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- The Hausdorff dimension of the boundary of a tree
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1 Introduction

In this paper we study the Hausdorff dimension of the boundary of a tree with a distance
function. A distance function is defined on a tree and makes the boundary a distance
space. Therefore the Hausdorff dimension can be defined on the boundary in the same
manner as on general distance spaces. Our first aim is the evaluation of the Hausdorff
dimension. For this purpose we introduce an additive function defined on the tree, and a
function X defined on the boundary, which is, roughly speaking, the ratio of decrease of
the additive function and that of the distance function. The function A plays an essential
role for Theorems 1 and 2. Next we consider the relation between the Hausdorff dimension
of a set in the Euclidean space and that of a set in a tree. In fact we can find a set of
a tree which has the same Hausdorff dimension as a given bounded set in the Euclidean
space (Theorem 3). Using these theorems we have a unified method for calculating the
Hausdorff dimension for a set in the Fuclidean space.

Let (X, A,0) be a tree, ie. a simply connected and locally finite graph, where X is a
set of points, A is a set of arcs and o € X which is called the root point. For z,y € X
we denote the natural distance by p (z,y), which is the least number of arcs joining from
ztoyif z # yand p(x,z) = 0. We assume that #{y € X;p(z.y) =1} > 2 for every
z € X. Weset X, = {xeX;p(o,x)=n}forn >0 Let D(z) be the descendant of
z € X,, and p(x) the parent of z, i.e.

D(z) = |J{y € Xisp(w,y) =k —n},

k>n

and p (z) is the point y € X,,_; with p(z,y) = 1. We set p/ (z) = p(p' " ().

Let © be the set of all geodesic rays, where a geodesic ray is a sequence of points
(0,21,Zg,...) such that z, € X, and p (Tn,Tn1) = 1. For § = (x,),, € §), where xo = o,
we denote [£] := {zo, 1, %2, ... }. We call Q the boundary of the tree.

Let [ (z) be a positive function defined on X such that [ (z,,) strictly decreases to 0 as
n — oo for any (), € Q. For £ = (zy),,,n = (¥n), € Q we define

Hxn) fZo=9Y0, - sTn = Yn,Tn = Yn+1,
d(€,n) = (24) fTo Yo T = Yns Tnt1 7 Yot
0 if & =mn.
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Then d is a distance in Q, and Q is a compact space. For z € X let B(z) :=
{€ € Q52 € [€]}. This set can be written as B (z) = {¢€ € Q;d(¢,1) < [(z)} if we take
n € Q with z € []. Therefore B (z) can be considered as a closed ball. Note that B (z)
is also an open ball since the distance d (-,7) is discrete.

For an integer n > 0 a set {z;} ; € X is called an n-covering set of E C Q if E C
U; B (z;) and {z;}; C Uy, Xk For o> 0 and E C Q we define

A (B, 1) 1anl ;)

where the infimum extends over all n-covering sets of E, and

Aa (B,1) = lim A" (E,1).

n—00

A, is called the a-dimensional Hausdorff measure. It is well defined since A” (E, 1) in-
creases when n — o0o. Also we define the Hausdorff dimension of E with the distance
function [ as

dim (E,1) := inf {a; A, (E,1) = 0} = sup {a; A, (E, 1) = oo} .

2 Evaluations

First we remark that {/ (z)} uniformly decreases to 0.
Lemma 1. For any € > 0 we have [ (z) < e except for finitely many z € X.

Proof. Suppose that there are infinitely many z € X such that [ () > €. Then we can take
2, € Xy such that [ (z) > ¢ for infinitely many z € D (z;). Next we take m, € Xo N D (z,)
such that [ (z) > ¢ for infinitely many = € D (z,). Repeat this step, and get a sequence
{zn}, € Q such that [ (z) > ¢ for infinitely many z € D (x,). Since [ (z,) is decreasing,
we have [ (z,) > €. This contradicts our assumption. O

 Usually the Hausdorff measure and the Hausdorff dimension are defined in a distance
space S as follows: Let C (¢, ) be a ball centered at t € S with radius §. Foraset E C S
we define the Hausdorff measure as

mf{z ,ECUC’ 5<r} forr‘>0,

Hy (E) = lim 3, (E) ;

r—0

also we define the Hausdorff dimension as

dim E := inf {o; H, (E) = 0} = sup {a; H,, (E) = o0} .
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When S = ©, using Lemma 1, for any r > 0 we can find n such that K/, (E) < A% (E, 1),
and vice versa. Therefore our definition for the Hausdorff dimension coincides with the
usual one.

Now let ¢ () be an additive function, i.e.

p)= Y o) forze X

yEXn+1ﬂD(:E)

For a nonnegative additive function ¢ and E C ) we define
=inf Y ¢(z;)
J

where the infimum extends over all n-covering sets of E. Since ¢ is additive, ® is inde-
pendent of n.

Lemma 2. ® is a metric and regular outer measure. Especially, if {Aj}j converges in-
creasingly to A, then lim;_,. ® (4;) = ® (A).

Proof. Tt is well known that every Borel set is measurable under a metric outer measure
(See [3, p. 33, Theorem 19]) and that, if 41 is a regular outer measure, then lim;_o 4 (A)) =
1 (A) when {A;}, converges increasingly to A (See [3, p. 17, Theorem 9]). Therefore we
have only to prove that ® is a metric and regular outer measure.

First we shall prove that ® is a metric outer measure. Let E, F C Q with d (E, F) > 0.
We can take n such that [ (z) < d(E,F)/2 for all x € J;5, Xi. Let {z;}; be an n-
covering set of EU F. Then we can divide {z;}, into two disjoint sets {y;}, and {2}
such that E C {J; B (y;) and F C J; B (2;). Therefore

(E)+2(F) <Y 6()+ 3 0() =3 o).

Hence ® (F) + ® (F) < ® (E U F'). This means that ® is a metric outer measure.

Next we shall show that ® is regular. Let A C Q. For any positive integer k we can
find zero-covering set {zy;}, of A with > (zr;) < ®(A)+1/k. Let E = N U; B (@)
Then E is a Borel set with A C E. Since {x;} ; 18 & zero-covering set of E, we have
® (E) < Y, ¢ (x;). Therefore @ (E) < @ (A). O

We introduce a function defined on Q which plays essential role of our result: Let

log1/¢ (z4)

oz 171 (z,) for £ = (z,), € Q.

A(€) = Nou (€) = limint

For the convenience we define

log1/¢ ()
log 1/l (x log 1/1 (z)

Remark that \ (€) > 0 since ¢ (z,) < ¢ (0) and log 1/ (z,) — oo for £ = (z,), € Q.

=00 ifg(x)=
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Theorem 1. Let ¢ be a nonnegative additive function with ¢ (o) = 1. Then, for E C Q,

¢ -esssup Mg (§) < dim (E,1) < sup Ay, (€)
¢€E 4=}

where ¢ -esssup means the supremum except a null set of ®.

Proof. Assume that o > dim (E,1) and let F = {£ € E; A (€) > a}. Also let

F, = {5 € F;l(z)* > ¢(z) forany z € [£]N (U Xk)}.v
k>n

If § € F, then [ (z)* > ¢ (z) except for finitely many = € [£]. Therefore F, converges

increasingly to F.

~ Now let {z;}, be an n-covering set of F,. We may assume that B (z;) N F, # 0. If
€ € B(x;) N Fy, then x; € [£], and thus [ (z;)* > ¢ (z;). Therefore

Zl(%’)a > Z¢($j) > ®(F,).

Hence A2 (F,,l) > ® (F,). Since F, C E, we have
O (F,) <AL (Fo,l) <Ay (Fu,l) <AL (B, =0.

Using Lemma 2, we have ® (F') = 0. This means that the first inequality holds.

Next assume that o < dim (E,1) and A (§) < o for any £ € E. Then I (z)* < ¢(z)
for infinitely many z € [£]. For fixed n and for each £ € E we take the closest point
z € [¢]N (Uan Xk) to o such that I (z)* < ¢(x). Let Y, be the set of such points z.
Then Y, is an n-covering set of E and {B (z);z € Y,,} is disjoint. Therefore

A(ED <Y 1@< Y ¢(z) < (o)
€Yy €Yy
Hence oo = A, (E,l) < ¢(0), which is a contradiction. This means that the second
inequality holds. O

The following lemma is proved by Frostman in the case of the Euclidean spaces ([2,
p. 86, Théoreme 1]).

Lemma 3 (Frostman). Suppose that A) (E,l) > 0. Then there is a nonnegative ad-
ditwe function ¢ with ¢ (0) = 1 such that ¢ (z) < [(x)*/AS(E,l) for all x € X and
¢ (zn) = 0 for sufficiently large n if (z,), € Q\ E. In other words, ®(Q) = 1,
® (B(z)) <1(x)* /A2 (E,l) and ® is supported in E.
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Proof. Fix an integer n. We construct nonnegative additive functions ¢7, 7 =0,1,... ,n,

as follows: Let z € X,,. If B(z) N E = {, then (U () =0 for j =0,...,n Otherwise
Y (z) =1(z)" and

: L(p (2))”

Y7 (x =m1n{1, — —
! (=) j+1 (pi (z)
Let z € X, with B (z) N E # 0. First we have ¢ (z) = I (z)*. Second, if ¥ (p(z)) <
1(p(x))*, then ¥_, (z) =¥y (x) =1 (x)*. Otherwise

)}¢y+1(sc) forj=0,...,n—1

PP, (7)) = fpgp(( (>)))z/)"( Y forz’ € X, with p(z') =p(x).
Therefore ¢, (p(z)) =1 (p(z))*. After several steps we have
vy (p (2)) =1 (P (z))* for some j =0,... ,n. (1)

For every ¢ € E we take x € [€] N X,, and the largest j satisiying (1). Then we find
zero-covering set {ym} of E such that {B (ym)},, is disjoint and ¥ (ym) = 1 (ym)"
Therefore

AL (B,1) < 1 (ym)™ = Y45 (ym) < ¥ (0) (2)

Let © € X; with j =0,... ,n. Then ¢ (z) <97 (z) < - < ¢} (z) and

n () = n L7 )"

¢j ( ) yexé;D(x) % (y) yEXZnD wn ( n-—7j (y)) 7+1 (y>
L(2)” o
o Vi W) =1)"

yeXanD(z) VIt (@) !

Therefore

g () < 1(2)° ' (3)

By (3), {¢%}, is bounded. Therefore by taking a subsequence we may assume that
¥ (1) = lim, o, Y% (z) exists for any z € X. Then we have easily that ¢ is a nonnegative
additive function. Also we have ¥ (z) < I (z)®. If (z,), € Q\ E, then B (z,) N E = @ for
sufficiently large n. Therefore 9 (z,) = 0.

Let ¢ (z) = v (x) /9 (0). Since ¥ (0) > A2 (E, 1) by (2), we have the result. O

Lemma 4. A% (E,l) = 0 implies that A, (E,1) = 0.

Proof. For any integer n we set v = min {l(x) 12 € Upen Xk} and let € < r®. Since
A% (E,1) = 0, we can find a zero-covering set {z;}, of E such that 3°;1(z;)" < e. Then
z; can not be in |J,_, Xs. This means that {z;}, is an n-covering set of E. Therefore
A" (E,l) < . Hence we have the result. O
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Theorem 2. Let E be a compact subset of ). Then

dim (E,1) = sup (¢ -eSSSUP Ay (5)) = inf (Sup Asil (E))
¢ ¢€E ¢

R

where sup,, or infy extends over all nonnegative additive functions ¢ with ¢ (o) = 1.

Proof. Using Theorem 1 we have only to prove that

dim (E,1) < sup (¢—eSS sSup A, (5)) ;
ST e ¢eE

dim (E,[) > inf (sup gl (5)) .
¢ \¢cE

Let a < dim (E,1). Then A, (E,1) = co. By Lemmas 4 and 3 we can find a nonnegative
additive function ¢ such that ¢ (o) = 1 and ¢ (z) < I(z)* /AS (E,1). Then A (€) > « for
any § € E. Therefore ¢-esssupgcp A () > a. Hence we have the first inequality.

Next we shall prove the second inequality. Assume that o > dim(E,l). Then
Ao (E)l)=0. Let Z={r € X;B(z)NE =0} andlet ¢ (z) =0forz € Z. Let ¢ (0) =
Since AL (E,l) = 0, we can find a one-covering set ¥; of E such that D yer L) < 1(0)™
We may assume that {B (y);y € Y1} is disjoint and Y1 N Z = 0. Let

_ W)
ZzeSQ I(2)*

It is well defined since Zerl d(y) =1 We have

¢(y) = for y € V1.

¢ (y) = fory € ¥1.

Next let z € Y, and n = p(0,7). Since A?*' (EN B (z),l) = 0, we can find an (n—l— 1)-
covering set Y5 (x) of E N B(z) such that 2 yevam L (®)* < 1(x)*. We may assume that
{B(y);y € Y2 ()} is disjoint and Y5 (x) N Z = (. Let

L(y)*
(:(:) foryeY,;(x).
ZzEYz(a:) (2)*
It is well defined since }_ .y, .\ & (y) = ¢ (z). We have
L(y)®
L (z)*
Let Y2 = U,¢y, Y2 (z). Then Y5 is an no-covering set of E for some ny and Y2 NY; = §.

Similarly, for every m, there is an n,-covering set Y;, of E for some n,, such that

L(y)®
¢ (y) > l_(o-)E

¢(y) =

6(y) > ZY_4(z) > !

fory e Y,
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and Y,, NY,, =0 if m #m'.
Let ¢ € E. Then we can find z,, € [{]NY,, for each m. Therefore

log1/¢ (xm) < alogl (o) + alogl/l (zy) o
log 1/l (zm) ~ log 1/1 (zm)

This means sup;cp A (§) < a. Hence we have the result. O

3 Comparison principle

We shall discuss the relation between the usual Hausdorff dimension of a set in RV
and that of a set of a tree. The definitions of the Hausdorff measure and the Hausdorff
dimension are mentioned at the begining of the previous section.

Theorem 3. Let K be a bounded set in RYN. Then there exist a tree (X, A,0), a distance
function | and E C § such that A, (E,l) is comparable with 3, (K) for each o > 0,
where the comparison constants depend only on N. Especially

dim K = dim (E, 1)

Proof. Take a cube Qo with K C Q. Let Qp = {Qo}. We divide dyadically Qo into 2V
mutually disjoint cubes. We denote Q; the collection of such 2V cubes. Next we divide
dyadically each cube of Q; into 2V mutually disjoint cubes and we denote Q, the collection
of such 22V cubes. Similarly we get Q,. For every @ € Q,, we can find the unique cube
7(Q) € Qu—y with Q C ¢(Q).

Next we take a homogeneous tree such that # (X, N D (x)) = 2" for every z € X,,_1.
Let f be a bijective mapping from |J,5,Qn to U,5o Xn such that f(Q) € X, and
£(2(Q) =p(f Q) for Q € Q. Also let L(f (@) = diam Q.

Let t € K. We can find Q, (t) € Q, for each n such that ¢t € Q, () and Q,_1 (t) =
q(@n (1) Weset E={(f(Qn (), € %t € K}

Now let {zn},, be an n-covering set of E. Let ¢ € K. Since (f(Q;())); € E, we
can find an m with (f (Q; (¢))); € B (zm). Then there is a j such that f (Q; () = zp.
Therefore t € Q;(t) = f' (zm). Hence K C U, f™' (zm). Let C,, be a ball with
radius diam f~! (2,,) such that f~' (z,,) C Cp,. Then {C,,},, be a covering of K. Since
diam f~1 (z,,) = I (Tm), we have K" (K) < > 1(z,)" where r = maxy, [ (,,). Therefore
H (K) < A" (E,l). Since r — 0 when n — oo, we have H, (K) < A, (E, ).

Let C = C (t,4), the ball centered at t € R with radius d, and

J(C) = {QE UQn;diamQ§5<diamq(Q),QﬂC7ﬁ®}‘

n>1

Remark that the number of J(C) is less than a constant ¢ which is independent of C.
Now let {Cp.},, be a covering of K where C, is a ball with radius 4,, and 4,, < r. For
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§ = (wn), € Ewecanfindt € K such that z, = f (Q, (t)). We know that t € C,, for some
m and diam @, (t) < 6, < diam ¢ (Qy, (t)) for some n. Therefore we have @, (t) € J (Cy,)
for some m and some n. Note that £ € B (z,) = B(f (Qn(t))). Let ng be the smallest
number satisfying Qn, (t) € U,, J (Cn) for some t € K. Then {f (Q);Q € U,, J (Cr)} is
-an no-covering set of E. Since [ (f (Q)) = diamQ < §,, for Q € J (Cp,),

AP(EDSY T DT @)Y e
m- QeJ(Cnm) m

Hence AZ° (E,1) < ¢H?, (K). Since ng — oo when r — 0, we have A, (E,l) < ¢H, (K).

Hence we have the result. O

We shall give some examples. Using Our theorems, we get the Hausdorff dimension by
simple calculation for some sets in RY.

Example 1 (The 1/3-Cantor set). dim K = log2/log3 if K is the 1/3-Cantor set.

Proof. Let (o be the closed interval [0,1]. We divide @ into three intervals [0, 1/3],
(1/3,2/3) and [2/3,1]. We denote Q; the collection of such three intervals. Next we divide
each interval of Q; into mutually disjoint three intervals and denote Q, the collection of
such 3% intervals. Similarly we get Q,. Figure 1 shows the intervals of Q;, Q; and Q,.
Next we take a homogeneous tree such that # (X, N D (z)) = 3 for x € X,,_;. Also let
l(z) = 3™ for x € X,. Take Y, C X, such that Y5 = {0} and # (Y, N D(2)) = 2
for x € Y,_;. In Figure 1 the hatched intervals correspond to Y;, Vi or Ys. Let F =
{(zn), € 2, €Y, for all n}. Then we can prove dim K = dim (E,!) similarly to the
proof of Theorem 3. :

—

1: The Cantor set

Forz € X, let ¢(x) =2 if B(x)NE # 0 and ¢ (z) = 0 otherwise. Then ¢ is a
nonnegative additive function with ¢ (0) = 1. For { = (z,), € E

log1/¢(z,) log2
log1/l (z,) log3’

Therefore A (§) = log 2/log 3. Hence Theorem 1 implies the result. O

Example 2 (The Sierpinski gasket). dim K = log3/log?2 if K is the Sierpiniski gas-
ket. ' : ' '
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Proof. Let Qo be the closed triangle. We divide Qo into four disjoint triangles by con-
necting midpoints of edges where the center one is open triangle and some vertexes are
removed from other three. We denote Q; the collection of such four triangles. Next we
divide each triangle of Q; into four disjoint triangles and denote Q, the collection of such
4? triangles. Similarly we get Q,. Figure 2 shows the triangles of Q,. Next we take a
homogeneous tree such that # (X, N D (z)) = 4 for z € X,_;. Also let [(z) = 27" for
z € X,. Take a set E corresponding to K similarly to Example 1. (In Figure 2 the
hatched triangles correspond to Y3.)

2: The Sierpinski gasket

Forz € X, let ¢(x) = 3™ if B(z)NE # 0 and ¢ (z) = 0 otherwise. Then ¢ is a
nonnegative additive function with ¢ (0) = 1. We have A(§) = log3/log2 for £ € E.
Therefore Theorem 1 implies the result. O
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