q$ code \mathcal{C}' with the weight distribution $\{A_i'\}$ satisfying $i \equiv 0$ or $d+1 \pmod q$ for all i with $A_i' > 0$.

For an $[n, k, d]_q$ code \mathcal{C} with a generator matrix G, the residual code of \mathcal{C} with respect to a codeword c, denoted by $\text{Res}(\mathcal{C}, c)$, is the code generated by the restriction of G to the columns where c has a zero entry. The following lemma is well known for residual codes.

Lemma 3. Take $c \in \mathcal{C}$ with weight d. Then $\operatorname{Res}(\mathcal{C}, c)$ is an $[n - d, k - 1, d_0]_q$ code with $d_0 \geq \lceil d/q \rceil$, where $\lceil x \rceil$ is the smallest integer $\geq x$.

When q divides d, we can prove the following.

Theorem 4. An $[n, k, d]_q$ code \mathcal{C} is not extendable if q divides d and if $\operatorname{Res}(\mathcal{C}, c)$ is an $[n - d, k - 1, d_0]_q$ code with $d_0 = d/q$ for some $c \in \mathcal{C}$.

Example. Every $[q^2, 4, q^2 - q - 1]_q$ code C_1 is extendable by Theorem 2 (see [1]). But the extension of C_1 is not extendable by Lemma 3 and Theorem 4.

We give the proof of Theorems 2 and 4 in Section 3. A geometrical point of view (given in Section 2), which is a generalization of the above observation for the case when k=2, is sometimes valid for linear codes (cf. [4],[5]). Although the original proof of Theorem 2 is elementary, we give another elementary geometrical proof to make clear the extendability of linear codes in the different way.

2. A geometric method

We denote by $\operatorname{PG}(r,q)$ the projective geometry of dimension r over $\operatorname{GF}(q)$. Assume $r \geq 2$. A j-flat is a projective subspace of dimension j in $\operatorname{PG}(r,q)$. 0-flats, 1-flats, 2-flats, (r-2)-flats and (r-1)-flats are called *points*, *lines*, *planes*, *secundums* and *hyperplanes* respectively. We denote by \mathcal{F}_j the set of j-flats of $\operatorname{PG}(r,q)$. The following lemma is a characterization of hyperplanes.

Lemma 5. Let F be a proper subset of $\Sigma = \mathrm{PG}(r,q)$. Then F is a hyperplane of Σ iff every line in Σ meets F in one point or in q+1 points.

Proof. Assume that every line in $\Sigma = \operatorname{PG}(r,q)$ meets a proper subset F of Σ in one point or in q+1 points. Let l_0 be a line in Σ . Then we can find a point $Q_0 \in F$ on l_0 . Let δ_{j-1} be a (j-1)-flat included in F, $1 \leq j \leq r-1$. Taking a line l_j which is skew to δ_{j-1} , we can get a point $Q_j \in F$ (on l_j) not on δ_{j-1} . Since every line through Q_j and a point of δ_{j-1} meets F in q+1 points, we get $\delta_j = \langle Q_j, \delta_{j-1} \rangle \in \mathcal{F}_j$ included in F. Inductively, we get a hyperplane δ_{r-1} included in F. If a point $Q \in F$ not in δ_{r-1} exists, then we have $F = \langle Q, \delta_{r-1} \rangle = \Sigma$, a contradiction. Hence we obtain $F = \delta_{r-1}$. The converse is trivial. \square

Let \mathcal{C} be a (non-degenerate) $[n,k,d]_q$ code. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma = \mathrm{PG}(k-1,q)$ denoted also by \mathcal{C} . We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in \mathcal{C} . Let C_i be the set of i-points in Σ . For any subset S of Σ we define

$$c(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|,$$

where γ_0 is the maximum of the multiplicities of points in Σ .

A line l with t=c(l) is called a t-line. A t-plane, t-secundum and a t-hyperplane are defined similarly. Then we obtain the partition $\Sigma = C_0 \cup C_1 \cup \cdots \cup C_{\gamma_0}$ such that

$$(2.1) c(\Sigma) = n,$$

(2.2)
$$n - d = \max\{c(\pi) | \pi \in \mathcal{F}_{k-2}\}.$$

Conversely such a partition of Σ as above gives an $[n, k, d]_q$ code in the natural manner if there exists no hyperplane including the complement of C_0 in Σ . Since an $[n+1, k, d+1]_q$ code also satisfies (2.2) we get the following.

Lemma 6. An $[n, k, d]_q$ code \mathcal{C} is extendable iff there exists a point $P \in \Sigma$ such that $c(\pi) < n - d$ for all hyperplanes π through P.

We give an elementary proof of Theorem 2 using Lemma 6.

3. Proof of Theorem 2 and Theorem 4

Note that the number of *i*-hyperplanes is $A_{n-i}/(q-1)$ ($0 \le i \le n-d$). So, the condition $i \equiv 0$ or $d \pmod{q}$ for all i with $A_i > 0$ in Theorem 2 implies that $c(\pi) \equiv n$ or $n-d \pmod{q}$ for all $\pi \in \mathcal{F}_{k-2}$.

Proof of Theorem 2. Put $F = \{\pi \in \mathcal{F}_{k-2} | c(\pi) \equiv n \pmod{q}\}$. For any t-secundum δ of $\Sigma = \operatorname{PG}(k-1,q)$, denote by a_{δ} (resp. b_{δ}) the number of hyperplanes π through δ with $c(\pi) \equiv n \pmod{q}$ (resp. $c(\pi) \equiv n - d \pmod{q}$). Then we have $a_{\delta} + b_{\delta} = q + 1 \equiv 1$ and $(n-t)a_{\delta} + (n-d-t)b_{\delta} + t \equiv n$, so that $d(a_{\delta}-1) \equiv 0 \pmod{q}$. Since $\gcd(d,q)=1$, we get $a_{\delta} \equiv 1 \pmod{q}$, whence $a_{\delta} = 1$ or q+1. This implies that every line in a dual space Σ^* meets F in one point or q+1 points. By Lemma 5, F is a hyperplane of Σ^* , whence there exists a point $P \in \Sigma$ such that the set of all hyperplanes through P is equal to P. Since $c(\pi) \equiv n \pmod{q}$ implies $c(\pi) < n-d$, C is extendable by Lemma 6. By adding P to the multiset C, we get an extension of C which satisfies $c(\pi) \equiv n+1$ or $n-d \pmod{q}$ for all $\pi \in \mathcal{F}_{k-2}$.

It follows from the above proof that the point to be added to the multiset \mathcal{C} to get an extension of \mathcal{C} is uniquely determined under the condition of Theorem 2.

Proof of Theorem 4. Since $\operatorname{Res}(\mathcal{C},c)$ is an $[n-d,k-1,d/q]_q$ code for some $c\in\mathcal{C}$, there exists a t-secundum δ with t=n-d-d/q in $\Sigma=\operatorname{PG}(k-1,q)$. Considering the hyperplanes through δ , we have

$$n \le (n-d-t)(q+1) + t = n,$$

whence every hyperplane through δ is a (n-d)-hyperplane. Hence every point in Σ is on a (n-d)-hyperplane, and \mathcal{C} is not extendable by Lemma 6.

References

- [1] R. Hill and P. Lizak, Extensions of linear codes, Proc. IEEE Int. Syposium on Inform. Theory (Whistler, Canada, 1995) 345.
- [2] J.W.P. Hirschfeld, *Projective Geometries over Finite Fields*, Clarendon Press, Oxford, 1979.
- [3] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
 - [4] I.N. Landjev and T. Maruta, On the minimum length of quaternary linear codes of dimension five, *Discrete Math.* (to appear).
 - [5] T. Maruta, On the achievement of the Griesmer bound, Designs, Codes and Cryptography 12 (1997), 83–87.