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Hele-Shaw flows moving boundary problem whose
initial domain has a corner with right angle

BORER ST R EREROR W B (Makoto Sakai)

1. HELE-SHAW FLOWS

We discuss a flow which is produced by injection of fluid into the
narrow gap between two parallel planes. We call it a Hele-Shaw flow.

A mathematical description of the flow is the following: Let ©(0)
be a bounded connected open set in the plane and let py be a point
in ((0). We define (0) and py as the projection of the averaged
initial blob of fluid and the injection poiht of fluid into one of the
two parallel planes, respectively. The Hele-Shaw flow {Q(t)}ss¢ is
the monotone increasing family of bounded connected open sets 0(t)
such that
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for every ¢t > 0 and every point z on the boundary 9Q(t) of Q(t),
where G(z,po,(t)) denotes the Green function (of the Dirichlet
problem for the Laplace operator) for (t) with pole at py, 8/dn,
denotes the outer normal derivative at = € oQ(t) and v, denotes
the velocity of dQ(t) at = in the direction of outer normal. Here we
have assumed that 0€)(¢) is smooth for every ¢ > 0 and the func-
tion ¢ = () which is defined by z € 99(t) is also smooth. Thus,
the problem of the Hele-Shaw flows with a free boundary is to find
{Q(t)}+>0 which satisfies the equation above for given Q(0) and py.
It is very hard to discuss the problem as formulated above, because
we do not know a priori the smoothness of d0(t) and #(z) even if |



78

the boundary 9§2(0) of the initial domain (0) is sufficiently smooth.
Therefore, we need another formulation of the problem. If we assume
that 9Q(t) and ¢(z) are sufficiently smooth, then we can easily prove
that, for every t > 0, §)(t) satisfies |

/Q(O)S(‘”)di”‘HS(po)S / s(z)de

Q(t)

for every integrable and subharmonic function s in (¢). That is to
say, the Hele-Shaw flow is a family {Q(¢) }s>0 of quadrature domains
Q(t) of A|Q(0) + t6,,, where A denotes the two-dimensional Lebesgue
- measure and d,, denotes the unit one-point measure at pg. In this
formulation, we do not need the smoothness of 9Q(t) and ¢(z). The
existence and uniqueness of the solution are known. For more detailed
discussions, see e.g. Gustafsson and Sakai [2] and Sakai [6].

We take a point 2o on dQ(0) and discuss the shape of (t) around
zo for small ¢t > 0. If 29 € 9Q(t) for some ¢t > 0, then zy € 9s)
for every s satisfying 0 < s < t. We call such a point g a stationary
point. If zg is not a stationary point, then zy € 2(¢) for every ¢ > 0,
In other words, g is contained in €(t) right immediately after the
initial time.

To give a more concrete discussion, we treat a corner with interior
angle . Assume that (0§2(0)) N B is a continuous simple arc passing
through z for a small disk B with center at zo. Assume further that
B\ (09Q(0)) consists of two connected components and 2(0) N B is
one of them. We express (3€2(0)) N B as the union of two continuous
simple arcs I'1(0) and T2(0); (8(0)) N B = I'1(0)UT'y(0) and T'1(0)N
I'y(0) = {xo}, and assume further that both I';(0) and I'y(0) are of
class C! and regular up to the endpoint z;. Then the intersection

of Q(0) and the circle with center at zyp and with small radius is a



circular arc. We say that xg is a corner with interior angle ¢ if the
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ratio of the length of the circular arc to the radius tends to ¢ as the

radius tends to 0. It follows that 0 < ¢ < 27. If ¢ = 7, we interpret
Ty as a smooth boundary point of Q(0). If p = 7/2, we say that
is a corner with right angle.

If zg is a corner with interior angle ¢, we can give a more accurate
discussion than whether it is a stationary point or not. We introduce
the following notion. |

The corner zy is called a laminar-flow stationary corner with inte-
rior angle ¢, if there is a small disk By with center at zy and small
to > 0 such that (9€Q(t)) N By is a continuous simple arc for every ¢
with 0 <t < tp and (992(t))N By can be expressed as the union of two
continuous simple arcs I'y1(¢) and T'y(¢); (0Q(t)) N By = I'1(t) U Ta(2)
and T'y(t) N Ts(t) = {xo}, and both Ti(¢) and Ty(t) are of class
C! and regular up to the endpoint zy, and real-analytic except for
xg. Furthermore z is a corner of 0Q(t) with interior angle v, and
¢ does not depend on t satisfying 0 < ¢t < #;. It follows that
(02(s) N By) \ {zo} C Q(t) N By for every s with 0 < s < ¢,

The corner zy is called a laminar-flow point, if there is a small disk
By with center at zy and small ¢y > 0 such that (92(¢)) N By is a
regular real-analytic simple arc for every t with 0 < ¢ < ¢. In this
case, (0SU(s) N By) C Q(t) N By for every s with 0 < s < ¢.

We have already announced the following theorems:

Theorem A. Let zg € IN0) be a corner with interior angle .

(1) If 0 < o < m/2, then x¢ is a laminar-flow stationary corner with

wnterior angle .

(2) If ¢ = ©/2, then xo is a laminar-flow stationary corner with
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right angle or a laminar-flow point.
(3) If m/2 < ¢ < 2, then z¢ is a laminar-flow point.
Theorem B. Let z9 € 0Q(0) be a corner with right angle.

(1) There is an example of corner xy which is a laminar-flow sta-

tionary corner with right angle.

(2) If T1(0) and Ty(0) are of class C** or zy is a Lyapunov-Dini

corner with right angle, then xy is a laminar-flow point.

In this paper, we give a more detailed discussion and ‘give a sufficient
condition for a corner with right angle to be a laminar-flow stationary
corner with right angle and also give a sufficient condition to be a
laminar-flow point. Each of them is not a necessary and sufficient

condition, but very close to a necessary and sufficient condition.

2. GENERAL ARGUMENTS

We have already interpreted §(¢) as the quadrature domain of
A|Q(0) + t6,,. For the sake of simplicity, we write ©(0) for A|©2(0),
that is to say, Q(t) is a quadrature domain of Q(0) + té,,. Now we
introduce the restricted quadrature domain and measure of D + p,
where D is a bounded domain and p is a finite positive measure sup-
ported in D. Let R be a domain, which may not be bounded, with
smooth boundary. We call this domain a restriction domain. For
the sake of simplicity, we assume that suppy C DN R and DN R is
connected. _

We call (Qg,vR) the restricted quadrature domain and measure in
RofDNR+4pif



(i) Qg is a bounded domain containing D N R;

(ii) vg is a finite positive measure on (8Qg) \ (RN BQ‘R);

/D . s(::?)dx+ / sdp < /Q ) s(z)dz + / sdvp

for every integrable and subharmonic function s on Qg \ (RN

(iii)

o0 R)-

Here we interpret vp as 0 if (0Qg) \ (RN 3Qg) is empty and we say
that s is subharmonic on Qg \ (RN dQp) if s is subharmonic in some
open set containing Qg \ (RN 0Qg). If u > 0, then there exists a
smallest (5. We always treat the case that (Qg,vg) is determined
uniquely. For the properties of the restricted quadrature domain and
measure ({2g, vg), see Gustafsson and Sakai [2, Sect.2] and Sakai [6,
Chap.I, Sect.4]. Simple facts which we use afterward are

DNRCOQr CONR,
where (2 denotes the quadrature domain of D + p and
Bk, DN R)|OR < vg < B, Qr)|OR,

where 8(p, DN R) denotes the balayage measure of u onto the bound-
ary of DN R. ‘

Let z¢ be a corner with right angle and let R, = {y € R? : |y —
xo| > a} be a restriction domain. Let (Q4(2),v4(t)) be the restricted
quadrature domain and measure in R, of Q(0) N R, + ¢6,,. Then we
obtain the following proposition:

81
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Proposition 1.  zg is a laminar-flow stationary corner with right

— | 0|
a—0 0',2

angle if and only if

=0
for some t > 0.
Replacing D with Q(0), R with R,, p with ¢6,, and vg with v4(t)
in the first inequality before Proposition 1, we obtain
B(t6,,, 0) N Ry)|OR, < vault).
Since
B(t6,,, 2(0) N R,) = tS(6p,, 2(0) N Ry),
we obtain the following corollary: |

Corollary 2. If
hm 1nf Hﬂ(épo, Q(O) N R(Z)laRaH > O

a—0 (L2

?

then zq s a laminar-flow point.

3. CONCRETE RESULTS

From now on, we discuss very concrete cases. We assume that
zo =0, po = (1,0) € Q(0) and

QON{(r,0): 0 <r <1} ={(r,0): 0<r <1, -—%MQ(T) <f< %+51<r)},
where §; is a function on the interval [0, 1] such that

i) 6. is continuous on [0, 1[ and of class C* on ]0, 1[;
j

(ii) 6;(0) =0 and |6;(r)|] < § on [0, 1];



(iii) lim,o76;(r) = 0.

We need the last condition, because it holds if and only if I';(0) is of
class C! up to the origin. We set 6(r) = 6;(r) — 65(r). It follows that
(g + 51(7~)) - (—g + 52(7~)) - g'+ §(r) — g (r — 0).

Hence the origin is a corner with right angle.
Now, we apply estimates of harmonic measure which were given
originally by Ahlfors [1] and improved by Warschawski [7] and others.

By using our notation, we express them as follows:

1
118(8,0, 2(0) N Ra)|ORa]| < Ci exp <-7r / ;%’;_)) ,

where C; denotes an absolute constant and 6(r) = § + é(r) and

1560, 20) P RIOR] > Coexp (= 1 ).

where Cy denotes a constant which depends on the total variations
of 6; and 6,.
Substituting Z + 6(r) for f(r), we obtain

W/1 r o1 a_'4/1 §(r) dr
. TO(r) & J, 1—|—%—6(r) r

28(r)
Alr) = —LE5——.
(r) 14 26(r)
We denote by V(I;6;) the total variation on an interval I of é; and

We set

set
V<T) = V([Tv 1]; 61) + V([Ta 1]§ 62)'

Then we obtain the following main theorem:
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Theorem 3. Let the origin be a corner with right angle.

(1) If there is a positive constant € such that

1 1
/ exp ( / A(s)%f + eV(T)) ilrf < 400,
0 T

then the origin is a laminar-flow stationary corner with right

angle.

(2) If there is a positive constant € such that

/olexp (/ | A(S)% - GV@‘)) %5 = +00,

then the origin is a laminar-flow point.

Example. Let
A
6(r) = 61(r) — b2o(r) = —7%
log (1)
for small r, where A denotes a constant, and é; and 6y are monotone
functions satisfying (i) through (iii). Then fol 6(r)*E < +o0, and so

r

1 1 ’
/ exp (/ A(s)ﬁ) ar < 400
0 r . S (A
1 1
/ exp (fl—/ 5(5)@) ar < +o00.
o \7J, s)r

Since the last inequality holds if and only if

T 1A
0 1 = dr
log { - — < 400
0 T T

if and only if



for some ry < 1, the origin is a laminar-flow stationary corner with
right angle if and only if A < —%.

The proof of Theorem 3 is complicated and long. We prove the first
assertion by applying the Ahlfors distortion theorem which we have
already mentioned before Theorem 3 as the first estimate of harmonic

measure. Ahlfors [1] called it Die erste Hauptungleichung. In the pa-
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per he also discussed the opposite inequality, which he called Die

zweite Hauptungleichung. This second inequality was improved ex-
tensively by Warschawski [7], Lelong-Ferrand [4], Jenkins and Oikawa
[3] and Rodin and Warschawski [5]. We prove the second asser-
tion by applying the second inequality formulated and proved by
Warschawski. |
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