0oooo0O0oooo
1106 0 1999 0 174-185 174

PDL robots represented in VRML environment*

Zoltan Nagylaki and Géza Horvéth, 1999

Abstract |

A robot is an autonomous unit, an object of the real world. It has
the ability to move and reflect to the changes of its environment. The
PDL is one of the robot controlling languages. Its simplicity makes it

~ powerful and easy-to-use. The VRML is an 3D modelling language with
solutiens for not only static but dynamic worlds representation. It has the
ability that it can be published through Internet, which probably makes it
universal in the near future.

In this paper we discuss the way of s1mulatlon of PDL robots in
VRML environment. We consider the properties of VRML for simulation
puposes and properties of PDL to be simulated. We take the PDL
structures one by one and consider their representation. We focus on the
PDL working method and implement its ‘behavior. We show a possmle way
of representation and discuss the aspects of a more complete solution.

Introduction to PDL

PDL is an acronym for Process Description language. PDL is a
language developed for programming autonomous agents (robots) in a
dynamical way. A PDL-program consists of a set of quantities and a set of
processes operating over these quantities. Quantities' are objects
representing values. A quantity has a name, an upper and lower limit and
initial value. These are defined in the PDL-program and can never be
changed. The value of the quantity is dynamic only. After it is set to the
initial value when the PDL program starts, it may change during
execution of the program. It will stay within the bounds specified by the
upper and lower limit. Quantities can be changed by the internal dynamics
of the PDL program via the PDL statement add_value as well as by the
external dynamics via connection slots. With add_value a process can
propose the addition of a value to a quantity. At the end of a loop all
proposals are collected and added to the quantity.

Processes are objects operating over quantities. They group a
sequence of actions which must be taken one after another. TFypically
these actions include investigating and proposing new values to some

. quantities. All processes defined in a PDL-program run in parallel. This
parallelism is simulated by the PDL-engine. Processes represent the
internal dynamics of the autonomous agent.

*The research has been supported by the Hungarian National Foundation
for Scientific Research Grant OTKA T-19501and T-030140.

175

The connection slots establish a link to the real world if these
external variables represent actuators or sensors. Connection slots exists
in two types: sensor and actuator slots. A variable assigned to a sensor
slot is read by the PDL-engine and written by the robot. A variable
assigned to an actuator slot is read by the robot and written by the PDL-
engine. These variables are refreshed in every loop executed by the PDL-
engine. -
The PDL-engine is responsible for initialising, quitting, pausing and
executing a PDL program. It manages accesses and proposals to
quantities, the execution of processes and the communication with
connection slots. It starts with the initialisation phase, where the
connection slots are initialised and the init function is ‘called. Then the
PDL-loop is activated. This loop will loop through the functions: gets
sensors’ quantities, run processes (run every given process once), update
quantities (calculate the new values from the proposals) and update
connections (update linked quantities and external variables). The loop
stops after a number of loops or runs forever as it was specified. At last,
the quit function is called for normal shutdown. ,

Connectors are the communication mechanism of the PDL-engine.
The system can communicate with the real world or some other
applications (e.g. a problem solver) by connecting quantities to external
variables. These external variables are set or read by a function which is
called every loop by the PDL system. Typically, connection slots are used
for connecting sensors and actuators to the system.

Because all processes run in parallel, it is impossible to set the
value of a quantity directly. It avoids the interference of processes. The
final value of a quantity is only given at the end of a loop and can
therefore not be accessed during this loop. Therefore, the processes can
only propose changes to quantities. This can be done with the add_value
statement. During the PDL-loop every processes get the same values of
the quantities, the values were set up at the begining of the PDL-loop. At
the end of a cycle, all proposed changes are summed up and added to the
current value. If the result is higher or lower than the upper or lower
limit, the value is truncated to these limits respectively.

Introduction to VRML

- VRML is an acronym for Virtual Reality Modeling Language. VRML
is a file format for describing interactive 3D objects and worlds. VRML is
designed to be used on the Internet too. VRML is capable of representing
static and animated dynamic 3D and multimedia’ obJects with hyperlinks
to other media such as text, sounds, movies, and images. VRML supports
an extensibility model that allows new dynamic 3D objects to be defined.

A VRML file consists- of the following. major functional
components: the header, the scene graph, the prototypes, and event
routing. The contents of this file are processed for presentation and
interaction by a program known as a browser. The scene graph contains
nodes which describe objects and their properties. These properties are
fields, exposedFields, eventIns and eventOuts. All of them have a type..
The field is a classic property with a characteristical value. The

176

scenegraph contains hierarchically grouped geometry to provide an audio-
visual representation of objects, as well as nodes that participate in the
event generation and routing mechanism. Prototypes allow the set of
VRML node types to be extended by the user. Some VRML nodes generate
events in response to environmental changes or user interaction. Event
routing gives authors a mechanism, separate from the scene graph
hierarchy, through which these events can be propagated to effect changes
in other nodes. Once generated, events are sent to their routed
destinations in time order and processed by the receiving node. This
processing can change the state of the node, generate additional events, or
change the structure of the scene graph. For every node it is defined the
set of events to receive and send. These are called eventln and eventOut
respectively. The routing can be given by route statements. Each route
statement links one node’s eventOut to another node’s eventln, where
eventOut and eventIn must be the same type. A name can be assigned to a
node by DEF reserved world. These nodes can be referenced by their
names, it is achieved by the USE reserved word. The VRML has standard
types. They can be single or multiple types. Single is one value only
while multiple is a list of values. The atomic types can be string, boolean,
integer, float or a node, a pair or triple or quadraple of integer or float
and time. Some type of it is used later: SFBool, SFFloat and SFTime are
boolean, floating number and timestamp types respectively. SFVec2f and
SFRotation is a pair or quadraple. of floating numbers respectively.
MFRotation is a list of a quadraple of float numbers. MFStrmg is a list of
strings. .

The script node

Script nodes allow arbitrary, author-defined event processing. An
event received by a Script node causes the execution of a function within
a script which has the ability to send events through the normal event
routing mechanism, or bypass this mechanism and send events directly to
any node to which the Script node has a reference. Scripts can also
dynamically add or delete routes and thereby changing the event-routing
topology.

Each Script node has associated programming language code, that is
" executed to carry out the Script node's function. The script node can be
initialized and shut down. The script node has user-defined events
handled by identically named functions.

Programming language of script nodes discussed later is Javascript.
In Javascript the initialising function is initialize() and the function for
shutting down is shutdown().

Archiftect'u re

There is a world where the robot is situated, it conmsists of the
objects surrounding the robot. This world must be a VRML file. The
robot’s 3D objects must be included in this file too. Further, in this
VRML file there is a script node named pdl. This node contains the PDL-
engine e.g. the functlons implementing the PDL statements. The user’s
PDL program which is a set of Javascript functions must be placed in the

177

pdl script node after the PDL-engine’s functions.

World nodes _|World description nodes

Nodes sensed by sensors
Nodes affected by actuators
Robot nodes Nodes of robot body

~ |Sensor nodes

Actuator nodes

PDL script node Variables of sensors and actuators

' Nodes of sensors and actuators for referencing
PDL-engine -

User’s PDL program Pdl main function

Functions of processes
Other functions

| Im’plementing PDL structures in VRML

The PDL has two elementary objects, the quantities and processes,
these need to be represented. At a given quantity must store the name, the
current value, the new value, the upper and the lower limit. This requlres
a record structure with five fields. At a given process the process’s name
must be stored. These records have to be arranged into a list or an -array.
Further the value of these variables must be conserved between the steps
of the loop. VRML doesn’t support lists of user defined types. Static
variables are not supported by Javascript. The solution is to use VRML
field variables with simple types and manage them in Javascript.

Thus we make two arrays for sensor’s quantities, the first contams
the sensor’s names, the second contains the values. If we put these two
arrays next to each other we have the array we need.

field MFString - sensornames [" ", ...] -
field MFRotation = sensors 0. O 0 00.0 0 0, ...]

The values of sensors array are value of the quantity, new value, the
upper and lower limit. For referencing a sensor -first we find it in
sensornames and with its index we index the sensors. array.
Furthermore the number of sensors is necessary to know, it is stored in
the followmg field named num _sensors. '

field SFFloat num_sensors 0.0
The actuators are represented in the same way:
field MFString actuatornames [" “, ...]
field MFRotation actuators [0.0 0.0 0.0 0.0, ...]

The number of actuators:
field SFFloat num_actuators 0.0

The processes are represented using the same technique. There is an
array for processes’ names with elements of string type. The number of
processes are also stored.

178

field MFString processes . ["", ...]
field SFFloat num_processes 0.0

- There are two more-vvariables For PDL loop management. One for
storing the fixed number of PDL loops and one for the loop counter.

field SFFloat loop_counts : -1.0
field SFFloat 1loop_counter 1.0

Finally one eventln event is defined for the pdl script node.
 Whenever the PDL-loop have to be executed a boolean event has to be
sent to it. :

eventin SFBool pdi_loop

The body of the script node starts with the PDL-engine. The PDL-
engine consists of Javascript functions implementing PDL statements.

The add_sensor function create a new sensor quantity according to
the given parameters. p_sensor specifies the name of the quantity,
p_upper_limit and p_lower_limit gives the upper and lower limit of
quantity respectively. Finally p_initial_value specifies the initial value of
the quantity. The function increases the number of sensors and fills the
appropriate elements of the sensors array. :

- function add_sensor(p_sensor, p_upper_limit, p_ Iower limit,
p_initial_value)

The get_sensor_index function is a technical function for
resolving the name to an index value. ' '
function get_sensor_index(p_ sensor)

The value function gets a sensor p_sensor and returns its current
value.

function value(p_sensor)

The add_actuator function creates a new actuator quantity named
p_actuator and fills it appropriatly with the parameter values.

function add_actuator(p_ actuator, p_upper_limit, p_lower_limit,
p_initial_value)

The get_actuator_index is the pair of get sensor_index function.
function get_actuator_index(p_actuator)

The add_value function serves for modifying the value of actuator.
It gets an actuator name p_actuator and a value p_value. It adds value to
the new value of the actuator. The p_value treated as signed number.

function add_value(p__actu:ator, p_value)

The actuator_value -function gets a actuator p_actuator and
returns its current value. It is not part of standard PDL it is an obvious
extension. :

function actuator_value(p_actuator)

The add_process function registers a new process named
p_process.

179

function add_process(p_process)
The init_pdl function is for compatibility only It has no effect.
function init_pdl () '

The run_pdl function sets the variables for the loop management. It
initializes loop_counter to one and sets the loop_counts to
p_loop_counts parameter. If the loop_counts is zero the PDL- loop
never executes if it is smaller than zero then the PDL- loop runs forever.

function run_pdl (p_loop_counts)

The pdi_loop_begin function starts up the PDL-loop. First it
checks PDL-loop management variables and decides whether the PDL-
loop to be executed. Afterwards it processes the VRML objects of the
sensors and calculates the values of the sensor quantities. Finally it sets
the sensor values.

function pdi_ loop_ begln()

The pdi_loop_end function shuts down the PDL-loop. First it sets
the quantities to their new values. In the array of actuators the new value
is copied into the value if it is between the limits. If it is out of limits the
value gets the appropnate limit’s value. Afterwards every VRML objects
belonging to a given actuator have to be changed according to the
actuator’s new value. Finally, it increases the loop counter.

function pdi_ loop_end() .

The pdi_loop function implements the kernel of the PDL-loop. Its
parameters are not used, their purpose is to fit the VRML to Javascript
interface only. First it calls the pdi_loop_begin function to start the
loop. Afterwards it executes every processes defined by the user. Finally
it finishes the PDL-loop by calling the pdl_ loop_end function.

function pdi_loop(value, timestamp)

The standard named initialize function is executed when the VRML
source is loaded, hence this is the place for definition and declarations.
It simply calls the pdl_main function.

function initialize()

The pdi_main is the user’s function. He has to put here the main
part of PDL program. This function’s body consists of calls of
add_actuator, add_sensor, add_process, init_pdl and run_pdl
functions. ' .

function pdi_main()

After these functions the user’s functions follow in the script node
body. Some of these functions will be specified as processes: A process
can contain calls of value and add_value functions. i

The implementetion of connect_sensor and connect actuator PDL
statements discussed in the next scctlon

180

Sensors and actuators in VRML

After m:lplementmg the PDL-engine and prov1d1ng the environment

for PDL-program’s execution, only one task is remained. The sensors and
actuators have to be simulated. They are some objects in the VRML world
belong to the robot. They provide values to the sensor quantities and the
actuator quantities are assigned to these objects. Because of the
simulation they alsp have to be simulated. Since they differ from case to
case they cannot be modelled in a general way. We try to give a technique
how to implement various sensors and actuators in the above discussed
VRML-PDL environment. Furthermore, the VRML is a 3D modelling
language only and it does not contain every property of the reality. For
example the objects have not mass, temperature, impulse or energy. These
phys1ca1 properties also have to be simulated if a sensor or actuator
requires it. In sum, not only the robot have to be simulated but the world
too.
, These physical properties have to be modelled by VRML objects,
e.g. nodes. In the case of the sensors all information of the physical
properties modelling the reality which can have affect the sensor have to
be kriown to be able to evaluate what the sensor senses. From the results
of evalution can be calculated the current value of the sensor’s quantity.
For this evaluation these nodes have to be accessible from the pdl script
node. Therefore, all these nodes have to be defined in the script node
definition part. ' '

There are two ways for reahsmg actuators. The first is similar to
the case of sensors. That is the nodes of actuator have to make accessible.
The proposed changes of properties of nodes are carried out at the time of
writing their values in the body of script node.

The other way for realising actuators rely on the event routing
mechanism of VRML. Besides of changing the properties of nodes
directly, we send events them. It requires the appropriate definitions of
eventlns and eventOuts and the necessary route statments. These
eventOuts can be used as variables in the body of script node with
restriction. These variables are not readable but values can be assigned to
them in Javascript. In this case the proposed changes of properties of
nodes of actuators are sent by the event routing mechanism after the
script node body finishes.

These two techniques can be used together. Sometimes they can be
extended by dynamically creating new nodes and routes and deleting
existing ones. For example the new path of moving of a robot is realised
by creating a new interpolator node and creating a new route statement
from it to the robot and the old ones are deleted.

The above actuator and sensor representations are the solution
frames of pdl_loop_begin function “get sensors” part and pdl_loop_end
function “set actuators” part. In sum, implementation of sensors and
actuators requires from the user creation of the VRML nodes of them at
first, placing SFNode declarations for these nodes in the definition part of
pdl script node at second, writing the “get sensors” part at third and
writing the “set actuators” of VRML objects part at fourth. These
‘impelemtations steps are the equivalents of the connect_sensor and

181

connect_actuator pdl statements. This implementation of PDL-engine has
two disadvantages. Firstly, the source of the engine itself is not hided
from the user. Secondly, these definitions and codes overload the pdl
script node’s functionality.

We provide a solution for connect_sensor and connect_actuator pdl
statements, which solves the above problems. In this case each sensor has
a managing script node. This script node gives the current value of the
sensor when he is asked for. It means that the objects belonging to the
sensor and required for evaluatlng the value of the sensor have to be
acessible from this managlng script node and not from the pdl script node.
Further this managing script node have to know the upper and lower
~limits. It has a SFBool eventln named request and has an SFRotation
eventOut named sensor_changed which contains the sensor’s values in
the style of sensors array. The function named request calculates the
sensor’s value and sets the eventOut sensor_changed. So this
calculation task is separated from the pdl script node. The new_value
field of sensors array will be used for an_ identification number. This
identification number have to be unique among the sensors. So the
manging script node sends data and identifies who sent the event. After
these, the connect_sensor pdl statement can be implemented:

connect_sensor(<sensor-name>, <identification-number>)

The first parameter is the name of the sensor. The second is the
uniqe identification number. This pairings can be stored in a field typed
array of SFVec2f type. In this array the first column is the identification
number the second column is not the sensor name but its index in the
sensors array. For'having this index the <sensor-name> is resolved by
get_sensor_index in the body of connect_sensor. In accordance the pdl
script node has to be modified. It have to be extended by a new eventln
named set_sensor, which can receive the eventOut sensor _changed of
managing script nodes. A new boolean eventOut named request have to
add, by this the pdl script node can ask for sensor values. Some route
statments have to be added.

Route <pdl-script-node>.request To <managing- scrlpt -node>. request
Route <managing-script-node>.sensor changed To <pdl-script-
node>.set_sensor

The PDL-loop work is also modified. It receives an event that a
PDL-loop have to start. It examines the loop_counter and loop_counts
and it decides if the PDL-loop need to run. If it needs to run then it
generates request eventOuts to every sensor managing script node, and it
finishes the processing of PDL-loop. Afterwards the managing nodes
calculates the sensor.values and sends them to the pdl script node. When
it receives such an event then it copies the values to its sensors array. The
received identification number and the array for connect_sensor are for
determining the sensor quantity. The value is copied in accordance with
the upper and lower limits. After it examines if it received events from
every managing script node he had requested. It can be stored in a number
field whose value is the number of managing script nodes answered. If
everybody answered then continues the p;ocessi'ng of PDL-loop. It can be

182

decided by comparing the number of answers and the total number of

 sensors.
PDL script node
o g 5 173
1. tg‘ 3. .gl 1L 9 2. .Sl | 1. 5 . m .5'
2| g |s g :
g g | 8
/,

1. Sensor managing
- script node

2. Sensor managing
script node -

n. Sensor managing

script node

The actuators can be represented similarly. For each actuator a
managing script node is created. In such a script node the objects
belonging to a given actuator have to be made accessible.

PDL script node
| % 3 3
bo [T} oo
1. 'g 2. | & -g 4.1 8 v Zk-1. -g p
&' - g | | g <)
[« o
1. Actuator managihg 2. Actuator managing k. Actuator managing
script node script node script node
The actuator managing script node has an eventln named

set_actuator of SFRotation type. It is used in the same style of
sensor_changed eventIn in the case of sensors. Each actuator has an
identification number which have to be unique in the circle of actuator

managing script nodes. When it receives an event it checks if the value of
 the new_value field is equal to its identification number. If not there is
nothing to do. If equals, then calculates and affects the VRML objects of
actuators according to the received values. Afterwards it answers, it has
an SFBool eventOut named done, and sends it. By the identification
numbers the connect_actuator pdl statement can be defined:

connect_actuator(<actuator_name>, <identification-number>)

~ The first parameter is the name of the actuator. The second is the
uniqe identification number. This pairings can be stored similarly to the

183

connect_sensor. Further, the pdl script node has to be modified. It has
an SFRotation eventOut named actuator_changed and an SFBool eventln
named done. The pdi_loop_end function of the PDL-engine has to be
modified. The “set actuators’ VRML objects” part starts with setting the
values of the first actuator and send these values to it by finishing the pdl
script node. It receives, processes and sends a done eventOut back. When
the pdl-script node receives an eventIn done, then sets the values of the
second actuator and sends it. It repeats until event sent to every actuators.
It can be achieved by a counter similarly to the case of sensors. Finally, it
sets the loop_counter and finishes. It requires route statements for each '
actuator managmg script node:

Route <pdl-script-node>. actuator changed To <manag|ng script-
node>.set_actuator
Route <managing-script-node>.done To <pdl-script-node>.done

These route. statements implies when the pdl script node sends an
eventOut then this event arrives to every actuator managing script node.
But one of them is the real addresse only. The identification number is
required for singling it out. This broadcasting can be avoided by
dynamically creating and removing route statements. Before sending an
actuator_changed eventOut to the given actuator then we create a route to
it and create a route back from it. After it sent the done eventln back then
we removes the routes to it. This can increase performance in the case of
large number of actuators.

Example - Chicken selector robot

The Chicken selector is an industrial robot, its task is separation of
chickens arriving on the production line. This separation is done by the
chickens’ weight which is in the limits of 1 to 10 kllograms If a chicken
arrives at the end of the production line then its weight is measured. If its
weight is greater than 5 kilograms then it is dropped into the white hole.
If its weight is less than 5 kilograms then it is dropped into the black
hole. The environment of the robot consists of:
® A “chicken loader” machine, which puts a chicken on the productlon

line from time to time.
e A production line, which transfers the chicken to the scale.
e ‘A white hole for big chickens.
¢ A black hole for little chickens.

There is only one sensor, it is the scale. Their values are in the
limits of 0 to 10 which reprents the mesaured weight. 0 represents that
the scale is empty. 1 to 10 represents that there is a chicken on the scale
and the value is its weight.

There is only one actuator, it is a “chicken plck up and drop”
machine. It can have 0, 1 and 2 values. 0 is for stand by mode. If its value
is set to 1 then it picks the chicken up, drops it to the black hole and goes
back to stand by mode. If its value is set to 2 then does the same except
for dropping the chicken into the white hall.

The sensor, the actuator and the only one process dlscussed4
later are defined in the pdi_main function.

184

function pdi_main() {
init_pdl();
add_actuator('Loader, 2, 0, 0);
add_sensor('Libra’, 10, 0, 0);
- add_process('set_Loader_process’),
~ run_pdi(-1.0); ,
} .

It starts with initializing the PDL-engine. It creates an actuator for
movmg in the limits of 0 and 2 and defaults to 0. It creates a sensor for
Libra in the limits of 0 and 10 and defaults to 0. It creates a process for
controlling the behaviour of the robot. Finally it starts the PDL-engine
with unlimited number of loops. The function implementing the process:

function set_Loader _process() {
if (value(' Libra')>0) {
if (value(' Libra')<=5) {
add_value(' Loader',1-actuator_value(' Loader))

}

else ,
add value(Loader',2-actuator value(Loader))
}

else
‘add_value(' Loader’, 0- actuator value(Loader))

}

_ This process checks the value of the sensor Libra at first. If its
value is smaller than O then it actuator Loader to 0 for stand by mode.
Since the values of actuators can not be set directly, signed values can be
added to them only. Thus setting to 0 can be reached by adding the value
of zero minus its current value to it. By the same technique is used for
setting the actuator value to 1 or 2. If the value of sensor Libra is smaller
or equal to 5 then we set actuator Loader to 1. It results that the chicken
is dropped into the black hole. If the sensor value is greater than 5 then
the actuator is set to 2 and the chicken arrives into the white-hall.

The representatlon of the sensor and the actuator involves the
definitions placed in the pdl script node. The pdl script node receives the .
value of the sensor from the single sensor managing node named Prog.
The pdl script node sends the actuator value to the single actuator
managing script node named Javsc2. There are two route statements for
establishing this event change.

ROUTE Prog.Ch_w TO PDL.Ping
ROUTE PDL.Acts TO Prog.Javsc2

Furthermore the pdl script node sets the sensor quantmes to the
values just received from the sensor managmg script mode. It is in an
array of float elements (with only one element in our case). Afterwards it
runs the PDL loop and copies the actuator quantities to the eventOut
which is sent to the actuator managing script node. -

eventin MFFloat Ping
eventOut MFFloat Acts

185

function Ping(.val) {

for(var i=1; (i<=num senéors) |++){
sensors[t][O]—val[l 1];
sensorsfi][1]=valli-1];

}

pdi_loop();

for(var i=1; (i<=num_actuators); |++)
Acts[i-1]=actuators[i][0];

As it can be seen the example follows the implementation method

discussed in the second half of the ,,Sensors and actuators in VRML”
above. Since it has one sensor and onme actuator only, therefore it
simplifies that model. There is no need for identifying the events so it
does not broadcast and loads the browser unnecessarily. It does not need
to consider the actuator managing scrlpt nodes one by one, and it doesn’ t
need to wait for every sensor managing node to send their values

References

1.

Carey, R., Bell, G., Marrin, C.: ISO/IEC 14772-1:1997, Virtual Reahfy Modeling
Language, (VRM]_,97) San Diego SuperComputing (SDSC), 1997
http://www.vrml.org/Specifications/ VRML97

Carey, R., Bell, G.: The Annotated VRML 2.0 Réference Manual
ISBN: 0-201-41974-2

. Dewson, T., Irving A.D., Terdik, Gy.: Estimating of Volterra kemnels in case of moment

hierarchy and orthogonal representation, Comput. Math. Appl. 33 (1997), No 4, pp. 5-14.

Gal, Z., Korcsolay, Zs., Terdik, Gy.: UDNET: An Informatics Network at Universitas of _
Debrecen, Proc. EUNIS Congr. 95, Trend in Academic Information Systems in Europe,
pp. 139-145.

Igléi, E., Terdik, Gy.: Bilinear Modelling of Chandler Wobble, Theory of Portablhty and
its Applications, v. 44 (1997), 2, pp. 398-400

Inniss, M., Parent, J. Engelen, S.: Autonomous Systems 'Robot Football' Report, Vrije
Universiteit Brussel, January 1998.

Spenneberg, D., Schlottmann, E., Hopfhner, T., Christaller, T.: PDL Programming Manual,
GMD Working Paper Nr. 1082, June 1997

Lewis, M.: Building 3D Virtual Environments, course of The Ohio State University,
Course Number: Art 894Z12, Winter Quarter, 1998
http:/Awww.cgrg.ohio-state.edu/mlewis/VRML/Class/syl.html

Nadeau, Dave., Moreland, J., Heck, M.: Introduction to VRML 2.0, On-Line Course
Materials, The VRML 2.0 course notes from SIGGRAPH 96.
http://www.sdsc.edu./siggraph96vrml/

10. San Diego Supercomputing Group, The Virtual Reality Modelmg Language Version 2.0,

ISO/IEC CD 14772 August 4, 1996
http://vrml.sgi.com/moving-worlds/spec/part1/

