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ON (p,w)-PRECISE FUNCTIONS WHOSE
DERIVATIVES ARE SINGULAR INTEGRALS

1

K& E {3 (Makoto Ohtsuka)

1. Theorems. As kernels of potentials we shall be concerned only with Riesz and
Bessel kernels in R, d > 2. We write k,(z) = |z|*~? for 0 < a < d and UJ = k, * f for

~ afunction f in case the potential is well-defined.

Let o be (ay,...,4) with integers a; > 0, and set |a| = a1 + -+ - + a4. We shall call
« an index of order |a|. For a function f we write D* f = D2 f for 0l*l f/dz21 .. -0z 3¢

when this has a meaning. In case o = (0, ..., 0) we write & = 0 and let D°f mean f.

Let d > 2,1 < p < 00, T be a family of locally rectifiable curves in R? and w a
weight. We take the definition of extremal length A,(T;w) for granted. A function f
is called (p,w)-precise in an open set G if the extremal length of the family of locally
rectifiable curves in G along each of which f is not absolutely continuous is infinite and
Jo | grad flPwdz is finite.

We announce

Theorem 1. Let d > 2,1 < p < 00, w be a weight in R? satisfying Muckenhoupt’s
A, condition, f € L?*(R?) and a be an index of order |a| > 0. Then writing K** for
OD%k14|a|/Ozi, we see that

lim K"*(z - y)f(y)dy
Tl le—yl>r
exists in L' (R?). We denote this limit by T**{. If, in addition, [,.(1+|z|)'~¢|f(z)|d=

< 00, then D%k 4o * f is (p, w)-precise, the relation

OD%ky 4o * f
6::,-

= T'i'af
holds a.e. in R? for each i, and

” gl’&d(Dakl.'.lal * f)”p,w < const. ”f"p,u K
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is valid.

Next for @ > 0 we consider the Bessel kernel

—xlo|?/t g—t/(ax) y(a—)[2 B

1 00
Ga(r) = (47)°I?T(a/2) /0 ¢ 1

Theorem 2. Letd,p,w, f,a be the same as in Theorem 1. Writing K; o for 0D*G1 44|

/0z;, we see that

lim Ki oz —y) f(y)dy

=0 J|z—y|>r
exists in L»“(R%). Denote this limit by T; o f. Then D*G14|q * f is (p,w)-precise, the

relation

6D°‘G1+|,,,| * f
8::,-

holds with some constant a; a.e. in R for each i, and

= i,af + aif

|| grad(D*G141af * F)llpw < const. || fllp,w

is valid.

2. Proof. We shall prove only Theorem 1 in this paper; We begin with

Lemma 1. Letd,p,w and f be as in Theorem 1. Let ®, be an integrable function in R¢
such that |®,(z)| < e1n? for |z| < 1/n and |®,(z)| < can~tz|~4"! for |z| > 1/n, where
¢, and cg are constants. Set ap, = [ 4 ®n(z)de and h, = f*®,. Then ||hy—a, f|lpo — 0

asn — 00.

Proof. By a famous Muckenhoupt theorem [Mu, p.222, Theorem 9] ||M f||,,. < const.
| f|lp,w, where M f is the Hardy-Littlewood maximal function. It follows that M f(z) <
oo a.e. in R%. Let us see that f is locally integrable in R%. In fact, for any compact set
K in R? we have

1/p 1/p’ 1/p’
/ |fldz < (/ |f|”wd:c) (/ wll(l“”)dz> <|Ifllp,w (/ wll(l””)dx) < oo
K K K K

because w € A, shows that the last integral is finite.

Now set

K(r) = /Il 1z —y) - f(z)ldy.
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Then r~%k(r) < c3(Mf(z) + |f(2)]) < oo for a.e. 2 € R®. Let z be such a point.
Moreover, since f is locally integrable, r~%k(r) — 0 as r — 0 also for a.e. z by a
- well-known result in integration theory; see, for instance, [R, p.168, Theorem 8.8]. We
suppose & has such a property too. Given ¢ > 0 choose rg > 0 so that r~%k(r) < ¢ if
0 < r < ro. In order to show lim,_,(h, — a, f) = 0, it is sufficient to consider n such

that 1/n < ro. We write

P2}~ anfle) = (/m«/n +/1/n<|y|<ro * /m»o) (fle =) = f(=)nu)dy
= Il(a:) + Iz(:ﬂ) + I3(:L’)

Since |®,(y)| < c1/n~ ¢ if |y| < 1/n,
W) <= [ |f(z-y) = f@)|dy— 0
n lyi<t/n

as n — oo at our z. We note that

ca [ 1 ¢y [ k(7o) f’“ 1 Cq
< 2 _ < 220 — <4 <
|I2(z)] < o dk(r) < ~ (rg+1 +e i 72 dr | < ~ (14+en) < 2c4e

if n is large. To avoid a repetition of similar computations we shall give a preliminary

evaluation before evaluating I3(z). If 1/n < a < oo, then

* 1
. mdk(?)

oo+(d+1)/:° ﬂ”ldr)

[ 166 =)~ fa)eawlay < 2
- a4 |

) n \ré+l| rd+2
< 2% i MI@HIEN | (44 1y0,0, M @) +1f(2) /°° Lar
n r—x T n a T

= (d “+ 1)6203

Mf(@) + ()]

By this evaluation we see that |I3(z)| < (d + 1)eacs(M f(z) + |f(2)])/(ron) — 0 as
n — o0o. Accordingly limsup,,_, ., |hn(2) — an f(z)| < const. e so that lim,_, o (b, (2) —

a,f(z)) =0.

Next we shall show that |h, —ay, f| is dominated by a function, which is independent »
of n and belongs to L?*(R%). We write

hn(2) — anf(2) = (/|y|<1/n + /UKM) (f(z —y) — f(2))®a(y)dy = I1(z) + I}(z).
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We observe that |I1(z)| < ca(Mf(z) + |f(2)|), and that |I5(z)| is dominated by (d +
Dezes(Mf(z) + |f(z)|) by (1). We recall that M f + |f| belongs to LP*(R?) in virtue
of the Muckenhoupt theorem. Consequently we can apply Lebesgue’s dominated con-

vergence theorem and obtain

Jdim [l — an flly.o = || i (bn = anf)llp.0 =0

Thus the lemma is completely proved.

We shall give three more lemmas. Their proofs require a number of properties of
(p,w)-precise functions and so they are omitted. We only refer to the corresponding

results in [O].

We shall call a set Ein R? (p,w)-exc. if A\,(T;w) = oo for the family T' of curves
terminating at the points of E. This can be characterized as a kind of set of capacity
zero. We shall say that a property holds (p,w)-a.e. if the exceptional set is a (p, w)-exc.

set.

Lemma 2. [0, Theorems 4.4.4 and 4.4.5]. Let w € A,. Let fy, fo,... be (p,w)-precise

in R? and assume

limoo |lgrad fn — grad fmllp,w = 0.

n,m—

Then there exist a (p,w)-precise function f in R%, a subsequence {n;} and a sequence
{c;} of constans such that || grad f, — grad f||,w — 0 and fo; —¢; — f (p,w)-a.e. in
R%.

Lemma 3. [O, Corollary to Theorem 4.4.6). If a sequence {gn} of (p,w)-precise func-
tions converges pointwise lo a function g (p,w)-a.e. in R? and {gradg,} is a Cauchy

sequence in LPY(R?), then g is (p,w)-precise and || grad g, —grad g|lp»v — 0 as n — oo.

Lemma 4. [0, Theorem 4.2.5]. Let f,g be (p,w)-precise functions in R? which are
equal (p,w)-a.e. in R, Then grad f = grad g a.e. in R%.

Proof of Theorem 1. The first assertion of the theorem is a consequence of Theo-
rem ITI due to Coifman and Fefferman [CF, Studia Math., 1974]. Assume [.(1 +
|2])1~9|f(z)|dz < co. This is a necessary and sufficient condition for U}’! to be finite

a.e. in R%.
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Set on = D%14|al,1/n 30d gn = pp * f, where kg 3(2z) = (2|2 +52)(*~9/? in general.

We can observe easily

P const. n¢| f(y)| if |y < 2(|z] + 1),
'53:—;‘0"(2 B y)f(y)' = { const. —-lﬁfd)l if y] > 2(|z| + 1).

We infer that 8g,/0z; = (Opn/dz;) * f and it is continuous in RY. Therefore 9n
is absolutely continuous along all locally rectifiable curves in R?. Setting K (z) =
K X|.|>1/n(-’5), we know that K' ' % f — TH2f in L”""(]R") as n — oco. We can write

%%(2) Ky % f(@) = ®a x f,

1/n
where
—D* [ |2]>+ = on |z| < 1/n,
® _ ) 0x; n?
n(z) = 8 1 \GHel-d2
—D | |z|?+ = — —D¥|g|lHlal-d on |z| > 1/n.
Oz; n? O0z;

By the mean value theorem we have |®,(z)| < const.1/(n?||**!) on |z| > 1/n. Hence
St |®n(2)|de < co. As in [Mi, p.219, Lemma, 4.1] we see that [, ®,(z)dz vanishes.

In view of Lemma 1 and the equality [, ®,(z)dz = 0, we obtain

= 0.

p,w

(1) lim

n—+o0

= lim || L 1= 2wy

We recall that K % f — T f in LP“(R%) as n — oo. So naturally each ||K* l/n o f|p,w

is finite. Hence (l) gives ||0gn /02;||p,w < oo for each n. The absolute continuity along
all locally rectifiable curves being known, it follows that g, is (p,w)-precise. From
(1) and the fact limp o || ;/"n * f —T"*f|l.o = 0 we infer that {8g,/dz;} form a
Cauchy sequence in LP*(R?). Using Lemma 2 we find a (p, w)-precise fuction gg, a
subsequence {n;} and a sequence {c;} of constants such that || grad(g, — go)|lp. — 0
and gn; —¢; — go (p,w)-a.e. The assumption [ ,(1+|2|)'~¢|f(z)|dz < oo implies that

|gn; (2)] = | D%y 41a)1/n * F(2)] < const. U¥N(z) < oo

for a.e. z. Hence we may assume that all ¢; are zero so that g,, — go (p,w)-ae.
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From (1) it follows that there exists a subsequence of {n;}, which will be denoted
again by {n;}, such that

. agﬂj i,a
(2) _1122.7 ( Be. = K, *f) =0
a.e. in R% The relations limy— o || grad(gn — go)llp,w = 0 and limp— ||K1/n *x f —

T"%f||pw = 0 show that we may assume that lim; 0 Ogn, [0z; = Ogo/0z; and lim;_, oo
Ky o xf= T#a f a.e. in R for each i. Taking into account (2) we obtain the equality

(3) gio T f a.e. in R? for each i.

In the special case @ = 0 and f > 0 g, increases to ky * f = Ulf everywhere in R?
and {grad g,} form a Cauchy sequence. Lemma 3 shows that U { is (p, w)-precise. In
the general case | D%k; 4o, /n| < const. ky and Uj I/l is finite a.e. in R¢. Hence applying

Lebesgue’s dominated convergence theorem, we have
nl_i_)néo gn(m) = lim Dak1+|a|'1/n * f(:L') = Dak1+|a| * f(:l:)
at every point  with finite Ulﬂ(:n) Again by Lemma 3 we infer that D%k y|q * f 1 is

(p, w)-precise.

Next, we recall that g,, — go as j — o0 (p, w)-a.e. and obtain go = D%ki4|q * f

(p,w)-a.e. in RY. Using Lemma 4 and (3) we derive

OD%kyyjaf * f Og0
6:1,-,- - 3:0,'

— Ti,af

a.e. in R? for each i. Finally since ||T%* f||,« < const. || f|lp.w, || grad(D*ky 4o *F)llpw <

const. || f||p~ as announced.
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