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BOUNDEDNESS OF OPERATORS ON BESOV SPACES
ON A FRACTAL SET

HisAKoO WATANABE ({3t ¥F)

Ochanomizu University

1. Introduction

Let D be a bounded domain in R?% (d > 2) such that the boundary 0D of D is a
B-set satisfying d — 1 < 8 < d. We say that a closed set F is a B-set if there exist a
positive Radon measure 4 on F and positive real numbers by, by, 7o such that

(1.1) bir? < w(B(z,7) N F) < byrP

for all z € F' and all 7 < 79, where B(z,r) stands for the open ball in R? with center 2
and radius r. Such a measure y is called a S-measure.

We give examples.

1. If D is a bounded Lipschitz domain in R%, then 8D is a (d — 1)-set and the surface
measure is a (d — 1)-measure.

2. If @D consists of a finite number of self-similar sets, which satisfies the open set con-
dition, and whose similarity dimensions are 3, then 8D is a 3-set and the 3-dimensional
Hausdorff measure restricted to 0D is a 3-measure. The Von Koch snowflake is a typical
example for d = 2 and 8 = log4/log 3.

We consider Besov spaces on a §-set dD. In general let F be a closed B-set in R®
and p be a B-measure on F. Let 0 < 8— (d—1) < o < 1. We define a Besov space
A% (F) by the Banach spage of all function f € LP(u) such that

/ [f(z) = ()P

la; — zI,B+Pa

du(z)du(z) < oo

with norm

s = ([ 1@Pas) " + ([ %f:;ﬁil’p d,;(xm) v

Hereafter we shall fix a S-measure y on dD and suppose D C B(0, R/2) with R > 1.
We may assume that (1.1) replaced F' with 8D holds for all z € 9D and all r < 3R.

Further we denote by V(G) the Whitney decomposition of an open set G (cf. [S])
and simply set V = V(R?\ 4D).
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According to Jonsson-Wallin, we constructed in [W3] an extension operator £ having
the following properties.

Proposition A Assume that D C B(0, R/2). Then there ezists a linear operator £
from LP(u) to LP(R?) having the properties (i)-(vi):
(i) £(f) is a C*-function in R*\ 8D,

i) E(f)=f on 0D,
iii) supp £(f) € B(0,2R),

(
(
Elv) £(1) =1 on B(0,R),
/ )Py < c / FPdu,

v
where ¢ 1s a constant independent f,
(vi) Let Q € V be a cube with common side-length 1. Then, for eachy € QN B(0,2R),

()| < =B / F@ldu(z) (=1, ,d),

B(a,sl)

where a is a boundary point satisfying dist(0D, Q) =dist(a,Q) and s = 6vd, and c is a
constant independent of I, y and f.

We note that dist(A, B) stands for the distance between a set A and B.

In the above Besov space our aim is to prove the boundedness of the operators K3
and K, which are important to solve the Dirichlet problem for D and RZ\ D by layer
potential method.

The operators K; and K, are defined as follows: Define, for f € A8 (0D) and z € 0D,

Kif@)= [ (TN VNG~ 1)y
RI\D
and if it is well-defined and K f(z) = 0 otherwise, and

Kof(z) = - /D (VoE(F)(¥), Vol (2 ~ y))dy

if it is well-defined and K f(z) = 0 otherwise, where

N(;C — y) — wd(d—2)|lm_y|d—2 ifd>3
SE g lo—yl  jfg=2

and wy stands for the surface area of the unit ball in R4,
But it is difficult to prove directly the boundedness of K; and K, on A% (0D). So we
introduce another Besov spaces B+ and B ,, which are near spaces to AP (0D). The
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space B p (resp. B ,) is, for p, a satisfying p > 1 and p — pa d+ (8 > 0, defined to
be the Banach space of all f € L?(u) satisfying

/D IVE(F) W) PS()P P>~ dy < oo

resp- [, o [VED@PSP 442y < o),

with norm

I71eg, = ( f 1) T ([ ivenwpsarr—ssoa) N
1/p

1/p
(resp. [Ifllgz, = (/ifl”dﬂ) + (/Rd\_D_IVc‘?(f)(y)|p5(y)”_”°“d+ﬁdy> ),

where §(y) stands for the distance of y from 0D.

Hereafter we assume that p >land1-(d-f)<a<1- i;;é and denote by G the
set D or R4\ D.

To study the relations of B; ,, or Bf , and A4%(dD), we introduce the following max-
imal function on 0D x 9D. To do S0, deﬁne

Fo={yeR%d(y) < T

and fix a real number b satisfying 1 < b < 11/10. We define, for h € LP(u x p) and
Y € Gn FQ,

M (u x p)h(y)

|7z, 2)|dp(z)dp(2);

~— | -

= sup /
{ u(B(y,r) N 0D)? Jpyrnep JB(y,r)neD
1.

Denote by vy the positive measure on G defined by

bi(y) <r <

| 2

(1.2) vol(E) = /E Py

for a Borel set E.
We shall obtain the following lemma in §2.

Lemma 1.1 (i) Lett > 0, h € L*(u x u) and set

Ey = {y € GN Fo; M(pu x p)h(y) > t}.
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Then
w(E) < et [ [ Ih(o, 2)ldute)duCz),

where ¢ 1s a constant independent of f and t.
(ii) Let p>1 and h € LP(p x p). Then

/ M (s x p)h(y)Pdvo(y) < / \h(z, 2) Pdps(z) du(2).

The above lemma will be applied to prove the following theorem in §3.

Theorem 1 Letp >1and 0 <1—-—(d—-f) < a<1-(d-p)/p. Further let
f € A2(0D). Then

|, VD WPy < el

where ¢ is a constant independent of f.

We shall also introduce another maximal function. To do so, we define two measures.
Fix a real number b satisfying 1 < b < 11/10 and let A € R satisfying d — 8+ A > 0.
The measure 73 (resp. 75 ) is defined by

Ho®) = [ @y e rp®B) = [ sara)
ENGNF, EN(Fo\G) .

for a Borel measurable set E. We use 73 (resp. 7y ) instead of T;:G (resp. Ty ¢) if there
is no confusion.
Let u € L*(ry ). The maximal function M(7y )u is defined by

M (75 Yuly) = sup{ ——

N R
7] Ja, AT @) << )

for y € GN Fy.
We say that G satisfies the condition (b) if there exist a constant ¢ and r; > 0 such
that

(1.3) |B(z,7) NG| > er?

for each z € 8D and each r < 71, where |A| stands for the d-dimensional volume of a
set A. We note that, if G satisfies the condition (b), we may assume that (1.3) holds
for r < 3R.

We shall prove the following lemma in §2.



169

Lemma 1.2 Let d — B+ A > 0 and assume that R%\ G satisfies the condition (b).
(i) Lett > 0 and u € L*(7y), and set

Ey = {y € G N Fo; M(757)u(y) > t}.
Then
c
) < [ juldrs @),

where c is a constant independent of u and s.
(ii) Let p > 1. Then

[ MEDuwrart o) < ¢ [ P @)
for every u € LP(7y7).
This lemma will be useful to prove the following theorem in §4.

Theorem 2 Assume that D is a bounded domain in R* such that R*\ D is also
connected and 0D is a B-set (d—1 < B < d). Letp > 1 and1—(d—f) < a < 1—-(d-p)/p.
(i)If R%\ D satisfies the condition (b), then K is a bounded operator from B, to
Bt .
ap
(ii) If D satisfies the condition (b), then K3 is a bounded operator from Bt , to By ,.

2. Maximal functioné

We begin with estimates for two measures p x p and vo defined by (1.2).

Lemma 2.1 Fiz b satisfying 1 < b < 11/10. Then

w(B(y,r)NG) < err? < 02/ / dp(z)du(z)
B(y,r)ndD.J B(y,r)N8D

for every y € GN Fy and every r satisfying bd(y) < r < (3/2)R.
Proof. In [W1, Lemma 2.2] we saw that

(2.1) / 5(y)*dy < cyptte
» B(x,p)

for every z € 0D and every p < 3R if 8 —d < k.
Let y € GN Fp and bd(y) < 7 < (3/2)R. Pick a point 2z, € D satisfying 6(y) =
|y — z,|. Noting that B(y,r) C B(zy,2r) and using (2.1), we have

/ 5($)2ﬁ—ddx < / 5(:1:)2‘6“‘1 < cor?h,
B(y,r)nG B(zy,2r)
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which shows the first inequality.

Since B(zy, (bgl) r) C B(y,r) and 9D is a (-set, we also get the second inequality.
(I

Let us prove Lemma 1.1.
Proof of Lemma 1.1. Let h € L}(pu x p) and ¢ > 0. Put

E;={y €GN Fo; M(uxp)f(y) >t}

For each y € Ey, there exists a ball B(y,r) with b6(y) < r < R/4 such that

(2.2) / / h(z,2)] > ¢ / du(z) / d(z).
B(y,r)NéD J B(y,r)NdD B(y,r)NdD B(y,r)Né8D

Therefore we can find a countable covering { B(y;,7;)} of E; such that B(y,r) = B(yi, )
satisfies (2.2).

With the aid of Vitali’s covering lemma we can choose a subfamily {B(wj, p;)} of

{B(y;,r:)} such that {B(wj,p;)} are mutually disjoint and {B(w],5p:,)} covers Fj.
Then, by Lemma 2.1 and (2.2),

/ 8(y)*~dy < Z/ 5(y)*P~dy
Ey

B(w;,5p;)NG

<clz(5pj) '6<CZZ/
5

B(w;,p;)N8D /B(w]- ,p;)NOD

/ du(z)
B(w; ,pmaD B(w;,p;)ND

|h(z, 2)|dp(z)dp(2).
Noting that {B(wj, p;)} are mutually disjoint,

w(E) < 2 [[ Into, 2)lduta)du(z),

which shows (i).
The inequality (ii) deduces from (i) by the usual method. O

When G satisfies the condition (b), the following lemma is fundamental.

Lemma 2.2 Assume that G satisfies condition (b). Let 0 < ¢ < 3R, 0 <r < 3R,
z € 0D and put
E.={z € G;é(z) < €}.

Then

(2.3) c1ePrf < / dz < coed™PrP,
E.NB(z,r)
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where c1 and ¢y are constants independent of €, r and z.

Proof. In [W4, Lemma 2.1] we proved a lemma corresponding to this one under more
strong condition. But the method used in the proof of Lemma 2.1 in [W4] is available
‘under our weaker assumption without any change. g

Lemma 2.3 Suppose R\ G satisfies the condition (b). Letd — B+ A > 0 and
1 <b<11/10. Further let zo € GN Fy and bd(zo) <7 < (3/2)R. Then

(2.4) / §(W)* < err*td < e / 3(y)*dy,
B(zo,r)NG B(z0,r)N(Fo\G)

where c1 and cy are constants independent of o and r.

Proof. By (2.1) we get

/ 6(z) dz < / §(z) Mz < eyrrte,
B(zo,r)NG B(x{,2r)NnG

where z; is a point of D satisfying §(z) = |z¢ — x|, which gives the first inequality of
(2.4).

- We next prove the second inequality of (2.4). First we assume that A > 0. Let

zo € G N Fy, bd(zo) <r < (3/2)R and put

E;={ye F\G;é(y)* <277}
Then y € E; implies d(y) < 279/2. Noting that r(1 — 1/b)) < r — 8(zo), we get

I= S(y) dy > / (y) dy

/B(mo,r)ﬁ(Fo\a) B(zh,r(1-1/6))N(Fo\G)-

. o0
20222j

Jj=jo

/ dy,
JB(z},r(1-1/b))NE;

where jo is the integer satisfying
Jo—1 J
(2—1/*) s ra-1/b) > (2—1”) °

Noting that 279/* < r(1—1/b) < r < (3/2)R for every j > jo, we get, by Lemma 2.2,
oo
I>cs ) 279rP(1—1/b)P(279/2)2-P
J=jo
(e ]
>y 3 rBg(HE-PINI 5 o i9=(LHE=8)/Nio,

Ji=Jjo
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Noting that d — 8+ A > 0 and

g~ (A=) N — (z—jo/A)AM_ﬁ > ¢ (r(1 = 1/0))*7P7* = cprit+d=h,

we get
I> csrﬁrd"ﬁ‘*""‘ = csrd+)‘.

This gives the second inequality of (2.4) in case A > 0.
In case A < 0, we put

E; ={ye F\G;d(y)* > 27}

and can prove the second inequality of (21_1_2 by the above method.
Finally, assume that A = 0. Since R%\ G satisfies the condition (b), we have

/ sy > [ dy > cor.
B(mo,m)N(Fo\G) B(z),r(1-1/b))N(Fo\G)

Thus we also see that the second inequality of (2.4) holds. O

Let us prove Lemma 1.2 by using the above lemma.

Proof of Lemma 1.2. Since the assertion (ii) deduces from (i) by the usual method,
we shall prove only (i). Let y € E;. Then there exists a ball B(y,r) such that bi(y) <
r < R/4 and

(2.5) /B @l (@) > / ars (z).

B(y,r)

Hence we choose {y;} C E; such that

Es CUB(yj,75),  bi(y;) <rj <

=Y

and B(y,r) = B(y;,r;) satisfies (2.5).
Using Vilali’s covering lemma, we select a subfamily { B(wg, px)} of {B(y;,r;)} such
that {B(wg, pr)} are mutually disjoint and

E; C Uy B(wg, 5pk)-
Then, by Lemma 2.3 and (2.5),

(B < 7 (B(ws, 5pr)) < 1 (5px) ™
k

gz/ dTAs—Z/B u(e)ldrs (@).

B(wk,pr) (we )Pk)

Noting that {B(wk, px)} are mutually disjoint, we have the inequality of (i). O
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3. Proof of Theorem 1
In this section we shall prove Theorem 1 by using Lemma 1.1.

Proof of Theorem 1.  Let {Q;} be the Whitney decomposition of R4 \ 8D in
Proposition A. Denote by /; and a; the common side-length of Q; and a boundary
point satisfying dist(0D, Q;) = dist(a;, O,), respectively. Put

1

b= —
T w(Blag,nl5)) Jpa;my)

f(w)dp(w),

where 7 is a fixed positive real number satisfying 0 < 7 < 1/4 and used in the definition

E(f)- -
With the aid of Proposition A we have, for each y € Q;

IVE(f - b) )]
1
< v /| o ) / o ) = Sl

s [ g O,
- B(a;,sl;) ( ) B(a;,nl;) |Z—wf,3/£0+a )

where s = 6v/d. On the other hand let y € @; and z; be a point in @, satisfying
I:L'j - ajl :dist(aj, Qj) Ifze B(aj, Slj) N oD, then
ly — 2| < ly — 5| + |z — aj| + |a; — 2]
< Vdl; + 4Vdl; + sl = 11Vdl;.

Putting s = 11v/d, we have

B IVE(f = b)W)e(y) R
1

= | du(z) [ ey w)ldu(w),
lj B(y,s'l;)N&D B(y,s'l;)N8D

where h(z,w) = Iﬁ(_zw‘l‘ﬂijgill

Put s” = R/(s'20V/d). First, let l; < s"and z € Q;. Then

<ecs

§'6(x) < §'5Vdl; < g

Noting that
#(B(y,s'l;) N 0D) < pu(B(a;,25'l;) N D) < cylf,
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we have, by Lemma 1.2 and (3.1),

IVE(f = b)) @)I0(y) > PP < esM (i x p)h(y).

By virtue of Proposition A, (iv) we obtain

3 / VE(f) () Po(y)Pra-i+?

1;<snt

<y / VE(F - b)) P8 ()P PP (y)*~dy

I; <s"

< cg Z M(p, X wyh(y)Pdvo(y) < 7 // h(z, w)Pdp(z)p(w).
We next assume that [; > s”. Then, by y € Q;, Proposition A, (vi) implies

VENWI el [ @) < e (@) Il

B(a;,sl5)

Noting that supp £(f) C B(0,2R), we have

S / IVE(f) () PO(y)P—Po= "+ dy

l;>s"

<o ()PP F1I15 /B(o,zR) (2R)p_pa—d+ﬁdy < cullfI5-

Thus we have

/Rd IVEF) ) PS(y)P P~ Py < ¢z (//| waig)ipadp(Z)du(w)-i—Hf][g),

which completes the proof.

4. Proof of Theorem 2

In this section we prove Theorem 2. The proof of this theorem is essentially same
as that of Theorem in [W4]. But we need improve on it to be available in the case
B=d-1.

Proof of Theorem 2. (i) We first show that

(4-1) (/ [Klf(z)l?du(z)) v <allfllss, -
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Set ¢ = p/(p — 1). Choosing €; > 0 satisfying €; < a, we have, for z € 8D,

/p
[K1f(2)] < c2 (/Rd\_ﬁ IVE(F)(y)[P8(y)PA—a—(d=B)/p)| 5 _ yl—,@+61pdy)

: 1/q
y / 5(y)a0-a=(@=B)/D)|, _ ylai=d+B/p=cr) gy |
RAD

Noting that —g(1—~a—(d—p8)/p)+d—F > 0 and —¢(1—a—(d—pB)/p)+q(1—d+B/p—e€;) =
g(o — €1) > 0 and using Lemma 2.3 in [W1], we get

1/p
K1 f(2)] < e ( / _IVE(D)w)Irs(y)yra-em=/p)|; yrﬁwdy) .
RI\D
. Hence
[ 1t Paute)

<as [ IVED@IPS@PE @Oy [ |z ytrarduz)
RN\D

<esllfli5- -
@, p
This shows (4.1).
" We next prove that there exists g > 0 and cg > 0 such that

1/p
(4.2 ( / fVE(Klf)(w)l”é(rv)”‘p"‘d+ﬂdx) < collfllg=
DN{é(z)<toR}

for every f € B ,,.

To do so, let Q@ € V, Q@ C D and a be a boundary point satisfying dist(0D, Q) =
dist(a, Q). Further denote by z¢ and ! the center and the common side length of Q,
respectively. We set ‘

o) = [ (VE()TuN o~y

Let x € Q. We write, by Proposition A,

<ed@) [ duta)

B(a,sl)

[ VENWITNG - ) - VN - y)ldy
B(0,2R)\D
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where s = 6v/d. Note that a cube @ € V with the common side length [ has the
following property.

1Vd < dist(Q,8D) < 4lVd.
Since IVd < §(x), we write

1@ <ed@™ [ aus) [ V£,
B(a,68(z)) B(2,5())n®RAD) 12 — Y%

- ] V(N ®)]
+ esd(2) /B oy ) /B VD)l g,

(0,6(z))N(RAD) |To — y[d~1

cete? [ auia) v.EDWI,
B(a,66(z)) {|z—y|>5(m)}ﬂ(Rd\3) |Z h y|

+ 085($)—ﬂ/ du(z / lvyg(f)(g)!dy
B(a,65(x)) {lzo—y|>6(=)}nRND)  1To — Yl

= I (z) + I2(z) + Is(z) + Li(x).

We set G = D and estimate I;(z). If y € R4\ D, z € B(a,68(z)) and |y — 2| < 6(z),
then
z -yl <|z—al+la—2l+]|z -yl
< 26(z) + 66(z) + d(z) < 2FF15(x),
where kg = 3. Since d—8—1+a > 0, we pick € > 0 satisfying d—f—14+a—e > 0, and put

t = q(1—a—(d—B)/p+e/p) and A = —t—e. Note that d—F+A = ¢(d—B~1+a—¢€) > 0.
We set F1(y) = |V,E(y)|6(y)". Then

(4.3) I (z)d(z)

< cod(z)t 1P /  F@)sy) dy
{|z—y|<2*0+16(z)}N(RI\D)

/ |z — Y| du(z)
|z—y|<6(x)

< c106(z)= /  Fi)sw) .
{|z—y|<2*k0+18(z) N (RI\D)

. 1 |
We set b = 11/10 in the definition of M(7y ). Further set {o = 2—02"’“‘)"1 and
Dy = {z € D;é(z) < toR}.
Suppose z € @ and QND; # @ and z; € QND;. Then é(z) < 5vdl < 56(x1) < 5toR.
Hence 2k0+1§(x) < R/4 and 2ko+! > 1. Noting that

/ _ §(y)*dy < enr®t,
B(z,r)N(Fo\D)
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we have, by (4.3),
11(37) < Cle(T)‘—)Fl(.CU).

We next estimate I3(z). To do so, let @ N Dy # 0 and z € Q. Then the inequalities
d(zo) > 6(z) — |z — x0|>2 ?l and d(z) < 5V/dl
imply §(zq) > 55{%). Hence
B@)3()" < exsdla)' 1 Fb(a) 3(0) 4+ [ Fy()8(u) dy

{lzo—y|<é(2)}N(RI\D)

< c140(z) A / _ F(y)d(y) dy.
{l2—y|<26(2)}N(R4\D)

Noting that 26(z) < 2k+1§(z) < R/4, we also get
Iz(a‘}) S 615M(7‘/\—)F1(.'17).

Since pt + A = p — pa — d + 3, we have, by Lemma 1.2,

(4.4) Z Z/Qlj(x)p(S(x)p_pa"dJrﬂdm

QNAD#0 j=1

Y /Q 1 () 5(x)Ptdr} (a)

QND:#0 j=1

<ae 3 [ MEDR@raT@ <en [ FRra o)
QND;#07 9 Fo\D

Sen [ IVED PSPy

We next consider I3(z). Let £ € Q and QN D; # 0 and z; € Q N Dy, and put
u=—g(l—a—(d-pB)/p) and F3(y) = |[V,E(f)(y)|6(y)~*. We write

I3(z)d(z)™"

Fy(y)o(y)" dy

du(z / o
B(a,66(z)) 2k=1§(z)<|z—y|<2*8(x) |z =yl

1
+c186(x) 7P / du(z) / F(y)é(y)" 7y
B(a,65(z)) |z—y|>2m5(x) IZ y'

= I31(CC) -+ I32(.'E),
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where m is the greatest integer satisfying 2 +t™§(z) < R/4.
If1<k<mand |z—y| < 2% (x), then |z — y| < 2%+*§(z) < R/4 and 2FotF >
2ko+1 > 9 Using Lemma 1.2 and noting that u < 0, we have

I (z) < 1o Y 8(z)~ 2~ kD)~ / | Fa(y)5(y)"dy

k=1 !x_y|S2k0+k6(m)

<ec 1)k (Qkotk g (g ‘“‘d/ Fy(y)8(y)*d
< a0 Y (24 ( (z)) o Ji<arsse 2(y)8(y) " dy

< ca Z(Qu)k> M (7, ) Fa(x) < coaM (7, ) Fo(x).
We next estimate Iz2(x). Since

Loz < casd(@) P (278(2)) " 6(z)? /B o FED W

— cogb(a)-ud (2m) 4 / IVEH)W)ldy

B(0,2R)\D

and R/4 < 2ke+mF15(z), we get
Lo(2) < casd(z) ™" / IVEW) ()ldy.
B(0,2R)\D

Similarly we can estimate

Iy(z) < c2s (M(TJ)Fz(iL’) + 5(93)_“/

B(0,2R)\D

IV5(f)(y)|dy> :

Noting that —pu + v =p — pa — d + 3, we get

E: §4: —pa—d+p
I'$p5$pp dr

QND1#0 j=3

YD /Q 1;(@)Po(z) P dr ()

QND1#0 j=3

<ew 3 /Q M(r;) Fy(a)Pdr (2)

QND1#0

o 3 [ s@ran@(f o vEnwi)

QNDy#d
= J1 -+ J2
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Lemma 1.2 yields

J1 < 627/ _ Fy(y)Pdry (y) < Czs/ _|VE(F) () |Pé(z)PPr—d+B gy,
Fo\D /B(0,2R)\D

We next estimete J;. Noting that —(p—1)u > 0 and d—fB+u = q(a—1+d— ) > 0,
we get

Cag T —(p—1)u T
Jy < /D 5(x)= Vg ( /B (O’zm\ﬁxveu)(y):dy)

p/q
< ¢30 ( / _|VE(F) () |Po(z)PPa—dtP dy) ( / _5(y)“dy)
B(0,2R\D - B(0,2R)\D

< esill fllg: -

Thus we see that

(4.5) > Z/ (2)Po()P~Pom P < 63sz||’”

QND1#0 j=3
From (4.4) and (4.5) we deduce

/D VoE (KL ) (@) [P ()PP B do

< [ v - s @iy

QeV(D), QND1#0
<
—_ C33“f”3;‘p’

which shows (4.2).
Finally we shall show that

(4.6) Vo€ (B f)(@)Po()P PP dz < caal| f-

/Dn{é(a:)ZtoR}

To do so, let k1 be the greatest integer such that @ N {z € D;d(z) > toR} # 0 for
some kj-cube Q. Let @ be a k-cube satisfying ¥ < ki and put 27% = [. Then, by
Proposition A,

/Q Vo8 (K1) (@) P3(2)P P~ do

< 35 /Q (5(x)—p(1+ﬁ)5(m)p—pa—d+5dx (/B( ) IKJ(z)[du(z))

< czel P KL S
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By [W1, Lemma 3.3] the number of k-cube included in D is at most c372%#. Therefore
we have

> / VoE(K1f) (@) [P6(2)P P>~ 4P dy < c3sl 7P| K1 £|I2,

QEVL(D), QND1#0

where Vi (D) = {Q € V(D);Q is a k-cube}. This and (4.1) imply

/ Vo (K0 ) @)lP3 (@) 7=+ da
Dﬂ{é(w)>toR}
a—p
< 30 @)K < el
k=—o00

which gives (4.6).
Thus we see that K; is a bounded operator from B[;yp to Bj;,p.
(ii) Setting G = R4\ D, we can also prove by a similar method that K is a bounded
operator from B , to By ..
O
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