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Abstract. Hill and Lizak ([1]) proved that every [n,k,d], code with ged(d,q)=1 and
with all weights congruent to 0 or d (modulo g) can be extended to an [n + 1,k,d + 1],
code. We give another elementary geometrical proof of this theorem.

1. Introduction

- An [n, k,d], code C means a linear code of length n with dimension k¥ whose minimum
Hamming distance is d over the Galois field GF(g). The weight distribution of C is the
list of numbers A; which is the number of codewords of C with weight i. We only consider
non-degenerate codes having no coordinate which is identically zero.

Let C be an [n, k, d], code with a generator matrix G. The code obtained by deleting
the same coordinate from each codeword of C is called a punctured code of C. If there
exists an [n + 1,k,d + 1], code C’' whose punctured code is C, C is called extendable (to
C') and C' is an extension of C. Obviously, every [n, 1, d], code is extendable.

As for the case when k = 2, an [n,2,d], code C is equivalent to the code with a
generator matrix of the form

[1...1 1 .-~ 1 1 -~ 1 .- 1 1 0...0]
0---0 o --- o a* --- 2 1 o™l 1.--11|°

o e a7
where a is a primitive element of GF(g). Let o, t; (1 < i < ¢ — 1), t, be the number of
columns [1 0]7,[1 of]T(1<i<g—1),[0 1] respectively, so that to + 1 + ... +t, = n.
Setting s = max{to,t1,...,¢,}, we have 0 < ¢; < s and s = n —d. So, C is extendable iff
there exists i (0 < i < q) with ¢; < s. Since C is an [s(g+1),2, 8q]q code iff g =t; = ... =
ty = s, we get

Theorem 1. An [n,2,d], code C is not extendable iff n = s(q + 1) and d = sq for some
integer s.
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Although it is not so easy to find if an [n, k, d], code is extendable or not when &k > 3
in general, it is well known that every [n, k, d]; code with d odd is extendable (by adding
an overall parity check). The following so-called extension theorem is a generalization of
this fact.

Theorem 2. (Hill & Lizak [1])

Let C be an [n, k, d], code with the weight distribution {4;}. If ged(d, g)=1 and if i =
0 or d (mod g) for all ¢ with A; > 0, then C is extendable to an [n + 1, k,d + 1], code C’
with the weight distribution {A}} satisfying i = 0 or d + 1 (mod q) for all i with A’ > 0.

For an [n, k, d], code C with a generator matrix G, the residual code of C with respect
to a codeword c, denoted by Res(C, ¢), is the code generated by the restriction of G to the
columns where c has a zero entry. The following lemma is well known for residual codes.

Lemma 3. Take c € C with weight d. Then Res(C,c) is an [n — d, k — 1, d], code with
do > [d/q], where [z] is the smallest integer > z.

When ¢ divides d, we can prove the following.

Theorem 4. An [n, k,d], code C is not extendable if g divides d and if Res(C, c) is an
[n—d,k —1,do), code with dy = d/q for some c € C.

Example. Every [¢°,4,¢* — ¢ — 1]; code C; is extendable by Theorem 2 (see [1]). But
the extension of C; is not extendable by Lemma 3 and Theorem 4.

We give the proof of Theorems 2 and 4 in Section 3. A geometrical point of view
(given in Section 2), which is a generalization of the above observation for the case when
k = 2, is sometimes valid for linear codes (cf. [4],[5]). Although the original proof of
Theorem 2 is elementary, we give another elementary geometrical proof to make clear the
extendability of linear codes in the different way.

2. A geometric method

We denote by PG(r,q) the projective geometry of dimension r over GF(q). Assume
r > 2. A j-flat is a projective subspace of dimension j in PG(r, q). 0-flats, 1-flats, 2-flats,
(r — 2)-flats and (r — 1)-flats are called points, lines, planes, secundums and hyperplanes
respectively. We denote by F; the set of j-flats of PG(r,q). The following lemma is a
characterization of hyperplanes.

Lemma 5. Let F be a proper subset of ¥ = PG(r, q). Then F' is a hyperplane of ¥ iff
every line in ¥ meets F' in one point or in ¢ + 1 points.
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Proof. Assume that every line in X = PG(r, ¢) meets a proper subset F' of ¥ in one point
or in g + 1 points. Let Iy be a line in . Then we can find a point Qo € F on l. Let 6

be a (j — 1)-flat included in F, 1 < j < r — 1. Taking a line /; which is skew to §;-1, we
~ can get a point Q; € F (on l;) not on §;—;. Since every line through Q; and a point of
6;—1 meets F in ¢ + 1 points, we get §; = (Qj, §;—1) € F; included in F. Inductively, we
get a hyperplane §,_; included in F. If a point Q € F not in 6,_; exists, then we have
F = (Q,6,-1) = %, a contradiction. Hence we obtain F' = §,_;. The converse is trivial.
0

Let C be a (non-degenerate) [n, k,d], code. The columns of a generator matrix of C
can be considered as a multiset of n points in ¥ = PG(k — 1,¢) denoted also by C. We
see linear codes from this geometrical point of view. An i-point is a point of X which has
multiplicity ¢ in C. Let C; be the set of i-points in X. For any subset S of ¥ we define

o
c(S) = _i|SnCil,
i=1
where o is the maximum of the multiplicities of points in 3.
A line | with t = ¢(l) is called a t-line. A t-plane, t-secundum and a t-hyperplane are
defined similarly. Then we obtain the partition ¥ = Cy U Cy U - - - U C,, such that

(21 c(X) = n,

(2.2) | n — d = max{c(n)|r € Fr-2}.

Conversely such a partition of ¥ as above gives an [n, k, dq code in the natural manner
if there exists no hyperplane including the complement of Cy in ¥. Since an [n+1, k, d+1],
code also satisfies (2.2) we get the following.

Lemma 6. An [n,k,d], code C is extendable iff there exists a point P € ¥ such that
¢(m) < n — d for all hyperplanes 7 through P.

We give an elementary proof of Theorem 2 using Lemma 6.
3. Proof of Theorem 2 and Theorem 4
Note that the number of i-hyperplanes is A,—;/(¢ — 1) (0 < i < n —d). So, the

condition %4 = 0 or d (mod q) for all 4 with A; > 0’ in Theorem 2 implies that ¢(7) = n
or n —d (mod q) for all m € Fy_s.
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Proof of Theorem 2. Put F = {m € Fj_2|c(r) = n(mod q)}. For any t-secundum 6 of
¥ = PG(k — 1, ¢), denote by as (resp. bs) the number of hyperplanes 7 through § with
c(m) = n(mod g) (resp. ¢(r) = n — d(mod q)). Then we have as + bs = ¢+ 1 = 1 and
(n —t)as + (n — d — t)bs + ¢ = n, so that d(as — 1) = 0 (mod q). Since ged(d, q)=1, we
get as = 1 (mod q), whence as = 1 or ¢ + 1. This implies that every line in a dual space
2* meets F' in one point or ¢ + 1 points. By Lemma 5, F is a hyperplane of ¥*, whence
there exists a point P € ¥ such that the set of all hyperplanes through P is equal to F.
Since c¢(7) = n(mod g¢) implies ¢(7) < n — d, C is extendable by Lemma 6. By adding P
to the multiset C, we get an extension of C which satisfies ¢(r) =n +1 or n — d (mod q)
for all m € Fp_o. O

It follows from the above proof that the point to be added to the multiset C to get an
extension of C is uniquely determined under the condition of Theorem 2.

Proof of Theorem 4. Since Res(C,¢) is an [n — d,k — 1,d/q], code for some ¢ € C,
there exists a t-secundum 6 witht =n —d —d/q in £ = PG(k — 1,q). Considering the
hyperplanes through §, we have

n<(n—d—-t)(g+1)+t=n, }
whence every hyperplane through § is a (n — d)-hyperplane. Hence every point in ¥ is on
a (n — d)-hyperplane, and C is not extendable by Lemma 6. |
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