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A generalization of the Liouville theorem to polyharmonic
functions
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1 Introduction

Let R™ be the n-dimensional Euclidean space with a point = (z1,%2,...,2,). For
a multi-index A = (A, Ao, ..., ), we set

A =X+ A+ + Ay,

A1, A2 A

a:>‘=x1 T2 T, "
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We denote by rB™ the open ball centered at the origin with radius r > 0, whose
boundary is denoted by rS™~1.

A real valued function u is called polyharmonic of order m on R® if © € C2™
and A™u = 0, where m is a positive integer, A denotes the Laplacian and A™u =
A™ 1(Au). We denote by H™(R™) the space of polyharmonic functions of order m
on R". In particular, u is harmonic on R™ if uw € H!(R™). '

The Liouville theorem for polyharmonic functions is known in several forms
(cf. [1, 3, 4]).

and

THEOREM A. Let u € H™(R") and s > 2(m — 1). Then u is a polynomial of
degree less than s if one of the following conditions holds:

O i o [, wdS =0 (see 1)
utdr=0 (see [3]);

(iii) limsup [ max uz) ) <0 (see [4])

r—00 zersn-1 ICL‘!S
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Now we propose the following theorem.
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THEOREM. Let u € H™(R") and s > 2(m — 1). Then u is a polynomial of
degree at most s if and only if

1
liminf —— /Sn—l ut dS < 0. (1)

r—oo p$ s+n—1

We here note that each condition of Theorem A implies (1), so that our theorem
gives an improvement of Theorem A.

2 The main lemmas

Let us begin with the following lemma, which expands polyharmonic functions to
harmonic functions (cf. 2], [5]).

LeEMMA 1 (THE FINITE ALMANSI EXPANSION). A real valued function u on
R" belongs to H™(R™), then there exists a unique family {h;}{*, C H'(R") such
that

z) =Y | Vhi(x) (2)
=1
for every ¢ € R".

PROOF. We prove this lemma by induction on m. For m = 1 the conclusion
is trivial. Suppose the conclusion is true for m = k, and let w € H**(R™). Then
there exists a family {g;}¥; C H'(R™) such that

.
Au=Y" |2 Vgi(a). | 3)

i=1
If a family {h;}*+! c H'(R") satisfies (2), then we should have

k+1

Au = ZA(lmP(i—Uh,-(x))
k

= 3 A(joPhis (@)

i=1
If we write r = |z|, then

n

4(|x|2*'hi+l<z)) =2 (ax])Q( *hita(2))

Jj=1
o 82 2 81‘2" 8h,+1(:c) 2,’82hi+1(-’5)
Z{ 0?2 hin@) 4 2y =, T o

j=1

.,



= 24?1 {(22' =2+ n)hiy(z) + 2r 3,;?1 (x)}

= |g2¢-D {22’(22’ — 24 n)hi(2) + 4z‘ragf: ! (x)} ,

From the uniqueness of Almansi expansion for Aw, it is necessary and sufficient to
find a unique solution h;; for the equation

0:(x) = 20(2i 24 m)heps () + 4ir 2L () @)

for each i = 1,---, k. We see that the unique solution for (4) is given by -

1 " i—24n,
hi+1($) = W—_/(; t 2+ /2g7,(t.’L'/T) dt.

Here we have only to show that h;,; is harmonic on R"™. Actually, putting = = r(,
where r = |z| and { = z/|z| = z/r, we have '

hiti(z) = hipa(r¢)
. ,r.l——z'——n/2 T 0
= v /0 2 26.(1¢) dt
pl=i-n/2 i~24n/2
= or /O(rs) gi(rs¢) rds
1

1
— i—24+n/2
42_/0 s gi(xs)ds.

Since vgi is harmonic, we see that Ah;;(z) =0 for i =1,---, k. Now put

E+1 .
hi(z) = u(z) — Z; |22~V hy(z).

Then Ahy(z) = 0 by (3), and the induction is completed.

Next we prépare the following lemma, which gives a relation between spherical
means and derivatives for harmonic functions.

LEMMA 2. Supposeu € H'(R™). For each multi-index ), there exists a positive
constant C = C()\) such that

/ ooy w dS = CrPHDM(0) 4 Poagyna(r) (5)
for every r > 0, where P;(r) is a polynomial of degree at most k depends on u .

PrOOF. We prove this lemma by induction on the length of A. Assume first
that A\, =land \; =0 (i = 1,...,n—1). Using Green’s formula and the mean-
value property for harmonic functions, we have
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/ uz* dS = / UL, dS
rSn—1 r8n—1

r/rsn_lu%dS
=r/r —aidx

B Oz,

ou
n+1
0%, (0),

I

= OnT

where o, is the n-dimensional volume of the unit ball. Hence (5) holds for [A| = 1.

Next suppose that (5) holds for |\| < k, where k is a positive integer. Let
= (p1,...,4n) such that |u| = k + 1. We may assume without loss of generality
that p, > 2, and set p’ = (p1,- .., tn-1, n — 1). Then we write

'+ T
/ uzh dS = r/ uz” =2 dS.
r8§r-1 r8§n—1 T

From Green’s formula we obtain

O(uz*)
p -
/r not uz” dS T /r o Om dz

: Ou -
= r/an (CB“ oz, + (pn — Duzh® - - - 2) dx = (*).

Set p" = (p1,- ..y Un—1, fn — 2). Since |p/| = k and |p"| = k — 1, we find

’ ' Ou "

poed Moo _ n
(*) r/o (/tSn_] (x 90 T (tn — Duz )dS) dt
= 7'/(: (/ts aa%m“'dS) dt+(,un—-1)7'/or </s ux“"dS) dt
-1 n Gn—1
| " ! ’ 8
= r/o (C(ul)tmn Hn=1 (.a_;f_> (0) + P2|#,|+n_3(t)> dt
+ (= Dr [ (CEW D 0(0) + Payon-alt)) de

= C(p)r* ™1 DFu(0) + Poksnr(r),

/
where C(u) = 51—5({—; > 0 and P, denotes various polynomials of degree at most £

which may change from one occurrence to the next; throughout this note, we use
this convention. Hence (5) also holds for |u| = k& + 1. The induction is completed.
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3 Proof of the theorem

First we show that our theorem is valid under the two sided condition on spherical
means for polyharmonic functions.

LEMMA 3. Let u € H™(R™) and s > 2(m — 1). Then u is a polynomial of
degree at most s if

. 1
lim inf m_/rsn_l lu dS < o0. (6)

=00

PROOF. By (6) we can find a sequence {r;}$2, such that r; — oo and

—s—n+1
sx;p( /an-l [ul dS) < 00, (7
Using (2) and Lemma 2, we have
/rsn—l uz* dS = /Sn—l (Z || 21 hz(m)> z* dS
—_ 2(i—-1)
= Z T /Sn . r)z* dS

— }: r2=D (Cr? M=l DA Ry(0) + Piza4n-3(r))
i—1

where C; = Cj()) is a positive constant and P, denotes various polynomials of
degree at most k depends on h;. Hence it follows that

~

rN / |u|dS >
rSn—1

3 2 (cﬂ-?I*lJf"—lD"hi(O) + Pi,2[z\f+’n"3(r))
i=1

so that we obtain

e / s lul dS > pjRImst2m=D) |0mD*hm(0)+O(rj“2)

J

as r; — 0o0. By (7), we find
' D*hr(0) = 0

for all |A| > s — 2(m — 1). By analyticity of harmonic functions, we see that A, is
a polynomial of degree at most s — 2(m — 1). Hence we note that

pim=n) ) dS = O(rtPHn=1) a5 r 0.
rgn-1
Consequently,

oL / gy (84S 2D G DY (0) + O(r;72)| + O(1)
riSn- :
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as r; — o0. This implies that D*hpm_1(0) = 0 for [A| > s — 2(m — 2), so that
hm—1 is a polynomial of degree at most s — 2(m — 2). By repeating this arguments,
we see that each h; is a polynomial of degree at most s —2(: — 1) (¢ = 1,...,m).
Thus it follows that u is a polynomial. In view of (2), the degree of u is at most
20—-1)+s—2(:—1)=s.

PROOF OF THE THEOREM. If u € H™(R"), then we see from (2) that

1 _ N 201
/rS'"‘l udS = Z 2= p(0),

n—1
WnT i=1

where w;,, denotes the surface measure of S™1.
Since |u| = 2u™ — u, we have

lim inf =5~} / lu| dS
rS§n—1

r—00

= liminf (27"'5""“/ ut dS — r’s“”“/ u dS>
r—00 rgn—1 rgn—1

= liminf (21“”3'“”“ /S . ut dS — ’I“—SP2(m—1)(T)) .

r—00

Hence (1) implies (6) since s > 2(m — 1), so that the present theorem follows from
Lemma 3.
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