# Strongly closed subgraphs in a distance-regular graph

大阪教育大 平木 彰 (Osaka Kyoiku University Akira HIRAKI) \*

December 16, 1998

#### 1 Introduction

First we recall the notation and terminologies. All graphs we considered are undirected finite graphs without loops or multiple edges. Let  $\Gamma$  be a connected graph with usual shortest path distance  $\partial_{\Gamma}$ . We identify  $\Gamma$  with the set of vertices. We denote by

$$d_{\Gamma} := \max\{\,\partial_{\Gamma}(x,y)\,|\,x,\,y\in\Gamma\,\}$$

which is called the diameter of  $\Gamma$ . Let

$$\Gamma_j(u) := \{ x \in \Gamma \mid \partial_{\Gamma}(u,x) = j \} \quad \text{and} \quad k_{\Gamma}(u) := |\Gamma_1(u)|.$$

 $\Gamma$  is called a regular graph of valency k if  $k_{\Gamma}(u) = k$  for all vertices  $u \in \Gamma$ . For two vertices u and x in  $\Gamma$  with  $\partial_{\Gamma}(u,x) = j$ , let

$$C(u,x)=C_j(u,x):=\Gamma_{j-1}(u)\cap\Gamma_1(x),$$
  $A(u,x)=A_j(u,x):=\Gamma_j(u)\cap\Gamma_1(x)$  and  $B(u,x)=B_j(u,x):=\Gamma_{j+1}(u)\cap\Gamma_1(x).$ 

A connected graph  $\Gamma$  is said to be distance-regular if

$$c_j := |C_j(u, x)|, \quad a_j := |A_j(u, x)| \quad \text{and} \quad b_j := |B_j(u, x)|$$

depend only on  $j = \partial_{\Gamma}(u, x)$  rather than individual vertices. The numbers  $c_j$ ,  $a_j$  and  $b_j$  are called the *intersection numbers* of  $\Gamma$ . It is clear that  $\Gamma$  is a regular graph of valency  $k_{\Gamma} = b_0$  if  $\Gamma$  is distance-regular.

The reader is referred to [1],[2] for a general theory of distance-regular graphs.

Let  $\Delta \subseteq \Gamma$ . We identify  $\Delta$  with the induced subgraph on it.

A subgraph  $\Delta$  is called strongly closed if  $S(x,y) \subseteq \Delta$  for any  $x,y \in \Delta$ , where

$$S(x,y) := \{y\} \cup C(x,y) \cup A(x,y).$$

It is known that a strongly closed subgraph is distance-regular if it is regular.

<sup>\*</sup>E-mail address: hiraki@cc.osaka-kyoiku.ac.jp

Let q be a positive integer. A quadruple (w, x, y, z) of vertices is called a root of size q if  $\partial_{\Gamma}(w, x) = \partial_{\Gamma}(y, z) = q$ ,  $y \in S(x, w)$  and  $z \in S(w, x)$ . (See Figure 1.)

A triple (x, y, z) of vertices with  $\partial_{\Gamma}(x, z) = \partial_{\Gamma}(y, z) = q$  is called a *conron of size* q if there exist three sequences of vertices

$$(x_0, x_1, \ldots, x_m = x), (y_0, y_1, \ldots, y_m = y)$$
 and  $(z_0, z_1, \ldots, z_m = z)$ 

such that  $\partial_{\Gamma}(x_0, y_0) \leq 1$ ,  $(x_{i-1}, z_{i-1}, x_i, z_i)$  and  $(y_{i-1}, z_{i-1}, y_i, z_i)$  are roots of size q for all  $1 \leq i \leq m$ . (See Figure 2.)

Figure 1.

w q x  $1 \ge q \ge q$  y q z

Figure 2.



a root (w, x, y, z) of size q

a conron (x, y, z) of size q

The conditions  $(SS)_q$ ,  $(CR)_q$  and  $(SC)_q$  are defined as follow:

 $(SS)_q: \quad S(x,z)=S(y,z) \ \ {
m for \ any \ triple \ of \ vertices} \ \ (x,y,z) \ \ {
m with} \ \ \partial_\Gamma(x,z)=\partial_\Gamma(y,z)=q \ \ {
m and} \ \ \partial_\Gamma(x,y)\leq 1.$ 

 $(CR)_q$ : S(x,z) = S(y,z) for any conron (x,y,z) of size q.

 $(SC)_q$ : For any given pair of vertices at distance q, there exists a strongly closed subgraph of the diameter q containing them.

The following are our main results.

**Theorem 1** ([4, 6]) Let  $\Gamma$  be a distance-regular graph with  $a_1 > 0$ . Let q be an integer with  $b_{q-1} > b_q$ . The following two conditions hold if and only if  $(SC)_q$  holds.

- (i)  $(SS)_i$  holds for all  $1 \le i < q$ ,
- (ii)  $(CR)_q$  holds.

**Theorem 2** ([3]) Let  $\Gamma$  be a distance-regular graph with  $r = r(\Gamma) := \max\{i \mid (c_i, b_i) = (c_1, b_1)\}$ . Then  $(CR)_{r+1}$  holds if and only if  $(SC)_{r+1}$  holds.

## 2 The Proof of Main Result

First we show the following relations among the conditions  $(SS)_q$ ,  $(CR)_q$  and  $(SC)_q$ .

**Proposition 3** (1) If  $(SC)_q$  holds, then  $(CR)_q$  holds. (2) If  $(SC)_q$  holds, then  $(SS)_h$  holds for all  $h \leq q$ .

*Proof.* (1) Let (x, y, z) be a conron with sequences

$$(x_0, x_1, \ldots, x_m = x), (y_0, y_1, \ldots, y_m = y)$$
 and  $(z_0, z_1, \ldots, z_m = z)$ 

as in Figure 2. Let  $\Delta$  be a strongly closed subgraph of the diameter q containing x and z. Then  $z_{m-1}, x_{m-1} \in S(x,z) \cup S(z,x) \subseteq \Delta$ . Inductively, we have

$$z_{m-i}, x_{m-i} \in S(x_{m-i+1}, z_{m-i+1}) \cup S(z_{m-i+1}, x_{m-i+1}) \subseteq \Delta$$
 for all  $1 \le i \le m$ .

Whence  $y_0 \in S(z_0, x_0) \subseteq \Delta$  and  $y_i \in S(z_{i-1}, y_{i-1}) \subseteq \Delta$  for all  $1 \le i \le m$ . Therefore we have  $y \in \Delta$  and

$$S(x,z) = \{z\} \cup \Delta_1(z) = S(y,z).$$

This proves our assertion.

(2) Let (x,y,z) be any triple of vertices in  $\Gamma$  with  $\partial_{\Gamma}(x,z)=\partial_{\Gamma}(y,z)=h\leq q$  and  $\partial_{\Gamma}(x,y)\leq 1$ . Suppose there exists  $w\in S(y,z)-S(x,z)$ . Then  $\partial_{\Gamma}(x,y)=1,\partial_{\Gamma}(x,w)=h+1$  and hence  $\partial_{\Gamma}(y,w)=h$ . Let  $w_h:=w$  and take  $w_{i+1}\in B(x,w_i)\subseteq B(y,w_i)$  for  $i=h,h+1,\ldots,q$ . Then  $\partial_{\Gamma}(x,w_q)=q+1$  and  $\partial_{\Gamma}(y,w_q)=q$ . Since  $(SC)_q$  holds, there exists  $\Delta$  a strongly closed subgraph of diameter q containing y and  $w_q$ . Then  $w_{j-1}\in S(y,w_j)\subseteq \Delta$  for all  $j=q,\ldots,h$ . Thus  $z\in S(y,w_h)\subseteq \Delta$  and  $x\in S(z,y)\subseteq \Delta$ . This contradicts  $q=d_{\Delta}\geq \partial_{\Gamma}(x,w_q)=q+1$ . The desired result is proved.

Let  $\Gamma$  be a distance-regular graph with  $b_{q-1} > b_q$ . Assume that the conditions (i)(ii) in Theorem 1 holds. We sketch the construction of strongly closed subgraphs.

Fix a pair of vertices (u, v) in  $\Gamma$  at distance q. For any  $x, y \in \Gamma_q(u)$ , we define the relation  $x \approx y$  iff (x, y, u) is a conron. Then this is an equivalence relation on  $\Gamma_q(u)$ . Set  $\Psi$  be the equivalence class containing v under this equivalence relation  $\approx$ . Define  $\Delta(u, v) := P(u, \Psi)$  the subgraph induced on all vertices lying on shortest paths between u and vertices in  $\Psi$ .

Them  $\Delta(u, v)$  becomes a strongly closed subgraph of diameter q. In particular, it is distance-regular. (See [4, 6]).

### 3 Applications

Theorem 4 ([6]) Let  $\Gamma$  be a regular thick near polygon with  $r = r(\Gamma)$ . If  $2r + 1 \le d_{\Gamma}$ , then  $b_{q-1} > b_q$  and  $(SC)_q$  holds for all q with  $r+1 \le q \le d-r$ . In particular,  $r \in \{1,2,3,5\}$ .

Theorem 5 ([5]) Let  $\Gamma$  be a distance-regular graph with  $(c_1, b_1) = \cdots = (c_r, b_r) \neq (c_{r+1}, b_{r+1}) = \cdots = (c_{2r}, b_{2r})$  where  $c_{r+1} \geq 2$ . Then one of the following holds:

- (i)  $r \leq 2$ ,
- (ii)  $a_1 = a_{r+1} = 0$ ,  $c_{r+1} = 2$  and  $r \equiv 0 \pmod{2}$ .

Sketch of the Proof of Theorem 5. Assume  $r \geq 3$ .

- (1) Show  $(CR)_{r+1}$  holds and r is even.
- (2)  $(SC)_{r+1}$  holds from Theorem 1. A strongly closed subgraph  $\Delta$  is a genelarized polygon.
- (3)  $\Delta$  is an ordinary polygon. Hence (ii) holds.

## 参考文献

- [1] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin-Cummings, California, 1984.
- [2] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, 1989.
- [3] A. Hiraki, Distance-regular subgraphs in a distance-regular graph, V, Europ. J. Combin. 19 (1998), 141-150.
- [4] A. Hiraki, Distance-regular subgraphs in a distance-regular graph, VI, Europ. J. Combin. 19 (1998), 953-965.
- [5] A. Hiraki, An application of a construction theory of strongly closed subgraphs in a distance-regular graph, to appear in *Europ J. Combin*.
- [6] A. Hiraki, Strongly closed subgraphs in a regular thick near polygons, preprint (1998).