ON (p,ω) -PRECISE FUNCTIONS WHOSE DERIVATIVES ARE SINGULAR INTEGRALS

大津賀 信 (Makoto Ohtsuka)

1. Theorems. As kernels of potentials we shall be concerned only with Riesz and Bessel kernels in \mathbb{R}^d , $d \geq 2$. We write $k_a(x) = |x|^{a-d}$ for 0 < a < d and $U_a^f = k_a * f$ for a function f in case the potential is well-defined.

Let α be $(\alpha_1, ..., \alpha_d)$ with integers $\alpha_i \geq 0$, and set $|\alpha| = \alpha_1 + \cdots + \alpha_d$. We shall call α an index of order $|\alpha|$. For a function f we write $D^{\alpha}f = D_x^{\alpha}f$ for $\partial^{|\alpha|}f/\partial x_1^{\alpha_1}\cdots \partial x_d^{\alpha_d}$ when this has a meaning. In case $\alpha = (0, ..., 0)$ we write $\alpha = 0$ and let D^0f mean f.

Let $d \geq 2$, $1 , <math>\Gamma$ be a family of locally rectifiable curves in \mathbb{R}^d and ω a weight. We take the definition of extremal length $\lambda_p(\Gamma;\omega)$ for granted. A function f is called (p,ω) -precise in an open set G if the extremal length of the family of locally rectifiable curves in G along each of which f is not absolutely continuous is infinite and $\int_G |\operatorname{grad} f|^p \omega dx$ is finite.

We announce

Theorem 1. Let $d \geq 2$, $1 , <math>\omega$ be a weight in \mathbb{R}^d satisfying Muckenhoupt's A_p condition, $f \in L^{p,\omega}(\mathbb{R}^d)$ and α be an index of order $|\alpha| \geq 0$. Then writing $K^{i,\alpha}$ for $\partial D^{\alpha} k_{1+|\alpha|}/\partial x_i$, we see that

$$\lim_{r\to 0}\int_{|x-y|>r}K^{i,\alpha}(x-y)f(y)dy$$

exists in $L^{p,\omega}(\mathbb{R}^d)$. We denote this limit by $T^{i,\alpha}f$. If, in addition, $\int_{\mathbb{R}^d} (1+|x|)^{1-d} |f(x)| dx$ $< \infty$, then $D^{\alpha}k_{1+|\alpha|} * f$ is (p,ω) -precise, the relation

$$\frac{\partial D^{\alpha} k_{1+|\alpha|} * f}{\partial x_i} = T^{i,\alpha} f$$

holds a.e. in \mathbb{R}^d for each i, and

$$\|\operatorname{grad}(D^{\alpha}k_{1+|\alpha|}*f)\|_{p,\omega} \leq \operatorname{const.} \|f\|_{p,\omega}$$

is valid.

Next for a > 0 we consider the Bessel kernel

$$G_a(r) = \frac{1}{(4\pi)^{a/2} \Gamma(a/2)} \int_0^\infty e^{-\pi |x|^2/t} e^{-t/(4\pi)} t^{(a-d)/2} \frac{dt}{t}.$$

Theorem 2. Let d, p, ω, f, α be the same as in Theorem 1. Writing $K_{i,\alpha}$ for $\partial D^{\alpha}G_{1+|\alpha|}$ $/\partial x_i$, we see that

$$\lim_{r\to 0}\int_{|x-y|>r}K_{i,\alpha}(x-y)f(y)dy$$

exists in $L^{p,\omega}(\mathbb{R}^d)$. Denote this limit by $T_{i,\alpha}f$. Then $D^{\alpha}G_{1+|\alpha|}*f$ is (p,ω) -precise, the relation

$$\frac{\partial D^{\alpha} G_{1+|\alpha|} * f}{\partial x_i} = T_{i,\alpha} f + a_i f$$

holds with some constant a_i a.e. in \mathbb{R}^d for each i, and

$$\|\operatorname{grad}(D^{\alpha}G_{1+|\alpha|}*f)\|_{p,\omega} \leq \operatorname{const.} \|f\|_{p,\omega}$$

is valid.

2. Proof. We shall prove only Theorem 1 in this paper. We begin with

Lemma 1. Let d, p, ω and f be as in Theorem 1. Let Φ_n be an integrable function in \mathbb{R}^d such that $|\Phi_n(x)| \leq c_1 n^d$ for |x| < 1/n and $|\Phi_n(x)| \leq c_2 n^{-1} |x|^{-d-1}$ for |x| > 1/n, where c_1 and c_2 are constants. Set $a_n = \int_{\mathbb{R}^d} \Phi_n(x) dx$ and $h_n = f * \Phi_n$. Then $||h_n - a_n f||_{p,\omega} \to 0$ as $n \to \infty$.

Proof. By a famous Muckenhoupt theorem [Mu, p.222, Theorem 9] $||Mf||_{p,\omega} \leq \text{const.}$ $||f||_{p,\omega}$, where Mf is the Hardy-Littlewood maximal function. It follows that $Mf(x) < \infty$ a.e. in \mathbb{R}^d . Let us see that f is locally integrable in \mathbb{R}^d . In fact, for any compact set K in \mathbb{R}^d we have

$$\int_{K} |f| dx \leq \left(\int_{K} |f|^{p} \omega dx \right)^{1/p} \left(\int_{K} \omega^{1/(1-p)} dx \right)^{1/p'} \leq ||f||_{p,\omega} \left(\int_{K} \omega^{1/(1-p)} dx \right)^{1/p'} < \infty$$

because $\omega \in A_p$ shows that the last integral is finite.

Now set

$$k(r) = \int_{|y| < r} |f(x - y) - f(x)| dy.$$

Then $r^{-d}k(r) \leq c_3(Mf(x) + |f(x)|) < \infty$ for a.e. $x \in \mathbb{R}^d$. Let x be such a point. Moreover, since f is locally integrable, $r^{-d}k(r) \to 0$ as $r \to 0$ also for a.e. x by a well-known result in integration theory; see, for instance, [R, p.168, Theorem 8.8]. We suppose x has such a property too. Given $\varepsilon > 0$ choose $r_0 > 0$ so that $r^{-d}k(r) < \varepsilon$ if $0 < r < r_0$. In order to show $\lim_{n \to \infty} (h_n - a_n f) = 0$, it is sufficient to consider n such that $1/n < r_0$. We write

$$h_n(x) - a_n f(x) = \left(\int_{|y| < 1/n} + \int_{1/n < |y| < r_0} + \int_{|y| > r_0} \right) (f(x - y) - f(x)) \Phi_n(y) dy$$

= $I_1(x) + I_2(x) + I_3(x)$.

Since $|\Phi_n(y)| \le c_1/n^{-d}$ if |y| < 1/n,

$$|I_1(x)| \le \frac{c_1}{n^{-d}} \int_{|y| < 1/n} |f(x-y) - f(x)| dy \to 0$$

as $n \to \infty$ at our x. We note that

$$|I_2(x)| \leq \frac{c_2}{n} \int_{1/n}^{r_0} \frac{1}{r^{d+1}} dk(r) \leq \frac{c_2}{n} \left(\frac{k(r_0)}{r_0^{d+1}} + \varepsilon \int_{1/n}^{r_0} \frac{1}{r^2} dr \right) \leq \frac{c_4}{n} (1 + \varepsilon n) \leq 2c_4 \varepsilon$$

if n is large. To avoid a repetition of similar computations we shall give a preliminary evaluation before evaluating $I_3(x)$. If $1/n \le \alpha < \infty$, then

$$\int_{\alpha}^{\infty} |(f(x-y) - f(x))\Phi_{n}(y)| dy \leq \frac{c_{2}}{n} \int_{\alpha}^{\infty} \frac{1}{r^{d+1}} dk(r)
= \frac{c_{2}}{n} \left(\frac{k(r)}{r^{d+1}}\Big|_{\alpha}^{\infty} + (d+1) \int_{\alpha}^{\infty} \frac{k(r)}{r^{d+2}} dr\right)
\leq \frac{c_{2}c_{3}}{n} \lim_{r \to \infty} \frac{Mf(x) + |f(x)|}{r} + (d+1)c_{2}c_{3} \frac{Mf(x) + |f(x)|}{n} \int_{\alpha}^{\infty} \frac{1}{r^{2}} dr
= (d+1)c_{2}c_{3} \frac{Mf(x) + |f(x)|}{\alpha n}.$$

By this evaluation we see that $|I_3(x)| \leq (d+1)c_2c_3(Mf(x)+|f(x)|)/(r_0n) \to 0$ as $n \to \infty$. Accordingly $\limsup_{n \to \infty} |h_n(x)-a_nf(x)| \leq \text{const. } \varepsilon$ so that $\lim_{n \to \infty} (h_n(x)-a_nf(x))=0$.

Next we shall show that $|h_n - a_n f|$ is dominated by a function, which is independent of n and belongs to $L^{p,\omega}(\mathbb{R}^d)$. We write

$$h_n(x) - a_n f(x) = \left(\int_{|y| < 1/n} + \int_{1/n < |y|} \right) (f(x - y) - f(x)) \Phi_n(y) dy = I_1(x) + I_2'(x).$$

We observe that $|I_1(x)| \leq c_3(Mf(x) + |f(x)|)$, and that $|I'_2(x)|$ is dominated by $(d+1)c_2c_3(Mf(x) + |f(x)|)$ by (1). We recall that Mf + |f| belongs to $L^{p,\omega}(\mathbb{R}^d)$ in virtue of the Muckenhoupt theorem. Consequently we can apply Lebesgue's dominated convergence theorem and obtain

$$\lim_{n \to \infty} ||h_n - a_n f||_{p,\omega} = ||\lim_{n \to \infty} (h_n - a_n f)||_{p,\omega} = 0.$$

Thus the lemma is completely proved.

We shall give three more lemmas. Their proofs require a number of properties of (p,ω) -precise functions and so they are omitted. We only refer to the corresponding results in [O].

We shall call a set E in \mathbb{R}^d (p,ω) -exc. if $\lambda_p(\Gamma;\omega) = \infty$ for the family Γ of curves terminating at the points of E. This can be characterized as a kind of set of capacity zero. We shall say that a property holds (p,ω) -a.e. if the exceptional set is a (p,ω) -exc. set.

Lemma 2. [O, Theorems 4.4.4 and 4.4.5]. Let $\omega \in A_p$. Let $f_1, f_2, ...$ be (p, ω) -precise in \mathbb{R}^d and assume

$$\lim_{n,m\to\infty} \|\operatorname{grad} f_n - \operatorname{grad} f_m\|_{p,\omega} = 0.$$

Then there exist a (p,ω) -precise function f in \mathbb{R}^d , a subsequence $\{n_j\}$ and a sequence $\{c_j\}$ of constans such that $\|\operatorname{grad} f_n - \operatorname{grad} f\|_{p,\omega} \to 0$ and $f_{n_j} - c_j \to f(p,\omega)$ -a.e. in \mathbb{R}^d .

Lemma 3. [O, Corollary to Theorem 4.4.6]. If a sequence $\{g_n\}$ of (p,ω) -precise functions converges pointwise to a function $g(p,\omega)$ -a.e. in \mathbb{R}^d and $\{\operatorname{grad} g_n\}$ is a Cauchy sequence in $L^{p,\omega}(\mathbb{R}^d)$, then g is (p,ω) -precise and $||\operatorname{grad} g_n - \operatorname{grad} g||_{p,\omega} \to 0$ as $n \to \infty$.

Lemma 4. [O, Theorem 4.2.5]. Let f, g be (p, ω) -precise functions in \mathbb{R}^d which are equal (p, ω) -a.e. in \mathbb{R}^d . Then grad $f = \operatorname{grad} g$ a.e. in \mathbb{R}^d .

Proof of Theorem 1. The first assertion of the theorem is a consequence of Theorem III due to Coifman and Fefferman [CF, Studia Math., 1974]. Assume $\int_{\mathbb{R}^d} (1+|x|)^{1-d}|f(x)|dx < \infty$. This is a necessary and sufficient condition for $U_1^{|f|}$ to be finite a.e. in \mathbb{R}^d .

Set $\varphi_n = D^{\alpha} k_{1+|\alpha|,1/n}$ and $g_n = \varphi_n * f$, where $k_{a,b}(x) = (|x|^2 + b^2)^{(a-d)/2}$ in general. We can observe easily

$$\left| \frac{\partial}{\partial x_i} \varphi_n(x - y) f(y) \right| \le \begin{cases} \text{const. } n^d |f(y)| & \text{if } |y| < 2(|x| + 1), \\ \text{const. } \frac{|f(y)|}{|y|^d} & \text{if } |y| \ge 2(|x| + 1). \end{cases}$$

We infer that $\partial g_n/\partial x_i = (\partial \varphi_n/\partial x_i) * f$ and it is continuous in \mathbb{R}^d . Therefore g_n is absolutely continuous along all locally rectifiable curves in \mathbb{R}^d . Setting $K_{1/n}^{i,\alpha}(x) = K^{i,\alpha}\chi_{|\cdot|>1/n}(x)$, we know that $K_{1/n}^{i,\alpha} * f \to T^{i,\alpha}f$ in $L^{p,\omega}(\mathbb{R}^d)$ as $n \to \infty$. We can write

$$\frac{\partial g_n}{\partial x_i}(x) - K_{1/n}^{i,\alpha} * f(x) = \Phi_n * f,$$

where

$$\Phi_n(x) = \begin{cases} \frac{\partial}{\partial x_i} D^{\alpha} \left(|x|^2 + \frac{1}{n^2} \right)^{(1+|\alpha|-d)/2} & \text{on } |x| < 1/n, \\ \frac{\partial}{\partial x_i} D^{\alpha} \left(|x|^2 + \frac{1}{n^2} \right)^{(1+|\alpha|-d)/2} - \frac{\partial}{\partial x_i} D^{\alpha} |x|^{1+|\alpha|-d} & \text{on } |x| \ge 1/n. \end{cases}$$

By the mean value theorem we have $|\Phi_n(x)| \leq \text{const.} 1/(n^2|x|^{d+1})$ on $|x| \geq 1/n$. Hence $\int_{\mathbb{R}^d} |\Phi_n(x)| dx < \infty$. As in [Mi, p.219, Lemma 4.1] we see that $\int_{\mathbb{R}^d} \Phi_n(x) dx$ vanishes.

In view of Lemma 1 and the equality $\int_{\mathbb{R}^d} \Phi_n(x) dx = 0$, we obtain

(1)
$$\lim_{n\to\infty} \left\| \frac{\partial g_n}{\partial x_i} - K_{1/n}^{i,\alpha} * f \right\|_{p,\omega} = \lim_{n\to\infty} \left\| \int_{\mathbb{R}^d} f(x-y) \Phi_n(y) dy \right\|_{p,\omega} = 0.$$

We recall that $K_{1/n}^{i,\alpha}*f \to T^{i,\alpha}f$ in $L^{p,\omega}(\mathbb{R}^d)$ as $n \to \infty$. So naturally each $||K_{1/n}^{i,\alpha}*f||_{p,\omega}$ is finite. Hence (1) gives $||\partial g_n/\partial x_i||_{p,\omega} < \infty$ for each n. The absolute continuity along all locally rectifiable curves being known, it follows that g_n is (p,ω) -precise. From (1) and the fact $\lim_{n\to\infty} ||K_{1/n}^{i,\alpha}*f - T^{i,\alpha}f||_{p,\omega} = 0$ we infer that $\{\partial g_n/\partial x_i\}$ form a Cauchy sequence in $L^{p,\omega}(\mathbb{R}^d)$. Using Lemma 2 we find a (p,ω) -precise fuction g_0 , a subsequence $\{n_j\}$ and a sequence $\{c_j\}$ of constants such that $||\operatorname{grad}(g_n - g_0)||_{p,\omega} \to 0$ and $g_{n_j} - c_j \to g_0$ (p,ω) -a.e. The assumption $\int_{\mathbb{R}^d} (1+|x|)^{1-d} |f(x)| dx < \infty$ implies that

$$|g_{n_j}(x)| = |D^{\alpha} k_{1+|\alpha|,1/n} * f(x)| \le \text{const. } U_1^{|f|}(x) < \infty$$

for a.e. x. Hence we may assume that all c_j are zero so that $g_{n_j} \to g_0$ (p, ω) -a.e.

From (1) it follows that there exists a subsequence of $\{n_j\}$, which will be denoted again by $\{n_j\}$, such that

(2)
$$\lim_{j \to \infty} \left(\frac{\partial g_{n_j}}{\partial x_i} - K_{1/n_j}^{i,\alpha} * f \right) = 0$$

a.e. in \mathbb{R}^d . The relations $\lim_{n\to\infty} \|\operatorname{grad}(g_n-g_0)\|_{p,\omega} = 0$ and $\lim_{n\to\infty} \|K_{1/n}^{i,\alpha}*f - T^{i,\alpha}f\|_{p,\omega} = 0$ show that we may assume that $\lim_{j\to\infty} \partial g_{n_j}/\partial x_i = \partial g_0/\partial x_i$ and $\lim_{j\to\infty} K_{1/n_j}^{i,\alpha}*f = T^{i,\alpha}f$ a.e. in \mathbb{R}^d for each *i*. Taking into account (2) we obtain the equality

(3)
$$\frac{\partial g_0}{\partial x_i} = T^{i,\alpha} f \qquad \text{a.e. in } \mathbb{R}^d \text{ for each } i.$$

In the special case $\alpha=0$ and $f\geq 0$ g_n increases to $k_1*f=U_1^f$ everywhere in \mathbb{R}^d and $\{\operatorname{grad} g_n\}$ form a Cauchy sequence. Lemma 3 shows that U_1^f is (p,ω) -precise. In the general case $|D^{\alpha}k_{1+|\alpha|,1/n}|\leq \operatorname{const.} k_1$ and $U_1^{|f|}$ is finite a.e. in \mathbb{R}^d . Hence applying Lebesgue's dominated convergence theorem, we have

$$\lim_{n\to\infty}g_n(x)=\lim_{n\to\infty}D^{\alpha}k_{1+|\alpha|,1/n}*f(x)=D^{\alpha}k_{1+|\alpha|}*f(x)$$

at every point x with finite $U_1^{|f|}(x)$. Again by Lemma 3 we infer that $D^{\alpha}k_{1+|\alpha|} * f$ is (p,ω) -precise.

Next, we recall that $g_{n_j} \to g_0$ as $j \to \infty$ (p, ω) -a.e. and obtain $g_0 = D^{\alpha} k_{1+|\alpha|} * f$ (p, ω) -a.e. in \mathbb{R}^d . Using Lemma 4 and (3) we derive

$$\frac{\partial D^{\alpha} k_{1+|\alpha|} * f}{\partial x_{i}} = \frac{\partial g_{0}}{\partial x_{i}} = T^{i,\alpha} f$$

a.e. in \mathbb{R}^d for each *i*. Finally since $||T^{i,\alpha}f||_{p,\omega} \leq \text{const.} ||f||_{p,\omega}$, $||\gcd(D^{\alpha}k_{1+|\alpha|}*f)||_{p,\omega} \leq \text{const.} ||f||_{p,\omega}$ as announced.

References

[Mi] Y. Mizuta: Potential theory in Euclidean spaces. Gakkōtosho, Tokyo, 1996.

[Mu] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207-226.

- [O] M. Ohtsuka: Extremal length and precise functions. In preparation.
- [R] W. Rudin: Real and complex analysis. Second edition, McGraw-Hill, 1974.