0000000000
11060 1999 0 130-141 | v 130

Computing Ability of Reverls‘ible and Conservative Cellular Automata

BEY - RIFA A IV - T — b T b O DEREED

Kenichi Morita, and Katsunobu Imai
L FH B, SHRE .
Faculty of Engineering, Hiroshima University
LEXFIFEE
{morita, imai}@ke.sys.hiroshima-u.ac.jp
http://www.ke.sys.hiroshima-u.ac.jp/ morita/

Abstract

We introduce a new model of cellular automaton called a one-dimensional number-
conserving partitioned cellular automaton (NC-PCA). An NC-PCA is a system such that a
state of a cell is represented by a triple of non-negative integers, and the total (i.e., sum) of
integers over the configuration is conserved throughout its evolving (computing) process. It
can be thought as a kind of modelization of the physical conservation law of mass (parti-
cles) or energy. We also define a reversible version of NC-PCA, and prove that a reversible
NC-PCA is computation-universal. It is proved by showing that a reversible two-counter
machine, which has been known to be universal, can be simulated by a reversible NC-PCA.

1 Introduction

Recently, various kinds of interesting computing models which directly reflect laws of nature
have been proposed and investigated. Among others, quantum computing, DNA computing,
reversible computing, etc. have been extensively studied. A reversible computer is a system
such that its transition function of the whole state is a one-to-one mapping (injection), hence,
roughly speaking, it is a backward deterministic system. It is a kind of model reflecting phys-
ical reversibility, and has been known to be very important when studying inevitable power
dissipation in a computing process [3, 4, 5, 13]. Besides the problem of energy consumption,
such a system is also interesting from a computational viewpoint, because they have very rich
ability of information processing in spite of the reversibility constraint. Until now, several
versions of computation-universality of RCAs for one- and two-dimensional cases have been
shown [8, 9, 10, 11, 12, 16, 17, 18, 19]. It is also possible to construct an RCA in which various
objects can self-reproduce [15, 17]. ,

Conservation of mass or energy is also an important physical law as well as reversibility.
Fredkin and Toffoli [5] proposed Conservative Logic, a kind of logic circuit theory, that models
both reversibility and conservation law of physics, and showed its universality. In this system,
each primitive logic gate must satisfy the constraints of reversibility (i.e., its logical function is
an injection), and conservation of bits (i.e., the total number of logical value “1”s is conserved -
between its input and output). Also for cellular automata, several universal models that are
both reversible and bit-conserving have been known [8, 9, 11].

In this paper, we define a new model of cellular automaton (CA) called a one-dimensional
number-conserving partitioned cellular automaton (NC-PCA), which generalize the notion of
bit-conserving CA. In an NC-PCA, each cell is partitioned into three parts, i.e., left, center, and
right parts, and the state of each part is represented by a non-negative integer (thus, the state of
a cell is represented by a triple of non-negative integers). The next state of a cell is determined
by the present states of the right part of the left-neighboring cell, the center part of this cell,
and the left part of the right-neighboring cell (not depending on the whole state of the three
cells). The total number is conserved during the local transition, hence the total number over a
configuration is also conserved throughout the evolving process.

131

LCRLCRLCR

t+1

T ali-1) afi) al+l)
Figure 1: The local transition function g of a PCA A.

Related to this model, a few other models in which each cell state is represented by a non-
negative integer have been known: a totalistic CA [1] and a sand pile model [6, 7]. In [1], a
CA with a simple totalistic rule (but not necessarily number-conserving) has been shown to be
universal. In [6, 7], a kind of an automata system having a specific type of number-conserving
rules are studied.

Here, we investigate the computing ability of an NC-PCA, and its reversible version. We
show that an NP-PCA is computation universal even if it is reversible. This strengthens the
previous result that a one-dimensional reversible CA (not necessarily a number-conserving one)
is computation-universal [10]. We prove it by showing that a reversible two-counter machine,
which has been known to be universal [14], can be simulated by a reversible NC-PCA.

2 Number-Conserving Partitioned Cellular Automata

In order to define a one-dimensional number-conserving partitioned cellular automaton (NC-
PCA), we first give a definition of a partitioned cellular automaton (PCA) that has been intro-
duced to design a reversible cellular automaton [10].

Definition 2.1 A deterministic one- dzmenszonal three-neighbor partitioned cellular automaton
(PCA) isa system defined by

= (Z’ (L’ C, R)? 9, ((jLa go, QR))v

where Z is the set of all integers at which cells are placed, L, C and R are non-empty finite sets
of states of left, center, and right parts ofa cell, g; RxCxL — LxC xR is a local function,
and (dr,dc,dr) € L x C x R is a quiescent state that satisfies g(dr,dc,dr) = (4r,dc,dr)-

A configuration over the set Q = L x C x R is a mapping o : Z — Q. Let Conf(Q) denote
 the set of all configurations over Q, ie., Conf(Q) = {a | a: Z = Q}. A quiescent configuration
is the one such that all the cells are in the quiescent states (4r., dc, dr)-

Let prog: @ — L is a projection function such that proy(l,c,r) =1 for all (I,¢c,r) € Q.
Projection functions prog : Q — C, and prog : @ -» R are also defined similarly. The global
function G : Conf(Q) — Conf(Q) of A is defined as follows.

¥z € Z: G(0)(z) = g(prog(alz — 1)), prog (ez)), pro (a(z + 1))

Fig. 1 shows how the local function g is applied to each cell. In the following, an equation
g(r,c,l) = (I',d,r’) is called a rule of A, and write it by

[r7 c’ l] _> [l,, CI, r]'
We regard the local function g as the set of such rules for convenience.

Next, we define the notion of reversibility for PCAs.

132

Definition 2.2 Let A = (Z,(L,C,R),9,(dL,dc,dr)) be a PCA. We say A is globally reversible
iff its global function G is one-to-one, and locally reversible iff its local function g is one-to-one.

It is easy to prove the following proposition on PCA, which has been shown in [10].
Proposition 2.1 Let A be a PCA. A is globally reversible iff it is locally reversible.

By Proposition 2.1, a globally or locally reversible PCA is called simply “reversible” and
denoted by RPCA. By this, if we want to construct a reversible CA, it is sufficient to give a
PCA whose local function g is one-to-one. This makes it easy to design a reversible CA.

When we design a one-to-one local function g, it is sufficient to define it only on a subset of
R x C x L that are needed to perform a given task. Because, we can always find a one-to-one
extension from a given partial function provided that the latter function is one-to-one on the
subset. This is assured by the following proposition (its proof is omitted since it is easy).

Proposition 2.2 Let A and B be finite sets such that |A| |B|, and let g be a mapping
A" — B for some A’ (C A). If g is one-to-one, then there is a one-to-one mappmg g:A—> B
- such that ¢’(a) = g(a) for alla € A’'.

We now give a definition of a number-conserving PCA. As in the case of a reversible CA, it is
also convenient to use the framework of a PCA. Because, the the notion of number-conservation
can be expressed by a simple constraint on a local function of a PCA. :

Definition 2.3 Let A = (Z,(N,,,N;u,Np,),9,(0,k,0)) be a PCA, where N,, denotes the
set of integers {0,1,---,m — 1,m}, and k(< m) is a non-negative integer. A is called a one-
dimensional number-conserving partitioned cellular automaton (NC-PCA), iff it satisfies the
following condition: For all (r,c,l), (I',d,r") € N3, if g(r,c,l) = (I',d,r"), thenr +c+1 =
'+ +7r. : ,

A reversible NC-PCA is also defined similarly, and denoted by NC-RPCA.

3 Universality of an NC-RPCA

In this section, we show that for any reversible two-counter machine there is an NC-RPCA
- that simulates it. Since a reversible two-counter machines has been known to be computation-
universal [14], we can conclude that an NC-RPCA is also universal.

In [14] a counter machine (CM) is defined as a kind of multi-tape Turing machine whose
heads are read-only ones and whose tapes are all blank except the leftmost squares as shown in

Fig. 2 (P is a blank symbol). This definition is convenient for giving the notion of reversibility
ona CM. ‘

Definition 3.1 A k-counter machine (CM(k)) is a system

= (k7 Q,Ja q07qf)7

where k is the number of tapes (or counters), @ is a nonempty finite set of internal states, go € @
is an initial state, and g5 € Q is a final (halting) state M uses {Z, P} as a tape alphabet 6 is
a move relation which is a subset of (Q x {0,1,- -1} x{Z,P} x Q)u(Q x {0,1,-
1} x {-,0,+} x Q) (where “~”, “0”, and “+” denote left-shift, no-shift, and rlght-shlft of a
head, respectlvely) Tapes are one-way (rightward) infinite. The leftmost squares of the tapes
contain the symbol “Z”s, and all the other squares contain “P”s (Z and P stand for “zero” and
“positive”).
Each element of § is called a quadruple, and is either of the form

[q?iis7ql] or [Q’i’d’ql]’

133

| Finite
Control

l

Counter 0
\z|plp|P|P|P|P[P|-]-]-

Counter 1
[Z[P[PlPlP[P[P[P |- |-

Counter k£ — 1
lz|p|p|PlP[P[P[P]-] -

Figure 2: A k-counter machine (CM(k)).

where ¢,¢' € Q, i € {0,1,--- ,k— 1}, s€{Z, P}, d € {—,0,+}. The quadruple [g,1, s, ¢'] means
that if M is in the state ¢ and the i-th head is reading the symbol s then change the state into
¢'. It is used to test whether the contents of a counter are zero or positive. On the other hand,
lg,,d,q'] means that if M is in the state ¢ then shift the i-th head to the direction d and change

the state into ¢’. It is used to increment or decrement a counter by one (or make no change if
d =0).

Definition 8.2 An instantaneous description (ID) of a CM(k) M = (k,Q, 4,40, gf) is a (k+1)-
tuple

(Q)'nOanlv tee ,nk—l) € Q X Nka

where N = {0,1,--- }. It represents that M is in the state ¢ and the counter i keeps n; (we

assume the posmon of the leftmost square of a tape is 0). The transition relation]— over IDs
of M is defined as follows:

(q,) N0yt 3 M1, Mg, Ny 1,77 7nk-—1)
!
lM (q s 100y s M—1, Ty Mg 1,0 0 ?nk—l)

holds iff one of the following conditions (1)—(5) is satisfied.
(1) lg)4,2,4')€é and ny=n]=0.
(2) [Q)Z,P q] and n; = TL; > 0.
(3) [Q, T, — ,q’] and n; — 1= n;:_
) (4) [Q’i’ 07 (1’] and n; = n;
(5) [Qai) +7ql] € 6 and n; + 1= n;
. 1We)denote reflexive and transitive closure of |5+ by |57, and n-step transition by by (n=
s byt)

mmm
S

Definition 3.3 Let M = (k,Q,4,qo,qr) be a CM(k), and

= [p1,41,21,p7] and ag = [Pz,iz,mz,PQ]

be two distinct quadruples in §. We say a; and as o'uerlap n domam iff the following holds,
where D = { ,0, +}

P1=p2 Afi1#d2 V=29 Vz1€D V 29 € D]

134

We say o1 and az overlap in range iff the following holds.
pi=ph Afir#ia Voi=22 V21E€D V 39 € D]

A quadruple o is called deterministic (reversible, respectively) iff there is no other quadruple in
§ which overlaps in domain (range) with . M is called deterministic (reversible, respectively)
iff every quadruple in & is deterministic (reversible). A reversible CM(k) is denoted by RCM(k).

For example, the following pair
[QIa2’P7 q3]' and [Q472’ +7q3]
overlaps in range, while the pair

[qb 2, Zv q3] and. [q47 27 P7 q3]

does not. As seen from this definition, every ID of a deterministic (reversible, respectively)
CM(k) has at most.one ID that immediately follows (precedes) it. Hereafter, we consider only
deterministic reversible and deterministic irreversible CM(k)s.

It has been known that an RCM(2) is computation-universal [14].

Proposition 3.1 [14] For any Turing machine T, there is a deterministic RCM(2) M that
simulates T'.

We need the following Lemma to prove Theorem 3.1

Lemma 3.1 For any deterministic CM(2) M = (2,Q, 4, go, g5), there is a deterministic CM(2)
M' = (2,Q',0,9p,95) that simulates M satisfying the following conditions: (i) The initial state
gq never appears as the fourth element of a quadruple in &' (hence it appears only at time 0).
(ii) If M is reversible then M’ is also reversible. : .

Proof. In the case M is irreversible, it is very easy to construct such M’ by adding a new initial
state to Q. So, we consider the reversible case. In [14], a construction method of a reversible
CM(2) M; that simulates a given CM(k) M; (k = 1,2,---) (that is not necessarily reversible)
has been shown. By checking the construction method shown in [14], we can verify that M;
satisfies the above condition (i), provided that M; also satisfies it. Hence the Lemma holds. O

Theorem 3.1 For any deterministic CM(2) M, there is a deterministic NC-PCA A that sim-
ulates M satisfying the following condition: If M is reversible then A is also reversible.

Proof. Without loss of generality, we assume that the state set of M is @ = {qo,91," - ygm—1},
and the initial and final states are g, and g,,—1, respectively. Hence,

M= (2a ',{qo,qla T a‘Im—l}’ 4, (IO’Qm-—l)- a

Further assume that go never appears as the fourth element of a quadruple in § (by Lemma 3.1).
Let Inc;, Dec;, Nop, and Test; be the sets of states defined as follows (j € {0,1}).

Inc; = {4 (g Jj,+,q] € ¢ for some g € Q}

Dec; = {q;| [giJ,—,qx] €0 for some q; € Q}

NOp = {Qi | '[‘I'ivj7 07 Qk] € ¢ for somej € {0, 1}7 and ax € Q}
Test; = {qi | [¢,7,5,qk] € ¢ for some s € {Z, P}, and ¢; € Q}

These sets stand for instructions of “increment the counter 57, “decrement the counter j”, “no-
operation”, and “test if the counter j is zero or positive”. It is easy to see that Inc;, Dec;, Nop,
and Test; are pairwise disjoint (for example, Incg N Inc; = @, Dec; N Nop = @, etc.), since M is
deterministic. ' .

We now construct an NC-PCA A that simulates M. Each part of a cell of A keeps a number
at most m + 18, and the quiescent state is (0,0,0). Thus, .

(Z N'm,+187g, (0 0 0))

Before defining the local function g, we fix a coding method of an ID of M by a configuration of
A. First, we assign an “operation code” to each state of M by the following function v : Q —
{0,2,4, 6, 7}.

if g; € Incg

if g; € Decy

if ¢; € Incy

if ¢; € Dec;

otherwise

v(g) =

O~ N

135

Note that the states in Nop U Testg U Test; and the haltmg states have the same operation code -

0. We then define a coding function ¢ : @ x N? — Conf(N2,, ;5), which maps each ID of M to
a configuration of A. Let I = (g;,n9,n1) be an ID of M. A conﬁguratlon (I) is computed by
the following procedure. ,

begin
-« := the quiescent configuration;
proz(a(0)) :=i+10;
prog(e(0)) := (m + 16) — (i + 10) — y(g:);
prog(a(0)) ="v(q:) ;
for each j € {0,1} do
if nj = 0 and ¢; € Inc; then prog(a(0)) := prog(a(0)) + 27
else proC (e(nj)) == prog(a(nj)) + 27 ;
o(I) =
end.

For example, the configuration ((g;, 2, 0) such that ¢; € Inc; is shown in Fig. 3.

(m+16) . ,
i+10 |-Gl WL o 1 o | o | o | 2 | o
~v(g) | T2
0 1 2

Figure 3: The configuration ¢(g;,2,0) such that ¢; € Inc;.

Each configuration (1) has the number m +19 in total. The number n; kept by the counter
j (4 € {0,1}) is recorded by putting the number 2/ at the center part of the cell n; (at the
right part of the cell 0, if n; = 0 and the current state is in Inc;). The number 27 is called
a counter marker. The remaining m + 16 particles are used to record the state of M, and to
execute operations on counters.

In what follows, each state in {1,2,:--,m + 9} appearing in the left or the right part (not in
the center part) of a cell is called a signal. Signals in {10,11,---,m+ 9} are called state signals,
and are used to record the current state of M. State signals are kept by the cells 0 and —1
(they go back and forth between these cells). Signals in {2,4, 6,7} are called operation signals,
which are used to execute increment/decrement operations. Each of the four operation signals
sometimes carry a counter marker to move it to the right- or left-neighboring cell. At that time,
these signals “2”, “4”, “6”, and “7” temporarily become “3”, “5”, “8”, and “9”, respectively.
The signal “1” is a special one called an initial/final signal (it will be explained later).

We now define the local function g of A as follows.

136

1. Rules for the cases where no signal exists: -
For each z € Ny, 418, include the following rule in g.

[0, 2 0] - [0, 2 0] (1)

2. Rules for state signals:
For each z € {10,11,---,m + 9}, include the following rule in g. -

[0’075’7}."}[0’0,1‘] ' (2)

3. Rules for the increment operation:
For each j € {0,1} and c € {0,1}, include the following rules in g (© denotes the addition in
mod 2).

[2+4j, c- 2% 0o] =1 0o c- 2991 2+45] 3.1)
[2+4j, 24c-29, 0 | = [0, 2% 24+45+2] (3.2)
[244j+2, -9 0] = [2+44, % +c-299, 0] (3.3)
[0, c-2091 2445] = [2+4j, c-29, 0] (3.4)

4, Rules for the decrement operation: '

For each j € {0,1} and ¢ € {0,1}, include the following rules in g.
[4435, c-2791, 0] = | 0, c- P91 4435] (41)
[4435, 29 +c-29% 0] = [4+3+2, c 29, 0] (42
[0, c 29 443i+2] - [4+35, 2+c-29, 0] (43)
[0, c-279 4+3;] - [4+3j c- 2991 0] (44

5. Rules for waiting for the completion of the increment/decrement operation:
For each [g;,j,d, qx] € ¢ such that d € {+, —}, and for each ¢ € {0,1}, include the following
rule in g.

[i+10, (m+16)— (i+10) —y(qg) +c-29®, 0] — _
[i+10, (m+16)— (i+10) —(g)+c-2/®, 0] (5) -

6. Rules for sxmulatmg M’s state transition from a state in Inc;:
For each [g;, j,+,qx] € 6 and c € {0,1}, if g & Incjg1, then mclude the followmg rule in g.

[i+10, (m+16)— (i +10) —(q) +c- 2, v(g)] —
[k+10, (m+16) — (k+10) —v(gx) +c- 2%, (@)] (6.1)

For each [gi,7,+,qkx]) € 0 and c € {0,1}, if gx € Incj@i, then include the following rule in g.

[i+10, (m+16) — (i +10) — v(g;) +¢-27®%, ~(g;) | — |
[k+10, (m+16) — (k+10) —v(gx), 7(gk) +c-29®!] (6.2)

7. Rules for 81mulat1ng M'’s state transfmon from a state in Dec;:

For each [gi,j,—,qk] € § and ¢,¢ € {0,1}, if gx & (Inc; UIncjg1), then include the following
rule in g. _

[i+10, (m+16) —(i+10) —v(g) + - 2%, () +c -2 | —
[k410, (m+16)— (k+10) —y(gx) +c- 27+ - 29, ()] (7.1)

For each [g;, 7, —, qx] € § and ¢, € {0,1}, if gx € Inc;, then include the following rule in g.

[i+10, (m+16)—(i+10) —y(g) +¢ - 2%, y(g)+c-2 | —
. [k+10, (m+16) — (k+10) —y(qk) +¢ - 2@, y(gx) +¢ 2] (7.2)

For each [g;, j, —,qx] € § and ¢,c € {0, 1}, if g € Incjg:, then include the following rule in g.

[4410, (m+16)— (i +10) —v(q;) +¢ - 2%, ~y(g)+c-29 | —»
[K410, (m+16) — (k+10) —y(qx) + ¢+ 27, ~(ge) +¢ -29®1 | (7.3)

137

8. Rules for simulating M’s state trans1t10n from a state in Nop:
For each [g;, 4,0,¢x]} € § and ¢, € {0, 1}, if g & (Incp U Incy), then include the following rule
in g.

[i+10, (M+16)— (i +10)+c- P+ .25 0] —
[k+10, (m+16)— (k+10) Y(gk)+c-2°+c 21, ~(g)] (8.1)

For each [g;,5,0,qx] € § and c,c’ € {0,1}, if g5 € Inc; for some j, then include the following
rule in g.

[i+10, (m+16) = (i+10)+¢c-20+¢ 2191, 0] — '
[k+10, (m+16)— (k+10) +v(gx) +¢ - 2%, y(gqk) +c-27] (8.2)

9. Rules for mmulatmg M’s state transition from a state in Test;:

For each [g;,5,Z,qx] €d and c € {0 1}, if g & (Inc; U Incjg), then 1nc1ude the following rule
in g.

[i+10, (m+16)—(z+10)+21+c 20l 0] o | |
[k+10, (m+16) - (k+10) — V) +% +e 29)] (9.1)

For each [g;, j, Z, qx] € & such that and ¢ € {0,1}, if g € Inc;, then include the following rule
in g.

[2+10, (m+16)— (i4+10)+2/ +¢-2/9, 0] — ‘ _
[k+10, (m+16) — (k+10) - (gs) +c- 2%, y(gx)+27] (9.2)

For each [g;,5,Z,qx] € 6 and c € {0,1}, if ¢4 € Incjg;, then include the following rule in g.

[1+10, (m+16)—(i+10)+27+¢-2791 0] = _ N
| [k+10, (m+16) — (k+10) — v(gr) + 27, v(ge) +c- 291] (9.3)

For each [g;, j, P,qx] € 6 and c € {0,1}, if g1 & Incjg1, then include the followiné rule in g.

[i+ 10, (m+16)-—(z+10)+c 2001 0] —
[k+10, (m+16) (k+10) — v(gr) +¢- 29, ~(qx)] (9.4)

For each [g;,j, P,qx] € 6 and c € {0,1}, if g € Inc;g1, then include the following rule in g.

[$4+10, (m+16)— (i +10)+c-21® 0] — |
[k+10, (m+16) — (k+10) - v(gx), 7(gk) +c-2®' | (9.5)

10. Rules for the initial/final signal:
Include the following rules in g.

[, 0,0] = [0 0 1] - (10.1)
[0,0 1] > [10 0] (10.2)

For each ¢, € {0,1}, if go € (Incy U Inc;), then include the followi-ng rule in g.

[, (m+15)+c-2°+¢-2, 0] —
[10 (m +16) — 10 — v(qo) + - 2°+c’ 21, v(qo)] (10.3)

For each ¢,c € {0,1}, if go € Inc; for some j, then include the following rule in g.

[, (m+15)+c- 2+ -2 0] — . -
[10, (m+16) —10—~(go) +¢' - 2®1, y(go)+c-2] (10.4)

For each ¢, € {0,1}, include the following rule in g.

[(m+9), (m+16)—(m+9)+c-20+-2L, 0] — :
[1, (m+15)+c-20+¢-21 0] (10.5)

138

We can see that A correctly simulates M step by step. It is easy to verify that each rule
conserves the total number between left- and right-hand sides, and hence A is an NC-PCA.

Now, we show that the following statement holds: If M is reversible, so is A. Assume M
is reversible. It suffices to show that each of the above rules has a different right-hand side
from those of the other rules. First, we can easily verify that rules (1), (2), (3.x), (4.z), (10.1),
(10.2), and (10.5) satisfy this constraint by simply comparing their right-hand sides with other
rules. The rules (10.3), and (10.4) are also so. Because the state go does not appear as the forth
element of a quadruple in §, hence the right-hand sides of these rules never matches those of
(6.z), (7.z), (8.z), and (9.z), as well as the others.

Next, we consider the rules (5), which correspond to the quadruple [g;, j, d, gx] € & such that
d € {+,—}. The state ¢; may appear as the fourth element of the other quadruples. But, since
~(g;) > 0 (because g; € (Incy U Inc; U Decg U Decy)), the right-hand sides of the rules (5) never
match those of (6.z), (7.z), (8.z), and (9.z). '

We finally verify that rules (6.z), (7.z), (8.z), and (9.z) satisfy the reversibility constraint.
Let Inc’, Dec’, Nop/, and Test’ be the sets of states of M defined as follows.

Ind = {q | [2,J,+,qxk] € & for some j € {0,1}, and ¢; € Q}
Dec! = {qk | [q,,;,j, —,qk] € ¢ for some j € {0, 1}, and ¢; € Q}
Nop' = {a | [gi,,0,ax] € 6 for some j € {0,1}, and g; € Q)
Test' = {Qk l [qiajv 3,(114:] € ¢ for some j € {O’ 1}’3 € {Za P}7 and g; € Q}

For each ¢ € (Inc' U Dec’ U Nop') there is exactly one quadruple containing g as the fourth
element, since M is reversible (thus the quadruple is of the form [g;, j,d, ax] (¢ € @,7 € {0,1},
d € {—,0,+})). Hence, the rules in (6.z), (7.z), and (8.z) corresponding to this quadruple
have different right-hand sides from the others. Next, for each g; € Test’, there are at most
two quadruples containing g as the fourth element since M is reversible. They are of the form
(g, 7,8, ax] (@ € Q,5 € {0,1},s € {Z, P}). If there is only one, the rules in (9.x) corresponding
to this quadruple satisfy the reversibility constraint as above. In the case there are two, they
must be of the forms [g;, j, Z, qx] and [g}, j', P, qi], because M is reversible. We can see the rules
in (9.1)-(9.3), and (9.4)—(9.5) corresponding to the two rules have mutually different right-hand
sides, because the center part of the cell 0 should be different between two cases of the contents
of the counter j. They also differs from the other rules.

By above, each rule in g has different right-hand side from the others, and thus we can
conclude that if M is reversible, A is also reversible. 0

Example 3.1 Consider a deterministic RCM(2) M = (2,Q, {Z, P}, d, g0, g6) having the follow-
ing quadruples as d.

[QO, 17 27 QI] [QSa 17 +, Q4]

: [ql, 09 Z’ qﬁ] [Q4, 17 +, Q5]
[ql, 0, P7 112] [q59 1) P7 111]
[QZ’ Oa) 113]

M, performs the computation (gg,n,0) };72 (g6,0,2n) for any n(=0,1,---). An NC-RPCA A,
constructed from M by the method given in Theorem 3.1 is as follows.

A2 = (Z1N35’g2a (07 07 0))

The local function go is defined by the following set of rules, and a simulation process of
(40,2,0) 157 (46,0,4) is shown in Fig. 4.

139

Rules by (1) (z € {0,1,- 25}) Rules by (5) for [¢2,0,—,¢3] :

[0, z, 0] — [0 m, 0] [12, 7,0 e (12, 7, O

Rules by (2) (y € {10,11,---,16}): 12, 9, 0] = [12, 9, O
[0, 0, y] — [0, O, Yy Rules by (5) for [¢3,1,4,q4] :

Rules by (3.1): 13, 4, 0] — [13, 4, 0
2, 0, 0] — [0, 0, 2] 13, 5 0] — [13 5 0
2, 2, 0] =» [0, 2, 2] Rules by (5) for [¢4,1, +, 5] :
6, 0, 0] — [0, 0, 6 (14, 3, 0] — [14, 3, 0
6, 1, 0] — [0, 1, 6 14 4, 0] — [14, 4, O

Rules by (3.2): Rules by (6 1) for (3,1, +,q4]: ,
2, 1, 0] — [0, 0, 3 [13, 4, 6] — [14, 3, 6]
2, 3 0] = [0, 2, 3 [13, 5 6] — [14, 4, 6]
6, 2, 0] —- [0, O, 8 Rules by (6.1) for [q4,1,+,q5]:

6, 3, 0] - [0, 1, 8 14, 3, 6] — [15 8, 0
Rules by (3.3): 14, 4, 6] — [15, 9, 0
[3, 0, 0] — [2, 1, O Rules by (7.3) for [¢2,0,—,¢3] :

3, 2, 0] —» [2, 3 0] 12, 7, 4] — [13, 4, 6
(8, 0, 0] — [6, 2 0] 12, 7, 5] — [13, 5 6
8 1, 0] —» [6, 3, 0] 12, 9, 4] — [13, 4, 8
Rules by (3.4): 12, 9, 5] — [13, 5, 8
0, 0, 2] —» [2, 0, O Rules by (9.1) for [q0,1, Z, ¢1] :

0, 2, 2] = [2 2 0 10, 15, 0] — [11, 14, 0
0, 0, 6] — [6, 0, O 10, 16, 0] — [11, 15, O
0, 1, 6] — [6, 1, O] Rules by (9.1) for [¢1,0,Z,¢6] : -
Rules by (4.1): 11, 13, 0] — [16, 8 0]
4, 0, 0] — [0, 0, 4 11, 15, 0] — [16, 10, 0]
4, 2, 0] —» [0, 2, 4 Rules by (9 4) for [ql 0, Pq2]
7,0, 0] = [0, 0, 7 11, 12, 0] — [12, 7, 4]

7,1, 0] = [0, 1, 7 11, 14, 0] — [12, 9, 4]
Rules by (4.2): Rules by (9 4) for [¢5,1, P, q1] :

4, 1, 0] = [5 0, 0] 15, 8, 0] — [11, 12, 0]
4, 3, 0] = [5 2 0] 15, 9, 0] — [11, 13, 0]
[7, 2, 0] — [9, 0, 0] Rules by (10.1) and (10.2):

(7, 3, 0] —» [9, 1, 0] 1, 0, 0] = [0, 0, 1
Rules by (4.3): 0, 0 1] —- [1, 0, O
[0, 0, 5] — [4, 1, O] Rules by (10.3):

0, 2 5] = [4, 3, 0] 1, 22, 0] — [10, 13, 0]
0, 0, 9] = [7, 2, 0] 1, 23, 0] — [10, 14, 0]
0, 1, 9] = [7, 3, 0] 1, 24, 0] — [10, 15, 0]
Rules by (4.4): 1, 25 0] — [10, 16, 0]
0, 0, 4] — [4, 0, 0] Rules by (10.4):

0, 2, 4] — [4, 2, 0] 16, 7, 0] — [1, 22, 0
0, 0, 7] — [7, 0, 0] 16, 8 0] — [1, 23, 0
[0, 1, 7] = [7, 1, 0] 16, 9, 0] — [1 24 0]

[16, 10, 0] — [1, 25 0]

t\cell -1 0 1 2 3 4
-1 1] |24 1

0 10/15 1
1 10f |15 1

2 11)14 1

3 1] |14 1

4 12(9 1

5 19 |9 1

6 129

7 12 |9 1

8 13(4 1

9 13 |4 3

10 14| 3 3

11 14 |3 1

12 141 3 1 2

13 4] |3 1 2

14 15/ 8 1 2

15 15] |8 1 2

16 1112 1 2

17 f 12 1 2

18 12(7 1 2

19 12 |7 2

20 13/ 5 2

21 13 |5 2

22 13/ 5

23 13] |5 2

24 13| 5 2

25 3] |5 2

26 14 4 2

27 4] |4 2

28 14} 4 2

29 14] |4

30 14| 4 2
31 14] |4 2
32 14| 4 | 2
33 14 |4 2
34 15/ 9 2
35 5] |9 2
36 1113 2
37 1] |13 2
38 16| 8 2
39 6] |8 2
40 123 2

Figure 4: A simulation process of an RCM(2) M3 by an NC-RPCA A4;.

(110, 27 O)

(Qh 27 0)

(Q2, 2’ 0) .

(q3,1a0)

(q4a 1’ 1))

((J5, 1a2)
(91,1,2)
(Q27 172)

(q37 07 2)

(q4) 0'7 3)

(Q5a 0’ 4)
(qla 0? 4)

(qﬁ, Oa 4)

140

141

From Lemma 3.1 and PrOpOSition 3.1, universality of anvNC-RPCA is concluded.

Corollary 3.1 An NC-RPCA is computation-universal.

4 Concluding Remarks

In this paper, we proved that an NC-RPCA can simulate a reversible two-counter machine,
hence it is computation-universal. In [10], universality of an RCA (not necessarily number-
conserving) has been shown by simulating a one-tape reversible Turing machine by an RCA.
It is also possible to simulate a one-tape reversible Turing machine by an NC-RPCA. But, if
we employ a simulation method in which the contents of each tape square are stored in each
cell, then the quiescent state of the NC-RPCA should be (0,m,0) for some m > 0 rather than
(0,0,0).

References

[1] Albert, J., and Culik II, K., A simple universal cellular automaton and its one-way and totalistic
- version, Complex Systems, 1, 1-16 (1987).

(2] Bennett, C.H., Logical reversibility of computation, IBM J. Res. Dev., 17, 525-532 (1973).
(3] Bennett, C.H., Notes on the history of reversible computation, IBM J. Res. Dev., 32, 16-23 (1988).

[4] Feynman, R.P., Feynman Lectures on Computation (eds. A.J.G.Hey, and R.W.Allen), Perseus Books,
Reading, Mass. (1996). (F5&R 1T 7 7 £ ¥ < EHEMR 2] | BikEE (1999).)

: [5]‘ Fredkin, E., and Toffoli, T., Conservative logic, Int. J. Theoret. Phys., 21, 219-253 (1982).
[6] Goles, E., Sand pile automata, Ann. Inst. Henri Poincaré, 56, 75-90 (1992).

[7] Goles, E., and Margenstern, M., Sand pile as a universal computer, Int. J. Modern Physics C, 7,
113-122 (1996). '

[8] Imai, K., and Morita, K., A computation-universal two-dimensional 8-state triangular reversible cel-
lular automaton, Proc. of the Second Colloguium on Universal Machines and Computations, Volume
I (Metz), 90-99 (1998). (to appear in Theoret. Comput. Sci.)

[9] Margolus, N., Physics-like model of computation, Physica, 10D, 81-95 (1984).

[10] Morita, K., and Harao, M., Computation universality of one-dimensional reversible (injective) cel-
lular automata, Trans. IEICE Japan, E-72, 758-762 (1989).

[11] Morita, K., and Ueno, S., Computation-universal models of two-dimensional 16-state reversible
cellular automata, IEICE Trans. Inf. & Syst., ET5-D, 141-147 (1992).

[12] Morita, K., Computation-universality of one-dimensional one-way reversible cellular automata, In-
form. Process. Lett., 42, 325-329 (1992).

[13] Morita, K., Reversible cellular automata, (in Japanese), J. Information Processing Society of Japan,
. 35, 315-321 (1994).

[14] Morita, K., Universality of a reversible two-counter machine, Theoret. Comput. Sci., 168, 303-320
(1996). |

[15] Morita, K., and Imai, K., Self-reproduction in a reversible cellular space, Theoret. Comput. Sci.,
168, 337-366 (1996).

[16] Morita, K., Margenstern, M., and Imai, K., Universality of reversible hexagonal cellular automata,
MFCS’98 Workshop on Frontiers between Decidability and Undecidability, Brno (1998).

[17] Morita, K., Cellular automata and artificial life - Computation and life in reversible cellular automata
-, Proc. of the 6th Summer School on Complex Systems, Santiago, 1-40 (1998).

[18] Toffoli, J., Computation and construction universality of reversible cellular automata, J. Comput.
Syst. Sci., 15, 213-231 (1977).

[19] Toffoli, T., and Margolus, N., Invertible cellular automata: a review, Physica D, 45, 229-253 (1990).

