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Local integral representations of smooth functions
and interpolation inequalities

Takahide KUROKAWA (& )I[[3)

Let R" be the n-dimensional Euclidean space. Let D = D(R") denote the set
of C*°— functions with compact support , and 2N stands for the set of nonnegative
even numbers. For a positive integer m, the Riesz kernel &,,(z) of order m on R™

is given by

1 lz|™ "  m—n¢g2N,
() = 6 — log |2])|z|™" 2N
Ymn L (8mn —loglz])|z[™™",  m—ne€2

with

= { 7r“/22mf(m/'2)/f‘((n——m)/2), m—mn¢2N,
T (=n)ermm2gm St 2T (m 2) (m - n)/2)],  m—n € 2N

and Tm/2) 1. 1 |
m
O =———+-(14+-+++ ———-——C) —log?2
»=Srmy Tttt Ty~ 9 e
where C is Euler’s constant. For a multi-index @ = (o, -+, «,), we denote D™ =

Df* - Dz =2 - 2% and |af = a; + - + oy,
If u is a C™-function with compact support, then it can be represented by the

partial derivatives of m-th order as follows:

) we)= ¥ o [ by
laj=m Y*7n y

([Re]) where o, is the surface area of the unit sphere, and

(2) U(&f) = Z £’—lm/l) KjZm )Da ( )d

laj=m
([Wa]).  In this note we give the two kinds of integral representations of C™-
functions, which correspond to (1) and (2). ~ One is based on Taylor’s formula and
V.LBurenkov’s method [Bu: Theorem 4 in Chap.3], and the other is deduced from
the fact that the Riesz kernel &y, is a fundamental solution for the iterated Laplace
operator A™, namely

3) ARy = (=16



where § is the point mass at the origin.
CLet 0 < ¢ < €.  We take a function 7 € C*(R') such that supp n C {& <

t < e} and
/ 14t = 1
1" = —,
0 n(t) O
and set

p(t) = /too n(s)s"'ds.

Moreover we put

(4) w(z) = n(|z]),
and
(5) (@) = o, /IT w(t'—z—l)f”“ldt

—1; for0<t<¢g
0, for t > e,

we have x € D(R") and

(z) = 1, for |z| < ¢
XE = 0, forlz| > €.

ProrosiTioNn 1. Let 0 < ¢ < €3. Then there exist functions p,x € D such

that supp g, supp x C {|z] < e2},u(z) = 0 on {|z| < a1}, x(2) =1 on {|z] < &},
and if u € C™(R"), then

alo, J |z —

©)  u@)= [ ey + ¥ o [ e - ) Doty
|

al=m

Proor. By Taylor’s formula we have

(7) u(@) = Y L)

|
lv]<m v

(z—y)”

+m Y (igfir— /01(1 — )™ I D%u(y + t(z — y))dt.

jal=m
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We take functions w and y defined by (4) and (5).  Multiplying (7) by w(z — )
and integrating with respect to y, we get

wa) = 3,

= [ Duly)(e — y) e - y)dy

fvi<m 7'
+ Z /(:c —y)°w(z —y) /1(1 — )" I D%u(y + t(x — y))dtdy
|a[_m
= m/D"u (z —y)w(z —y)dy
fyl<m ¥
ok 2 [a- 7 ([Je = vrute — Doty + o - v))ay)
= Li(z)+ L(z).

By integration by part we have
= /u(x —y)uly)dy

=y ZTY zw(z)).

yl<m ¥

where

Since w € D and supp w C {e; < |z] < €2} by (4), p also has the same properties.
Further by the change of variables y + ¢(z — y) = z, we obtain

o N V= N T A

al Jo
la|=m

= X 5/ e (/ol“’(j:j)m —d;)n“)dz

]a[—m

because of z—y = (z—z)/(1~t). Moreover by the change of variable |z —z|/(1—t) =
s, we get

L(z) = /D"‘ (z — z) (‘/':zlw(sli : ZI)[xbi“zl}”ds) dz

M“m

Il

/Dcy (z - 2) x(z — z)dz

alo, ]:r - 4]”

)aI—m

because of (z — 2)/(1 ~¢) = s(z — z)/|z — z|.  Thus we obtain (6).

ProposiTION 2. Let 0 < ¢ < €.  Then there exist functions (,€ € D such
that supp ¢, supp ¢ C {|z] < &},((z) =0 on {|z| < a1},é(z) =1 on {|z| < &},
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and if u € C™(R"), then

®  uw) = [ -+ T [ Dnan) e - pp7uwiy

|al=m

Proor. First we assume that u € D. Since u(z—y) belongs to D as a function
of y, the formula (3) gives

u(@) = (8(y), u(z — y)) = (—)" A Kan (v), ule = v))
= ((~1)" Ran (), (Ao = ) = [(=1)"Ram()A™ 0@ = y)dy

where (-, -) stands for the pairing between distributions and test functions. We take
a function ¢ € D such that

1, '.’L’l _<__ €1.
O, ‘ZL! _>_ €a.

) fte) = {

If we set ((z) = (=1)"A™((1 — )&y )(z), then by integration by part we have

u(z) = [ =)= k) Al = y)dy + [ EQ)=1)"Ran(u)A™ulz ~ y)dy
= [cwu -+ ¥ TET [ Do) ) D%u(e - v)dy

Ial*m

m‘ o
_ /g(:c*y y)dy + Z /D“ Eram)(@ — ) D%u(y)dy.
lor|=m

By (3) and (9) we see that ((z) = 0 for |z| < ¢ and |z| > €, and hence ¢ €
D.  Therefore we obtain the proposition for u € D.  In case u € C™(R"), the
proposition is obtained by approximating u by a sequence {u;} C D such that D%u;
converges to D%u locally uniformly as j — oo for || < m. This completes the
proof.

By taking differentiation under the integral sign in (6) and (8), we obtain the
following corollary.

CoROLLARY 3.  Let 0 < ¢; < ¢a  Then there exist functions p,x,(,§ € D

such that supp p, supp x, supp ¢, supp & C {|z] < e},u(z) = ((z) = 0 on
{lz] € &1}, x(z) = €&(z) =1 on {|z| < @1}, and if u € C™(R™), then for |y| <m —1

/D" wlz —y)u

(Xa)(z = y)D%u(y)dy

lof=m &
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where xo(2) = z%x(z)/|z|", and

2= [ D¢~ vy + ¥ T [ Drteeny, (@ - y)Dou(y)dy.

jal=m

As an application of local integral representations, we establish interpolation

inequalities.

ProposiTioN 4. Letr > 0,6 >0 and 1 < p < co.  Then for u € C™(R") and
vl <m —(n/p),

. 1/p
Du(z)| < C )d / Du(y)Pd .
max | D7u() (/{ym Dy + Y ( D) y) )

|o|l=m

where C! is independent of r.

€

Proor. Let |2] < r and |y] < m — (n/p). By applying Corollary 3 for ¢ =

€/2, €, = ¢ and Holder’s inequality, we have

D)l = [ Dk -yl + Y

la|=m

< rln!eéxlDw(y 1/15r+e lu(y)|dy
/e,
aloy, k/lx yl<e O xelz = dy) </Iy‘9+E!D‘*u(y)V’dy>

p>
‘ 1/p
“ (/lyt57-+e uwldy + 2 (/y:<r+E!D"u(y)|pdy> )

alo,

/;. D7 (xa)(@ = y) D u(y)|dy

1/p

IA

laj=m
lof=m

where (1/p) + (1/p') = 1 and

1/p’
m
Ce = max ma + max / D7y P d < oo,
¥l<m—(n/p) (IyKe' u(y)] lajl=m alo, ( ly<e D" Xa W)l"dy

ProposiTioN 5. Letr > 0 and e > 0.  Then foru € C™(R") and |y| < m—1,

max |D"u(2)] < C? ( max fu(y)l+ 30 max ’D““@”)

< .
le|<r fy|<rte laj=mn

where C? is independent of r.
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Proor. Let |2| <rand |y| <m —1. By applying Corollary 3 for e = ¢/2

and ¢; = ¢, we have

D) < [ DG -ty + X T [ 1D )~ 9D uly)ld

la|=m

< max Juy)| / lD”ﬁ(y)ldy

lyl<r+e

+ I max [D7u(y)] [ 1D (Enan)(v)ldy

1
. Jyl<rte
laj=m ful

< C? (Mngi lu(y)l + > max | D*u(y ){)

y|<r+
ja=m 1Y

“where

C? = max (/ ID((y)|dy + 12@37(1 %/ [D““(E/czm)(y)ldy) < 00.

rlgm -1

For 1 < p < oo and a positive integer m, we set

tulmp Z HDa

Jal=m
where
lully = ([ fu(2)lPda) .
ProposiTION 6. Let j,m be positive integers and j < m.  Then forue C™
luljp < Crllully + Calulm,

where

Ci= Y |IDulli, Co= max

lyi=y la=

Z HDWXOIHI

Tn |yl=j

Proor. Let |y| =j. By Corollary 3 and Young’s inequality we have

1D ull, < 107 pllalell,

Xall1[1D%ullp.

jol=m

Hence the proposition holds.

From an elementary calculation we have
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LemMa 7. Let a,b,8,7 > 0.  The function o(z) = az® + bz~ "(z > 0) attains |
the minimum ((r/8)%/ €+ (6 7)™/ O+7))q7/C+7)p0/(0+7) gt g = (b]a)/O+7) (7 [9)H/ (0+7)

For a function u and a positive number ¢, we set
uge)(z) = uex).
We easily see
Lemma 8. For a multi-index o, (D%uy))(z) = €l®l(D%u)(ex).

ProposiTiON 9. Let j,m be positive integers and j < m. The following three
inequalities are equivalent:

(i) Iulj,p < ClHqu + Czlulm,p for any v € C™,
(ii) lul;p < Clej“ul{p + Cge'm+j]u|m’p for any ¢ > 0,u € C™,
—(3/m) ~i/m m'_—.'m ] ~(3/m —(3/m j/m m
(i) fulsy < OO (F I () )l bl for any we O

Proor. (ii) == (i) It suffices to put € = 1.
(i) = (ii) Letue C™ande>0. Since u) € C™, by the assumption (i), we
have
' |u(€)|j,p < Ol”“(e)”p + CZ‘“(é)lm,p-

The inequality (ii) follows from the equality

Iu(e)lk,p — ék—(n/p)lu[k’p (k=0,1,---,m),
which is obtained by Lemma 8.
(ii) <= (iii) This follows from Lemma 7.

Thus by Propositions 6 and 9 we obtain

CoroLLARY 10. ([Ad: Theorem 4.17])  Let j,m be positive integers and j < m.
Then for u € C™

-(3/m ] m—"j'm ] —(3/m —{3/m 1 /m
[ulip < C7OMOH (I o () Ol 6l

where the constants Cy, Cy are the same as in Proposition 6.
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