goooboooobgon
1106 0 1999 O 37-49 37

Domain-Free A\y-Calculus for Polymorphism and
Call-by-Value*

Ken-etsu Fujita (BEH &)
Kyushu Institute of Technology, lizuka 820-8502, Japan
fujiken@dumbo.ai.kyutech.ac.jp

?

Abstract

We introduce a domain-free Au-calculus of call-by-value as a short-hand for the
second order Church-style. Our motivation comes from the observation that in
Curry-style polymorphic calculi, control operators such as callcc or u-operators
cannot, in general, treat the terms placed on the control operator’s left. Following
the continuation semantics, we also discuss the notion of values in classical system,
and propose an extended form of values. It is shown that the CPS- tra.nslatmn is
sound with respect to domain-free A2 (2nd-order A-calculus).

1 Introduction

On the basis of the Curry-Howard-De Bruijn isomorphism [How80], proof reductions can
be regarded as computational rules, and the algorithmic contents of proofs can be used to
obtain correct programs that satisfy logical specifications. The computational meaning of
proofs has been investigated in a wide range of fields, including not only intuitionistic logic
but also classical logic and modal logic [Koba97]. In the area of classical logic, there have
been a number of noteworthy investigations including Griffin[Grif90], Murthy[Murt91],
Parigot[Pari92], Berardi&Barbanera|BB93], Rehof&Sgrensen[RS94], de Groote[Groo95)
and Ong[Ong96]. As far as we know, however, polymorphic call-by-value calculus is less
studied from the viewpoint of classical logic. In this paper, we introduce a domain-
free Au-calculus of call-by-value as a short-hand for the second order Church-style. Our
motivation comes from the observation that in Curry-style polymorphic calculi, control
operators such as callcc or p-operators cannot, in general, treat the terms placed on
the control operator’s left. Following the continuation semantics, we also discuss the
notion of values in classical system, and propose an extended form of values. It is shown
that the CPS-translation is sound with respect to domain-free A2 (System F of Girard,
Polymorphic calculus of Reynolds). We observe that the inverse of the soundness does not
hold, and that adding L-reduction in Ong&Stewart [0S97] breaks down the soundness
of the CPS-translation. As one of by-products, it can be obtained that the second order
call-by-value Ay-calculus in domain-free style has the strong normalization property.

*This is a revised version of Ezplicitly Typed Ap-Calculus for Polymorphism and Call-by- Value pre-
sented at the 4th International Conference Typed Lambda Calculi and Applications (TLCA '99), L’ Aquila,
Italy, April 1999. :

38

2 Style of (Typed) A-Terms; Curry-Style, Church-
Style, and Domain-free | :

There are well-known two style of typed lambda calculi, i.e., Curry-style and Church-
style. Those styles are also called implicitly typed and explicitly typed, respectively.
With respect to the simply typed lambda calculus A~, there is a forgetful map from
A~ & la Church to & la Curry, and conversely, well-typed terms in A~-Curry can be
lifted to well-typed terms in A~-Church [Bare92]. In the case of ML [Mil78], there also
exists implicitly typed and explicitly typed systems, and they are essentially equivalent
[HM93]. Hence, the implicitly typed system serves as a short-hand for the explicitly
typed system. However, the equivalence between Curry-style and Church-style does not
always hold for complex systems. Parigot [Pari92] introduced Au-calculus in Curry-style
as second order classical logic although Au-calculus & la Church was also given [Pari97].
“An intrinsically classical reduction is called the structural reduction that is a kind of
permutative proof reductions in Prawitz [Praw71] or the so-called commutative cut. The
Mp-calculus of Parigot is now known as a call-by-name system. If we construct a call-
by-value Ap-calculus, then the Curry-style cannot work for a consistent system. In a
call-by-value system of Ay, we can adopt a certain permutative reduction [Pari92, 0S97],
called the symmetric structural reduction, to manage the terms placed on the pu-operator’s
left. However, the symmetric structural proof reduction, in general, violates the subject
reduction property in the Curry-style. Consider the following figure in which erasing type
information of polymorphic terms makes it possible to apply the symmetric structural
reduction uncorrectly:

M110'1 ~M12(_71 v

[oM; = L;of V:(Vto) — 0n My Veoy D)
‘/17\41 109
M: Loy [](VM,) : L; 05
) /.LCMM 01
V:(Vtoy) > o2 poM:Vto, M[V = o] : L;08
V(pa.M) : o9 > pa.M[V = a] : oy

where M[V = a] denotes a term obtained by replacing each subterm of the form [a]V
in M with [a](VN). Here, when M is in the form of [o](Az; - z,.M') and the type o}
depends on type of some z; (1 < i < n), the eigenvariable condition of (VI)* is broken
down. For instance,

Az (Af.(Az122.22)(f5)(f(Az.2))) (e [a](Ay.p8.[a](Mv.y)))
has type t — t — ¢. But this term is reduced to Az.z by the use of the symmetric struc-
tural reduction. Let P = Af.(Az122.22)(f2)(f(Az.z)) and @ = pa.[a](My.p0.[a](Av.y)).
Then similarly

Ag.(Az.9(PQx))(Az.g(PQx)) : (Vt'.(= t) >t —>t
is reduced to A\g.(Az.g(zz))(Az.g(zx)). On the other hand, the case pa. M of pa.[a](Av.uf.[a](Az.
is a special case where the symmetric structural reduction is applicable even to polymor-
phic pua.M, and then, for example, '

Az (Af-(Az122.22)(f2)(f(A3.7))) (po.[o](Av.pp.[e](Az.2))) 11— ¢
is reduced to Az.z. This kind of phenomenon was first discovered by Harper & Lillib-
ridge [HL91] as a counterexample for ML with callcc. From the viewpoint of classical
proof reductions, the fatal defect can be explained such that in Apu-calculus & la Curry
(2nd-order classical logic), an application of the symmetric structural reduction, in gen-
eral, breaks down the eigenvariable condition of polymorphic generalization, and then the

39

terms placed on the polymorphic p-operator’s left cannot be managed by the symmetric
structural reduction. In terms of explicit polymorphism, in other words, an evaluation
under A-abstractions cannot be allowed without restricting At.M to At.V [HL93a]. Even
in the Damas-Milner style [DM82] (implicitly typed ML) plus control operators, a similar
defect still happens under a ML-like call-by-value [HL93a, HL93b]. To avoid such a prob-
lem in implicitly typed ML with control operators, one can adopt an #-like expansion for
polymorphic control operators [Fuji98], such that
let f=pa.M; in My > let f=Az.pa.Mi[a < 7] in Mg, ‘

where each subterm in the form of [a](Ay.w) in M; is replaced with [a](\y.w)z.

Another natural way to avoid the problem is to take a domain-free system introduced
by Barthe&Sgrensen [BS97], see the following table:

| Style \ Order | finitely typed [2nd order typed]

Church-style | \z:0.M At.M, Mo
Domain-free | \z.M At.M, Mo
Curry-style | \z.M M

In the above example, the term @ is a polymorphic term, and this type becomes V¢.(t — ¢).
‘Here, the explicitly typed term as a form of a value, V = At.Q is used for 3,-reductions,
such that
A (A (Az1z2.22) (ftz)(f(t =) Az 2))) Vit =t — ¢t

is now reduced to Avz.z. In the next section, under the call-by-value strategy we introduce
a domain-free Au-calculus, which is regarded as a short-hand for the complete Church-
style. To obtain the results in this paper, it is enough to consider a system such that
At.M is represented simply as AM such as a lifting and Mo as M(), and (AM)() is
reduced to M. A similar observation is given for let-polymorphism by name in Leroy
[Lero93]. The annotations A and () for polymorphic terms play a role of choosing an
-appropriate computation under call-by-value. However, from the viewpoint of logic, a
domain-free Ay-calculus is considered here rather than such a simplified polymorphism
using the annotations.

On the other hand, Harper&Lillibridge [HL93a] extensively studied explicit polymor-
phism and CPS-conversion for F,, with callcc. The call-by-value system Ay i introduced
in section 3 can be regarded as a meaningful simplification of the second order fragment
of their system.

3 JAyp~-Calculus in Domain-Free Style

Following the observation in the previous section, we introduce a domain-free A\y-calculus
of call-by-value for polymorphism. Terms in domam free style have domain-free A-abstraction
~ [BS97].
The types o are defined from type variables ¢ and a type constcmt 1. We have a
- set of term variables z,y,z,---, and a set of names (that will be called continuation
variables later) a, 3, - -. The type assumptions are defined as usual, and A is used for a
set of name-indexed types. The terms M are defined as term variables, A-abstractions,
applications, p-abstractions, or named terms. Since we have sorted variables, i.e., term
variable z and type variable ¢, we have explicit distinction between terms and types, and
then A-abstraction is used for both term variable and type variable abstractions.

From a logical viewpoint, the typing rule (LE) for po.M is regarded as a classical
inference rule such that infer I', =A + pa.M : ¢ from I',=A,a: =0 F M : L. The

40

typing rule (LI) for [@]M can be considered as a special case of L-introduction by the
use of (— E). On the basis of the continuation semantics in the next section, a name
can be interpreted as a continuation variable. In the rule (LI), the continuation variable
« appears only in the function-position, but not in the argument-position. Here, the
negative assumption a:: - corresponding to o of (LI) can be discharged only by (LE).
This style of proofs consisting of the special case of L-introduction is called a regular
proof in Andou [Ando95]. The notion of values is introduced below as an extended
form; the class of values is closed under both value-substitutions induced by (8,) and left
and right context-replacements induced by (pu,.), as defined later. The definition of the
reduction rules is given below under call-by-value. In particular, the classical reductions
(pm,-,) below can be explained as a logical permutative reduction in the sense of Prawitz
[Praw71] and Andou [Ando95]. Here, in the reduction of (pa.M)N > pa.Mla < NJ,
since both type of pa.M and type of each subterm M’ with the form [o]M’ in M can be
considered as members of the segments ending with the type of ua.M, the application
of (= E,VE) is shifted up to each occurrence M’, and then My < N] (each [o]M’ is
replaced with [a](M’N)) is obtained. This reduction is also called a structural reduction
in Parigot [Pari92]. On the other hand, since a term of the form pa.M is not regarded
as a value, (A\r.M;)(ua.M,) will not be a S-contractum, but will be a contractum of (z)
below, which can be considered as a symmetric structural reduction. FV (M) stands for
the set of free variables in M, and FN(M) for the set of free names in M.

)\V,LI,Z
Types ou=t|L|o—o|Vto
Type Assumptions I':=()|T,z:0 Axz=()]| Ao

Terms M =z | Az.M | MM | M0.M | Mo | pa.M | [a]M
Type Assignment
F'Fz:T(z);A
't M :01 - 09 A FFMQ:al;A(
' MM, :o09; A
I‘}-M‘v’talA
: VE
Tk Mo :o1[t == 09]; A (VE)
'+M:0;A
oM : LA 0

where (VI)* denotes the eigenvariable condition.

Values V =z | Ae.M | M.M | [o]M

Term reductions ’ .

(8y). Az.M)V > Mz :=V]; (n,) deVe >V ifx g FV(V);

(B) (Mt.M)o > M[t = o], () (pa.M)o > pa.Mla < ol;

(i) (po.My)Ms > pa.Mi[a < Ms; () V(pa.M) > pa.M[V = o

(rn) [a)(uB.V) > V|3 :=al; (un) pofe)M > M if a g FN(M),

where the term M[a < N] denotes a term obtained by M replacing each subterm of the

form [o]M’ in M with [a](M'N). That is, the terms (context) placed on pa.M’s right is

replaced in an argument position of M’ in [a]M’. In turn, the term M[V = a] denotes a

term obtained by M replacing each subterm of the form [a]|M' in M with [a](VM').
Values are reduced to simpler values by (7,), eta-reduction and (rn), renaming rules,

and those rules are restricted to values, whose condition is necessary to establish a sound

CPS-translation in section 4. We note that as observed in Ong&Stewart [0S97], there are

closed normal forms which are not values, called canonical forms, e.g., pe.[a](Az.p8.[a](Av.2)).

Those terms can be reduced by (S3) in [Pari93] or (¢, in [OS97], but in this case,

fun

Dyx:oF M :09;A I
I'FXz.M:01 — 09, A (=)
'-M:0;A
' AX.M :Vto; A
'EM:1;A0°
T'kpaM:o;A

—-)E)

(VI)*

z (L)

(LE)

41

(po.M)(pB.N) is reduced in the two ways (not confluent). Note also that the failure of
operational extensionality for uPCF, is demonstrated in [0S97]. In fact, C}f,’;, becomes
admissible under the eta-reduction and (u,). Here, however a term in the form of pa.M
is not a value, and we have the value-restricted (7,) rather than the eta-reduction itself.

We denote >, by the one-step reduction induced by >. We write =, for the reflexive,
symmetric, transitive closure of »,. The notations such as »g, bg,, t>73f, Dn» =pn, €c. are
defined as usual, and > denotes i-step (-reductions (i > 0).

Proposition 1 (Subject Reduction Property for A\yu) If we have T' - M, : o; A
and M; >, My in Ay, then T My : 03 A in Ay p.

Proof. By induction on the derivation of M; >, M. Note that in Aypu, typing rules
are uniquely determined depending on the shape of terms.]
The well-known type erasure M° is defined as follows:
(z)° ==z (Az.M)° = \z.M°; (M1 My)° = M Ms;
(M.M)° = M°; (Mo)° = M°; (no.M)° = pa.M°; ([a]M)° = [a] M°.
Then it can be seen that the typing relation is preserved between Ay and implicitly
typed Ap: '
(i) f wehave I' - M : 6; A in Ayy, then I' - M® : 0; A in implicit Ap.
(ii) If we have I' = M, : 0; A in implicit Ay, then there exists M, such that M; = Mg and
' Ms:0;A in Ay p.
The set of types inhabited by terms coincides between implicit Ay and Ay p. However,
erasing type information makes much more reductions possible, such as np-reduction of the
erasure in Mitchell [Mit88], and the subject reduction property for M° is broken down,
for example, a counterexample in section 2.

4 CPS-Translation for Xy u-Calculus

To provide the CPS-translation, we define a domain-free A2 (see also [BS97]) as the
intuitionistic fragment of Ay u. Here, besides A-variables z,y, 2, - - used in A-calculus as
usual, the system A2 has the distinguished variables a, 3, - - - called continuation variables.
Reduction rules in domain-free A2 are also defined as usual under call-by-name. The term
with the form [a]M (value) will be interpreted as Ak.k(Ma), where the representation of
Ma is consumed by the continuation %, such as the case of A-abstraction. The translation
from Ay to domain-free A2, with an auxiliary function ¥ for values, comes from Plotkin
[Plot75).

Definition 1 (CPS-Translation) T = \k.kx; Az.M = Me.k(\z.M);

MMy = M. M;(Am.My(An.mnk)); MM = Me.k(\t.D);

Mo = \e.M(Am.mok); pa.M = a.M(A\z.z); oM = Me.k(Ma).
U(z)=2; I(\z.M)=Iz.M; T(At.M) = M. M; U([a]M) = Ma.
19 =t¢; (01 = 09)¢ = 0 — ——0d; - (Yt.o)? =Vt.onol.

According to the continuation semantics of Meyer&Wand [MW85], our definition of the
CPS-translation can be read as follows: If we have a variable z, then the value z is passed
~ on to the continuation k. In the case of a A-abstraction, a certain function that will take
two arguments is passed on to the continuation k. If we have a term with a continuation
variable o, then a certain function with the argument « is passed on to the continuation
k, where the variable a will be substituted by a continuation. Here, it would be natural

42

that a value is regarded as the term that is mapped by ¥ to some term consumed by the
continuation k, since the continuation is the context in which a term is evaluated and then
to which the value is sent. Our notion of values as an extended form is derived following
this observation. - :

Lemma 1 Let = denote the definitional equality of the CPS-translation.

(i) For any term M where k € FV(M), \e.Mk vs M.

(ii) For any value V, V = Ak.k¥(V).

(iii) For any term M, value V, and type o, we have Mz :=V] = Mz := (V)] and
Mt := o] = M[t == 01).

The above lemma can be proved by straightforward induction. On the basis of the CPS-
translation, the left and right context-replacements Mo < M} and M[V = a] can be
interpreted as the following substitutions for continuation variables, respectively.

Lemma 2 Let M contain i _free occurrences of [o] where i > 0. Then we have that
Mla < Mi] v Mo := dm.M;(An.mna)] and Mla <= o] by Mla := Am.mo‘a].

Proof. By induction on the structure of M. We show only the following case:
Case of [a]M, where M contains i free occurrences of [a:
([o]M)[a < M| = Mk.k((AK .M[a < Mi]dm.M(dn.mnk'))a)
bg Ae.k(M[o < Mi|dm.My(An.mna))
bl MNe.k(Mla := Am.My(An.mna)|(Am.Mi(An.mna)))
= [o]M][a := Am.M;(An.mna)]. i

Lemma 3 For any term M and value V, MV = o v% Mo = An.¥(V)nal,
where M contains i free occurrences of [o].

Proof. By induction on the structure of M. Only the case of [a]M is shown, where
M contains i-occurrences of [a]:
([o]M)[V = o] = Mek((ME V(Am.M[V = of(An.mnk")))a)
bg Mk E((MK K T(V))(Am.M[V = of(An.mna)))
>3 Mo k(M[V = o] (.9 (V)na)) o¥ Mek(M[a := An.¥(V)na](An.¥(V)na))
= [o]M[a := Mn.¥(V)nal. O

Lemma 4 If we have M >, N in Ay, then M =g, N in domain-free 2.

Proof. By induction on the derivation of M >, N. We show some of the cases:

(8,) Az M)V > Mz :=V]:
.MV = Mey.(Mk ko(Az.M))(Am.V (An.mnk;))
% Ak .V (An.(Az.M)nk:)
b5 M. V(Ao MEr) = Mo (Mo k®(V)) Az Tk)
D%)\klﬂ[w = ‘I’(V)]kl =)\klM[iL‘ = ‘/]kl U] M[.’I) = V]
() Ae.VzoV:
Xt Vz = Mo k(Qz.(OK .(V(Am.Z(An.mnk')))))
b2 Ak k(A2 (MK .(V(dm.mzk')))) = e k(Oz.(AK'.(AE" K" T(V))(Am.mzk')))
p% Me.k(Az. (K. ¥(V)zk'))
by Mo k(A2 B(V)z) by M ET(V) = V.

43

(ﬂt) ()\t M CT >M:
(A\t.M)o = Mk.(\k' K (M. 7)) (Am.mo'k)
% Ak.(At.M)o%k > Mk M[t := 09k bg Mt := o].
() (pa.M)o > po.Ma < o]:
(pa.M)o = Me.(\a.M(\z.2))(Am.mok) ‘
bg Ao Mo := Am.mota)(Az.z) =4 da. Mo < o](Az.z) = pa.M[a < o).
(4r) (po. M)N b pa.Mla <= NJ:
(pa. M)N = Mk.(Aa.M(Az.z))(Am.N(An.mnk))
bg Ak.M[a := Am.N(An.mnk)](\z.2) = da.M|a := Am.N(An.mna)|(Az.z)
=g Aa.M[a < N](Az.z) = pa.Ma < NJ.
() V(paM) > pa. MV = of:
Vpa.M) = Me.V(dm.(Aa.M(z.z))(An.mnk))
bs A.(AE KT (V) (Am.Ma := An.mnk](\z.7))
>3 M. Mo = An.¥(V)nk](Az.z) = Aa.M[a := An.¥(V)na](\z.7)
=5 A\a.M[V = o](Az.x) = pa.M[V = q.
(rn) [o](uB.V)> V]S = o]
[a](uB.V) = Me.k((A3.V(Az.2))a)
>g Ak.E(V[G = a]()\x 7)) = A E((NE EO(V)[B := o)) Az.2))
b5 AekU(V)[8 = a] = V[= a].
_ (p=n) pecfa 1M > M:
ua: [a]M Aa.(Mek(Ma))(Az.z)
[>B Ma.Ma vg M. : a
Now, we have confirmed the soundness of the translation in the sense that equivalent
Avp-terms are translated into equivalent domain-free A\2-terms. This property essentially
holds for untyped terms.

Proposition 2 (Soundness of the CPS-Translation) If we have M =, N in Ayu,
~ then then M =g, N in domain-free \2.

The translation logically establishes the double negation translation of Kuroda. For a
set of name-indexed formulae A, we define (6, A)? as a:—0?, AY.

Proposition 3 If \yu hasT'+ M : 0; A, then X2 has T9, A+ M : =01,

Proof. By induction on the derivation. m]
From the consistency of domain-free A2, it is derived that Av i is consistent in the sense
that there is no closed term M such thafr FM:Ll;in Ayp.

With respect to Proposition 2, it is known that the implication is, in general, not re-
versible. The counterexample in [Plot75] is not well-typed. Even though we consider well-
typed Ay p-terms, the completeness does not hold for Ay p: If we have My = (Az.z)(zy)
and My = zy in Ayp, then My =g, zy =g, Mz in A2, but M; #, M, in A\yu. Note that
in this counterexample, if one excluded n-reduction, then My #5 M,. Following Hofmann
[Hof95], the rewriting rules of Ay u are weak from the viewpoint of the semantics, since
Ident, (A\z.2)M = M is necessary in this casc.

Accord111g to Ongé&Stewart [0S97], their call-by-value Au—caluulua has more reduction
rules with the help of type annotation; L-reduction: :

VA= ML o upo ML+ if o # L.
Here, assume that we have Ny = (Az.z)(z([a]y)) and N; = z([a]y), such that 2: L — o, y:
o Nij:o;0% (i = 1,2) where 0 # L in Ayu. Then Ny and N, are reduced to N3 = pf.[o]y
by the use of L-reduction. Now, we have Ny =3, z(ay) =z, Nz in A2, but N3 =5 M\b.ay

44

in A2. This example means that the soundness of the CPS-translation is broken down
for Ayp with L-reduction, even in the absence of n-reduction. However, on the basis of
the correspondence between u-operator and Felleisen’s C-operator [FFKD86] such that
wa.M = C(ha.M) and [0]M = aM, one obtains that z(ay) =¢ (M\z.A(z))(ay) =c
A(oy) =¢ C(\B.ay) in the equational theory Ac¢ [Hof95]. From the naive observation,
Hofmann’s categorical models for A¢ would also work for an equational version of call-by-
value Ap-calculus. :

Let g, be one-step >, consisting of (8.), (81), (), (u-n), or (rn). Let by be one-step
>, consisting of (), (tr), or (). Following the proof of lemma 2, if M >gpr Moa, then
M—Ibzgn M,. On the one hand, each >,-step from M does not simply induce B-steps from
M, ie., f-conversion may be used. To demonstrate the strong normalization for well-
typed Ay pu-terms, it is enough to construct an infinite reduction path from M if M has an
infinite reduction path. In the case of >, following lemmata 2 and 3, the CPS-translated
terms without the S-conversion still have enough (-, n-redexes to construct an infinite
réduction. For instance, in the case M of (V(ua.M))N, we have M, >, My >, M3, where
M, = (ua.M[V = o])N and Mz = pa.M[V = o]la < N]. Here, M; can be reduced as
follows:

M v§ Na = Mk.(Aa.Mid6;)(Am.N(An.mnk)) b5 N3 = Ao Midf:0,,
where id = Az.z, 8; = [a := M. ¥(V)na], and 8, = [@ := Am.N(An.mna)]. We now have
M; % Ny and M > N3. Let [N/a] be either [N = o] or [a < N]..

Lemma 5 (i) If My by My by Ms, then My >5 Novd N3 for some A2-terms Np and Ns
such that My vj Ny and Mz >3 Ns.

(ii) Let o € FN(N). If Mi[N/a]vgye Ma, then M6y >4, Noba for some Ay p-term Na and
substitutions 0, and 0, such that Mi[N/o] >} Mi6; and My >§ Nabs.

Proof. Let 07 be [y := Am.N(n.mny)], [y := M. (V)ny], or [y := Am.mo?y] for
some N, V, and o. Let id = \z.z. :
(i) To construct an infinite >g-path from M if we have an infinite >,-path from M, it
is enough to verify that we have an infinite >g-path from M in the case where one by-
reduction induces a new by -redex. Therefore, by induction on the derivations of &, we
show that if M;[N/2]>sMa, then Mi6>§ Ny for some X2-term N such that M;[IV/ 2]>5 M6
and M; > N. ‘
([o](uB.M))[er &= N] ot [o](u.-M[a <= N][3 <= N]):
([e](uB.M))[e <= N] o [(uf.M)07
bk k(Mid0?05) = Me.k(Mid] := o]0%) where 85 = [:= Am.N(An.mna)].
([a](uB-M)V = o] >y [e](uf.M[V = o[V = f]):
[l(uB MV = ol > (o) (uB M5
pgAk.k(Mid[0 := a67).
(V)] <= pf.M] by [a](uB.M[(V]a < pb.M]) = 8]):
([a]V)]e < pb.M] v% [a]V O
ba Ak E((Am.uB-M(An.mna))(¥(V)07)) bg Mek(uf.M(An.(¥ (V)67)na))
b5\ k(Midd2) where 0 = [:= Mn.(¥(V)0%)na]. Moreover, Nek(Midd3) = Me.k(Midb5 67')
where 62 = [3 1= M. ¥(V'na], V' = V]a := o], and 6" = [0/ := dm.pf.M(An.mna)].

In the above cases, the symbol A3 in Ak.k(\3.M) obtained from uf3.M is disappearcd by
executing >5. However, this gives no defects to have an infinite >g-path, since when the
u0.M corresponding to the disappeared A performs infinite >, the arguments must be

45

provided infinitely by other o,;, and the infinite >, induce infinite >g-steps. Morcover,
the redex of renaming, [a](uB.M[N/2]) can be simulated by >g-steps in Ny.

(ii) By induction on the derivation of >4,,. We show some of the cases.
(8) (a](Aa-M))[a < V]o, [a](Mla < V][z = V]):
([e](Az.M))[a < V] [a](Az.M)0F = Me.k((NK K (2. M))a)8?
>k k((Am.V (An.mna))(Az.MO3)) g Xe.b(V(An.(Az. M6)na))
Ak k(V (A2 M6fa)) o% \k.k(M[z == ¥(V)]67a)
= Ak k(M[z := V]#§a) = Me.k(M'[z = V)65 a) = [o]M'[z := V]85 where M’ = M| :
o/) and 65 = [= dm.V(A\n.mna)].
(8s) ([e]V)[Az.M = o] b, [o](M[z := (V[Az.M = a]))):
([V)[Az. M = o] o5 [o]VOF = Ae.k(V)b
DAk k((An. W (Az. M)na)(¥(V)0%)) g Mek(Y(Az. M) (T(V)05)a)
= M. k(A2 M)(¥(V)69)a) g Mo k((M]z = U(V)]65)a)
= Ak.k((M[z :=V]07)a) = [a]M[z := V']05 where V' = V[a := o/] and 65 = [0/ =
AU (Az.M)nal.
(80) ([e)(A-M))ler <= o] [al(M[e = o]t i= o]):
([(At.M))[o <= o] bf [o] (X M)OF = Ak k(MK K (M. M))a)6
>a Ak E(Am.mota)(M. MOY)) bg Mo k(M. M6O)o40)
>aXk k(M := 0%0%)a) = Me.k((M[t := 0]0%)a)
= [a]M'[t := 0]05" where M" = M| := o/] and 65" = [/ := dm.o%).
(rn) ([a)(pB.V))[N/4] where a # ~: B
([d(uB.V)IN/7] g [0(uB.V)0] = Me.k((A3.Vid)a)d]
EAEE((V)] = a])a)d] = V3 := a]f].
() ([0](Az.Vx))[N/v] where z & FV(V):
(la](Az.Vz))[N/A] >} [e](Az.Vz)6] o, [a]V 7.

Morcover, we have that v
¥(Az.Vir)eh, (V) and ¥([a](u6.V)) of B(V]B := a]). -0

Lemma 6 If there exits an infinite v,-reduction path from \yu-term M, then M also
has an infinite >g,-reduction path.

Proof. From Lemma 5 and the proof of Lemma 4. ']
From Proposition 3, Lemma 6 and the fact that domain-free A2 is strongly normalizing
[BS97], the strong normalization property for Ay u can be obtained.

~ Proposition 4 (Strong Normalization Property for Avp) Any well-typed Ay p-term
is strongly normalizable.

It is observed [Fuji97] that the straightforward use of the Tait&Martin-Lof parallel re-
duction [Taka89] could not work for proving the Church-Rosser property for Ay including
renaming rule, contrary to the comments on Theorem 2.5 in [0S97]. Even though one
defines parallel reduction > as usual, we cannot establish that if M; > N; (i = 1,2),
then Mi[a < M) > Nifa < No; fact (iv) in the proof of Theorem 1 in [Pari92].

Lemma 7 (Weak Church-Rosser Property for \ypu) If Mv, M and M, M,, then
M, > N and M- DZ N for some N.

46

From Proposition 4 and Lemma 7, we can obtain the Church-Rosser property using New-
man’s lemma [Bare84].

Proposition 5 (Church-Rosser Theorem) Ayu has the Church-Rosser property for
well-typed terms. : : '

5 Comparison with Related Work and Concluding
Remarks

We briefly compare Agm (ML+p, see [Fuji99]) with ML [Mil78, DM82] together with
callcc [HDM93]. In ML, the class of type variables is partitioned into two subclasses,
i.e., the applicative and the imperative type variables. The typc of callcc is declared with
imperative type variables to guarantee the soundness of the type inference. On the basis
of the classification, the typing rule for let-expression is given such that if the let-bound
expression is not a value, then generalization is allowed only for applicative type variables;
otherwise generalization is possible with no restriction. There is a simple translation from
the ML-programs to the Ay,-terms, such that the two subclasses of type variables in ML
are degenerated into a single class: [callcc(M)] = pa.[o]([M](Az.[a]z));

[throw M N| = pf.[M][N] where {3 is fresh.
However, there are some distinctions; according to Harper et al. [HDM93], the program:

let f=callcc(Mk.Az.throw k (\v.z)) in (Az120.22)(f 1)(f true)
is not typable in ML, since callcc(Ak.Az.throw k (Av.z)) with imperative type variables
is not a value, and in the case of non-value expressions, polymorphism is allowed only
for expressions with applicative type variables. If it were typable with bool, then this
was reduced to 1 following the operational semantics. On the other hand, under the
translation [] together with type annotation, in Apieny [Fuji99] we have

let f=At.pa.fo)Az.pf.a)(Av.x) in (Az122.22)(f int 1)(f bool true)

with type bool, and this is now reduced to true, as in F,, plus callcc under call-by-value,
not under ML-like call-by-value [HL93a]. In turn, the following term

let f=upa.jo]Az.pf.Ja)(Av.g) in (Az122.22)(f 1)(f 2)
with type int is reduced to 1 by the symmetric structural reduction. On the other hand,
in Mt [Fuji99] we have

let f=pa.fo]rz.pf.la](Av.z) in (Az122.22)(f 1)(f true)
with type bool, and this is also reduced to true. Ay, could overcome the counterexample
of polymorphic callcc in ML, and moreover, the typing conditions for let-expression could
be deleted. In particular, Auin is another candidate for implicit polymorphism by value,
compared with implicit polymorphism by name in Leroy [Lero93].

Ong&zStewart [0S97] extensively. studied a call-by-value programming language based
on a call-by-value variant of finitely typed Ap-calculus. There are some distinctions be-
tween Ong&Stewart and our finite type fragment; their reduction rules have type anno-
tations like the complete Church-style, and, using the annotation, more reduction rules
are defined than ours, which can give a stronger normal form. In addition, our no-
tion of values is an extended one, which would be justified by observation based on the
CPS-translation. Moreover, our renaming rule is applied for the extended values, and
following the proof of lemma 4, this distinction is essential for the CPS-translation of
renaming rule. Otherwise the reductions by renaming rule would not be simulated by
[-reductions. On the other hand, in the equational theory A¢ of Hofmann [Hof95], one

47

obtains a(C(A3.M)) =¢ M|{ := a] without restricting to values, which would be distine-
tion between equational theory and rewriting theory.

We used the CPS-translation as a useful tool to show consistency and strong normal-
ization of the system. With respect to Proposition 2 (soundness of CPS-translation); for
call-by-name Ay, on the one hand, the completeness is obtained in de Groote [Groo94], i.e.,
the call-by-name CPS- translatmn is injective. For a call-by-value system with Felleisen’ s
control operators [FFKD86], on the other hand, the completeness is established with re-
spect to categorical models [Hof95], and moreover, this method is successfully applied to
call-by-name Ay [HSQ?] We believe that our CPS-translation would be natural along the
line of [Plot75], and it is worth pursuing the detailed relation to such categorical models
[HS97, SR%‘] ‘

Acknowledgements I am grateful to Susumu Hayashi, Yukiyoshi Kameyama, and the
members of the Proof Animation Group for helpful discussions.

References

[Ando95] Y.Andou: A Normalization-Procedure for the First Order Classical Natural Deduction
with Full Logical Symbols. Tsukuba Journal of Mathematics 19 (1) pp.153-162, 1995.

[Bare84] H.P.Barendregt: The Lambda Calculus, Its Syntax and Semantics (revised edition),
North-Holland, 1984. '

[Bare92] H.P.Barendregt: Lambda Calculi with Types, Handbook of Logic in Computer Science
Vol.II, Oxford University Press, pp.1-189, 1992.

[BB93] F.Barbanera and S.Berardi: Extracting Constructive Context from Classical Logic via
Control-like Reductions, Lecture Notes in Computer Science 664, pp.45-59, 1993.

[BS97] G.Barthe and M.H.Sgrensen: Domain-frce Pure Type Systems, Lecture Notes in Com-
puter Science 1234, pp.9-20, 1997.

[DM82] L.Damas and R.Milner: Principal type-schemes for functional programs, Proc. 9th
Annual ACM Symposium on Principles of Programming Languages, pp.207-212, 1982.

[Groo94] P.de Groote: A CPS-Translation for the Au-Calculus, Lecture Notes in Computer
Science 787, pp.85-99, 1994.

[Groo95] P.de Groote: A Simple Calculus of Exception Handlmg, Lecture Notes in Computer
Science 902, pp.201-215, 1995.

[FFKD86] M.Felleisen, D.P.Friedman, E.Kohlbecker, and B.Duba: Reasoning with Continua-
tions, Proc. Annual IEEE Symposium on Logic in Computer Science, pp.131-141, 1986.

[Fuji97] K.Fujita: Calculus of Classical Proofs I, Lecture Notes in Computer Science 1345,
pp.321-335, 1997.

[Fuji98] K.Fujita: Polymorphic Call-by-Value Calculus based on Classical Proofs, Lecture Notes
in Artificial Intelligence 1476, pp.170-182, 1998.

[Fuji99] K.Fujita: Explicitly Typed Au-Calculus for Polymorphism and Call-by-Value, Lecture
Notes in Computer Science 1581, pp.162-176, 1999.

[Grif90] T.G.Griffin: A Formulae-as-Types Notion of Control, Proc. 17th Annual ACM Sympo-
sium on Principles of Programming Languages, pp. 47—08 1990.

48

[HDM93] R.Harper, B.F.Duba, and D.MacQueen: Typing First-Class Continuations in ML,
J.Functional Programming, 3 (4) pp.465-484, 1993.

{HL91] R.Harper and M.Lillibridge: ML with callcc is unsoﬁnd, The Types Form, 8, July, 1991.

[HL93a] R.Harper and M'.Lillibridge: Explicit polymorphism and CPS conversion, Proc. 20th
Annual ACM Symposium on Principles of Programming Languages, pp.206-219, 1993.

[HL93b] R.Harper and M.Lillibridge: Polymorphic type assignment and CPS conversion, LISP
and Symbolic Computation 6, pp.361-380, 1993.

[HM93] R.Hafper and J.C.Mitchell: On The Type Structure of Standard ML, ACM Transac-
tions on Programming Languages and Systems, Vol. 15, No.2, pp.210-252, 1993.

[Hof95] M.Hofmann: Sound and complete axiomatisations of call-by-value control operators,
Math.Struct. in Comp. Science 5, pp.461-482, 1995.

[How80] W.Howard: The Formulae-as-Types Notion of Constructions, To H.B.Curry: Essays
on combinatory logic, lambda-calculus, and formalism, Academic Press, pp.479-490, 1980.

[HS97] M.Hofmann and T.Streicher: Continuation models arc universal for Au-calculus, Proc.
12th Annual IEEE Symposium on Logic in Computer Science, 1997.

[Koba97] S.Kobayashi: Monads as modality, Theor.Comput.Sci. 175, pp.29-74, 1997.

[KTU94] A.J.Kfoury, J.Tiuryn, and P.Urzyczyn: An Analysis of ML Typability, Journal of the
" Association for Computing Machinery, Vol.41, No.2, pp.368-398, 1994.

[Lero93] X.Leroy: Polymorphism by name for references and continuations, Proc. 20th Annual
ACM Symposium of Principles of Programming Languages, pp.220-231, 1993.

[Mit88] J.C.Mitchell: Polymorphic Type Inference and Containment, Information and Compu-
tation 76, pp.211-249, 1988.

[Mil78] R.Milner: A Theory of Type Polymorphism in Programiming, Journal of Computer and
System Sciences 17, pp.348-375, 1978.

[Murt91] C.R.Murthy: An Evaluation Semantics for Classical Proofs, Proc. 6th Annual IEEE
Symposium on Logic in Computer Scz’ence, pp.96-107, 1991.

[MW85] A.Meyer and M.Wand: Continuation Semantics in Typed La,mbda-Calculi, Lecture
Notes in Computer Science 193, pp.219-224, 1985.

[Ong96] C.-H.L.Ong: A Semantic View of Classical Proofs: Type-Theoretic, Categorical, and
Denotational Characterizations, Linear Logic '96 Tokyo Meeting, 1996.

[0S97] C.-H.L.Ong and C.A.Stewart: A Curry-Howard Foundation for Functional Computation
with Control, Proc. 24th Annual ACM Symposium of Principles of Programming Languages,
1997. '

[Pari92] M.Parigot: Ap-Calculus: An Algorithmic Interpretation of Classical Natural Deduc-
tion, Lecture Notes in Computer Science 624, pp.190-201, 1992.

[Pari93] M.Parigot: Classical Proofs as Programs, Lecture Notes in Computer Science 713,
pp.263-276, 1993.

[Pari97] M.Parigot: Proofs of Strong Normalization for Second Order Classical Natural Deduc-
tion, J.Symbolic Logic 62 (4), pp.1461-1479, 1997.

49

[Plot75] G.Plotkin: Ca]l—by-Name Call-by-Value and the X- Calculus Theor. Comput Sci. 1, pp.
125-159, 1975.

[Praw71] D.Prawitz: Ideas and Results in Proof Theory, Proc. 2nd Scandinavian Logic Sympo-
sium, edited by N.E.Fenstad, North-Holland, pp.235-307, 1971.

[RS94] N.J.Rehof and M.H.Sgrensen: The Aa-Calculus, Lecture Notes in Computer Science
789, pp.516-542, 1994.

[SR96] T.Streicher and B.Reus: Continuation semantics: abstract machines and control opera-
tors, to appear in J. Functional Programming.

[Taka89] M.Takahashi: Parallel Reductions in A-Calculus, J.Symbolic Computation 7, pp.113-
123, 1989. |

