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Harmonic functions in a cylinder with the normal derivatives
vanishing on the boundary
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1 Introduction

Let R" (n > 2) denote the n-dimensional Euclidean space. When we consider the
Neumann problem for an infinite cylinder

T.(D)={(X,y) eR*; X € D,~c0 <y < o0}

with a bounded domain D of R"~1, the solution of it is not unique, because we can make
another solution from a solution by adding harmonic functions in I', (D) with the normal
derivatives vanishing on the boundary. Hence, to classify general solutions we need to
characterize such functions. If D = (0,7) and [',(D) is the strip

H=A{(z,y) e R} 0<z <m —00<y< oc},

then by applying a result of Widder [6, Theorem 2] which characterizes a harmonic func-
tion in H vanishing continuously on the boundary 0H of H, we can obtain the following
result

Theorem A. Let h(z,y) be a harmonic function in H such that Oh/0x vanishes
continuously on 0H. Then

h(z,y) = Aoy + Bo + Z(Akeky + Bre™) cos kz,
k=1
where the series converges for all x and y, and all Ag, By, Ay, By, A3, Ba, ... are constants
such that .

2
Age® + Bre ™ = ;r—/ h(z,y)coskzdr (k=1,2,3,...).
0

Although this theorem is easily proved by using the fact that Oh/dz is a harmonic
function which vanishes continuously on 8H, we can not proceed similarly in the case
where [',(D) is a cylinder in R*(n > 3). This kind of problem was originally treated by
Bouligand [1] in 1914.
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Theorem B (Bouligand [1, p.195]). Let h(X,y) be a harmonic function in T (D) such
that the normal derivative of h vanishes continuously on the boundary 8T, (D) of T, (D).
If (X, y) tends to zero as |y| — oo, then h(X,y) is identically zero in T, (D).

In this paper we shall prove a cylindrical version of Theorem A (Theorem). As Corol-
laries we shall obtain two results generalizing Theorem B (Corollaries 1 and 2).

2 Preliminaries

Let D be a bounded domain R (n > 3) having sufficiently smooth boundary 8D.
For example, D is a C?* -domain (0 < o < 1) in R*! surrounded by a finite number of
mutually disjoint closed hypersurfaces ( see Gilbarg and Trudinger [3, pp. 88-89] for the
definition of C** -domain). Consider the Neumann problem

(2.1) (An-1+ p)p(X) =0
for any X = (21,22, ,Zn-1) € D,

(2:2) oim  (Va1e(X), v(X7)) = 0

for any X' € 8D, where

52 52 52 0 0 0
Apy = 'a?%+5:c—%+"'+5}—72:’ Vn-1= (811’33627”.,3:%—1)

and v(X') is the outer unit normal vector at X' € 8D.

Let {11x(D)}72, be the non-decreasing sequence of non-negative eigenvalues of this Neu-
mann problem. In this sequence we write ux(D) the same number of times as the dimen-
sion of the corresponding eigenspace. When the normalized eigenfunction corresponding
to ux(D) is denoted by ¢r(D)(X), the set of sequential eigenfunctions corresponding to
the same value of (D) in the sequence {yx(D)(X)}$2, makes an orthonormal basis for
the eigenspace of the eigenvalue (D). It is evident that ue(D) = 0 and

@0(D)(X) = DI (x € D), |D|= [ ax.

In the following we shall denote {ux(D)}32, and {px(D)(X)}2, by {u(k)}2, and
{pp(X)}52, without specifying D, respectively. We can also say that for each D there is '
a sequence {k;} of non-negative integers such that ko = 0, k1 = 1, u(k;) < p(kir1),

plki) = plhi+1) = p(ki +2) = ... = p(kis — 1)

and {@k;, Pri+1,- - > Phiyy—1) 18 an orthnormal basis for the eigenspace of the eigenvalue
p(k;) (i=0,1,2,3,...). Since D has sufficiently smooth boundary, we know that

u(k) ~ A(D,n)E¥™Y (k- o)
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and
> {er(X)} ~ B(D, n)t™ V2 (t = 0)

k)<t
uniformly with respect to X € D, where A(D,n) and B(D,n) are both constants de-
pending on D and n (e.g. see Carleman [2],Minakshisundaram and.Pleijel [4], Weyl [5]).
Hence there exist two positive constants M7, M, such that

MEY D < (k) (k=1,2,...)

and
lor(X)] < MokY? (X € D,k =1,2,...).

3 Statement of our results

The gradient of a functions f(P) defined on I',(D) is

Val(P) = (GL(P), s 5o (P g (P) (P = (zn,20,e. 0-1,8) € TalD)).

We first remark that both
I(P) = eV¥ W (X) and Jy(P) = e VMg (X) (P = (X,y) € Tu(D))
are two harmonic functions on I', (D) satisfying

lim  (V,I(P),»(Q)) =0 and lim (V,J(P),v(Q)) =0,

P—Q,Pel,(D) P—Q,Pel',(D)

respectively, where v(Q) is the outer unit normal vector at @ € o', (D).

Theorem. Let h(P) be a harmonic function on T',(D) satisfying

(3.1) | lim  (Vah(P),1(Q)) =

P—Q,P€lA (D)
for any Q € 0T',(D). Then
h(P) = Aoy + Bo + D (Axli(P) + BiJk(P))
k=1

for any P = (X,y) € ['w(D), where the series converges uniformly and absolutely on any
compact subset of the closure Tp(D) of T'n(D), and both Ay, By (k =0,1,2,...) are two
constants such that

(3.2) ApeVHRY L Bre~ “ky—/ h(X,y)er(X)dX (k=1,2,3,...).
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Corollary 1. Let p and q be two non-negative integers. If h(P) is a harmonic function
on I'n(D) satisfying (8.1) and

(3.3) lim e VEEA, (y) =0 lim, o eVHRY M, (y) =0,
where
Mh(y) = sup |h(X,y)| (—co0 <y < ),
XeD
then ‘
kp+1—1 kq+1—-1
WMP)=Aw+Bo+ Y. Ali(P)+ 3 BiJi(P)
k=1 k=1

for any P = (X,y) € T(D), where Ay (k=0,1,2,...,kps1—1) and By (k=0,1,2
ke+r1 — 1) are constants.

gy

Corollary 2. Let h(P) be a harmonic function on I'y(D) satisfying (3.1) and
Mi(y) = o(eVFIM)  (Jy| — o0).

Then _
h(P) = Aoy + Bo

for any P = (X, y) € I',(D), where Ay and By are two constants.

4 Proofs of Theorem and Corollaries 1, 2

Let f(X,y) be a function on I',(D). The function cx(f,y) of y(—oco < y < o) defined
by '
culf,9) = [ X pe(X)dX

is simply denoted by c(y) without specifying f, in the following.

Lemma 1. Let h(P) be a harmonic function on I'y(D) satisfying (3.1), then

(41) C()(’y) = Aoy + BQ

(4.2) ce(y) = AreVFEY 4 Bre~ Vel (k=123 ..)
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with two constants Ay, By (k > 0) and

(4.3)
) {e\/ﬂ(k) (y=y2) _ oV K(K) (yz—y)} cx(y1) + {e\/u(k) (v1-y) _ gV nl(k) (y—y1)} ce(12)
ck(y) =
kY eV (k) (yi—v2) _ o/ p(k) (y2-91)

for any y1 and ya, —00 <y <ya <00, (k=1,2,3,...).

Proof. First of all, we remark that h € C?(T',(D)) (Gilbarg and Trudinger [3, p.124]).
Since

[ (B sh(X,9)en(X)aX = [ h(X,0)(Bacrps (X)X (=00 <y < 00),

from Green’s identity, (2.2) and (3.1), we have

Pely) _ [ Ph(X,y) _
5o —L~3F~wuwX——Lmmewwmwx

= — [ A(X ) (Bamroe (XX = (k) [ h(X,0)or(X)dX = plk)e(v)
from (2.1) (k=0,1,2,...). With two constants A, and B (k =0,1,2,...) these give
Co (y) = Ao’y + B[)

and
co(y) = ApeVFEW 4 BremVEbly  (k=1,2,..)),

which are (4.1) and (4.2). When we solve A; and By, from
ce(yi) = Age wk)yi Bie™ u(k)ys (i=1,2),
we immediately obtain (4.3).

Remark. From (4.2) we have

lim cp(y)e  VFEY = A, and  lim ci(y)e wkY = B (k=1,2,3...).

y—oo Yy——00

Lemma 2. Let h(P) be a harmonic function on I'n(D) satisfying (3.1). Let y be any
number and y,, Y2 be two any numbers satisfying —o00 <y <y—1, y+1 < yp < oo. For
two non-negative integers p and g,

[e e}

k_gj lex (W ee(X)| < L(p) Mu(y1) + L(q) Mr(y2),
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where

= M;|D| Y kexp(—y/ Mkt D)

k=kj41

Proof. From Lemma 1, we see that

o ~ 1—-eXp{2\/ Yy — 1)}
ck(y) = exp{—/ (k) (y — 1)} 1~exp{2\/—_y1 ) cx(y1)

1-eXp{2 u(k)(y —
ex k — Yo .
+exp{y/u(k)(y — v2) 1_exp{2\/— o — )] ck(y2)

Hence
(4.4) Y el <k,
where - ,

I = k; exp{—+/u(k)(y — y1) Hew(y1) [0 (X))
and -

k_}; exp{— \/ k) (y2 — y) Hew(y2)len (X))1-

For I, we have
(4.5) I < M5|D|Ma(s1) Z kexp(—y/ u(k))

k=kp+1

< M2|D|Mi(y1) Y. kexp(—y/Mkt/D),

k::kp+1
because y — y; > 1.
For I,, we also have
(4.6) I, < MZ|D|My(y2) S kexp(—y/ Mk ™D,
k=kq+1

Finally (4.4), (4.5) and (4.6) give the conclusion of this Lemma.

Proof of Theorem. Take any compact set T, T C m and two numbers y;, ¥
satisfying
| max{y; (X,y) € T} +1<y,, min{y;(X,y) €T} —-1>y.
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Let (X,y) be any point in 7. Since cx(y) is the Fourier coeflicient of the function h(X,y)
of X with respect to the orthonormal sequence {¢x(X)}32,, we have

oo

MX,y) = c(y)en(X)

k=0
in which the series converges uniformly and absolutely on 7" by Lemma 2. Furthere (4.1)

and (4.2) in Lemma 1 give (3.2). The proof of Theorem is complete.

Proofs of Corollaries 1 and 2. From (3.3) and Remark, it follows that Ay = 0 for
any k, k > kpi1 and By = 0 for any k, k > k,y1. Hence Theorem immediately gives the
conclusion of Corollary 1. By putting p = ¢ = 0 in Corollary 1, we obtain Corollary 2 at
once.
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