EXISTNCE OF QUASIISOMETRIC MAPPINGS AND ROYDEN COMPACTIFICATIONS 1

名古屋工大(名誉教授) 中井 三留(MITSURU NAKAI)

1. Introduction. Consider a d-dimensional ($d \ge 2$) Riemannian manifold D of class C^{∞} which is orientable and countable but not necessarily connected and given an exponent $1 . The <math>Royden\ p$ -algebra $M_p(D)$ of D is defined by $M_p(D) := L^{1,p}(D) \cap L^{\infty}(D) \cap C(D)$, which is a commutative Banach algeba, i.e. the so-called normed ring, under pointwise addition and multiplication with $\|u; M_p(D)\| := \|u; L^{\infty}(D)\| + \|\nabla u; L^p(D)\|$ as norm, where $L^{1,p}(D)$ is the Dirichlet space, i.e. the space of locally integrable real valued functions u on D whose distributional gradients ∇u of u belong to $L^p(D)$ considered with respect to the metric structure on D. The maximal ideal space D_p^* (cf. e.g. p.298 in [20]) of $M_p(D)$ is referred to as the $Royden\ p$ -compactification of D, which is also characterized as the compact Hausdorff space containing D as its open and dense subspace such that every function in $M_p(D)$ is continuously extended to D_p^* and $M_p(D)$ is uniformly dense in $C(D_p^*)$ (cf. e.g. [17], [18], [11] and also p.154 in [14]).

Suppose that D and D' are d-dimensional ($d \geq 2$) Riemannian manifolds of class C^{∞} which are orientabl and countable but not necessarily connected. Moreover we always assume in this note that none of the components of D and D' is compact, which is however not an essential restriction and postulated only for the sake of simplicity. In 1982, the present author and H. Tanaka [13] (see also [10]) jointly showed that two conformal Royden compactifications D_d^* and $(D')_d^*$ are homeomorphic if and only if there exists an almost quasiconformal mapping of D onto D'. Here we say that a homeomorphism f of D onto D' is an almost quasiconformal mapping of D onto D' if there exists a compact subset $E \subset D$ such that $f = f|D \setminus E$ is a quasiconformal mapping of $D \setminus E$ onto $D' \setminus f(E)$. There are many ways of defining quasiconfrmality but the following metric defiition is convenient for applying to Riemannian manifolds (cf. e.g. p.113 in [19]): the homeomorphism f of $D \setminus E$ onto $D' \setminus f(E)$ is quasiconformal, by defintion, if

(2)
$$\sup_{x \in D \setminus E} \left(\limsup_{r \downarrow 0} \frac{\max_{\rho(x,y)=r} \rho'(f(x), f(y))}{\min_{\rho(x,y)=r} \rho'(f(x), f(y))} \right) < \infty,$$

where ρ and ρ' are geodesic distances on $D \setminus E$ and $D' \setminus f(E)$. It has been an open question for a long period since the above result was obtained as for what can be said about the

E-mail: nakai@daido-it.ac.jp

¹The main result reported in this seminar note will be published in M. NAKAI: Existnce of quasi-isometric mappings and Royden compactifications, Ann. Acad. Sci. Fenn., Ser. AI. Math., 25(2000).

Mailing Address: 〒478-0041 知多市日長江口 52 (52 Eguchi, Hinaga, Chita 478-0041, Japan)

counterpart of the above result for nonconformal case, i.e. if the exponent d in the above result is replaced by 1 . The*purpose*of this note is to settle this question by establishing the main theorem mentioned below.

To state our result we need to introduce a class of special kind of almost quasiconformal mappings. A homeomorphism f of D onto D' is said to be an almost quasiisometric mapping of D onto D' if there exists a compact set $E \subset D$ such that $f = f|D \setminus E$ is a quasiisometric mapping of $D \setminus E$ onto $D' \setminus f(E)$. Here the homeomorphism f of $D \setminus E$ onto $D' \setminus f(E)$ is quasiisometric, by definition, if there exists a constant $K \in [1, \infty)$ such that

(3)
$$\frac{1}{K}\rho(x,y) \le \rho'(f(x),f(y)) \le K\rho(x,y)$$

for every pair of points x and y in $D \setminus E$, where we always set $\rho(x,y) = \rho'(f(x),f(y)) = \infty$ if the component of $D \setminus E$ containing x and that containing y are different. From (3) it follows that

 $\frac{1}{K}r \le \min_{\rho(x,y)=r} \rho'(f(x), f(y)) \le \max_{\rho(x,y)=r} \rho'(f(x), f(y)) \le Kr$

for any fixed $x \in D$ and for any sufficiently small positive number r > 0, which implies that the left hand side term of (2) is dominated by K^2 . Thus a quasiisometric mapping is automatically a quasiconformal mapping but obviously there exists a quasiconformal mapping which is not a quasiisometric mapping. Then our main result of this paper is stated as follows.

4. Main Theorem. When $1 , Royden compactifications <math>D_p^*$ and $(D')_p^*$ are homeomorphic if and only if there exists an almost quasiisometric mapping of D onto D'. More precisely, any almost quasiisometric mapping of D onto D' is uniquely extended to a homeomorphism of D_p^* onto $(D')_p^*$; conversely, the restriction to D of any homeomorphism of D_p^* onto $(D')_p^*$ is an almost quasiisometric mapping of D onto D'.

It may be interesting to compare the above topological result with the former relevant algebraic results obtained by the present author [8] and [9], Lewis [6], and Lelon-Ferrand [5] (cf. also Soderborg [15]): Royden algebra $M_d(D)$ and $M_d(D')$ are algebraically isomorphic if and only if there exists a quasiconformal mapping of D onto D'; when $1 , <math>M_p(D)$ and $M_p(D')$ are algebraically isomorphic if and only if there exists a quasiisometric mapping of D onto D'. All these results including our present main theorem are shown to be invalid when d by giving a counter example, which will be discussed elsewhere. Another important problem related to the above main result is the following: does the existence of an almost quasiisometric (almost quasiconformal, resp.) mapping of <math>D onto D' imply that of a quasiisometric (quasiconformal, resp) mapping of D onto D'? It is affirmative for the quasiconformal case if D is the unit ball in the d-dimensional Euclidean space \mathbb{R}^d (Gehring [2], see also Soderborg [16]); it is also affirmative again for the quasiconformal case if the dimensions of D and D' are 2. Except for these partial results though not easy to prove,

the problem is widely open.

5. Royden compactifications of Riemannian manifolds. By a Riemannian manifold D of dimension $d \geq 2$ we always mean in this note an orientable and countable but not necessarily connected C^{∞} manifold D of dimension d with a metric tensor (g_{ij}) of class C^{∞} . We also assume that any component of D is not compact only for the sake of simplicity.

We say that U or more precisely (U, x) is a parametric domain on D if the following two conditions are satisfied: firstly U is a domain, i.e. a connected open set, in D; secondly x is a C^{∞} diffeomorphism of U onto a domain x(U) in the Euclidean space \mathbb{R}^d of dimension $d \geq 2$. The map $x = (x^1, \dots, x^d)$ is referred to as a parameter on U. We often identify a generic point P of U with its parameter x(P) and denote them by a same letter x, for example. In other words we view U to be embedded in \mathbb{R}^d by identifying U with x(U) so that U itself may be considered as a Riemannian manifold (U, g_{ij}) with metric tensor (g_{ij}) restricted on U and at the same time as an Euclidean subdomain (U, δ_{ij}) with the natural metric tensor (δ_{ij}) , δ_{ij} being the Kronecker delta.

Take a parametric domain (U, x) on D. The metric tensor (g_{ij}) on D gives rise to a $d \times d$ matrix $(g_{ij}(x))$ of functions $g_{ij}(x)$ on U. We say that (U, x) is a λ -domain with $\lambda \in [1, \infty)$ if the following matrix inequalities hold:

(6)
$$\frac{1}{\lambda}(\delta_{i,j}) \le (g_{ij}(x)) \le \lambda(\delta_{ij})$$

for every $x \in U$. It is important that any point of D has a λ -domain as its neighborhood for any $\lambda \in (1, \infty)$. This comes from the fact that there exists a parametric ball (U, x) at any point $P \in D$ (i.e. a parametric domain (U, x) such that x(P) = 0 and x(U) is a ball in \mathbf{R}^d centered at the origin 0) such that $(g_{ij}(x))$ with respect to (U, x) satisfies $g_{ij}(0) = \delta_{ij}$.

The metric tensor (g_{ij}) on D defines the line element ds on D by $ds^2 = g_{ij}(x)dx^idx^j$ in each parametric domain $(U, x = (x^i, \dots, x^d))$. Here and hereafter we follow the Einstein convention: whenever an index i appears both in the upper and lower positions, it is understood that summation for $i = 1, \dots, d$ is carried out. The length of a rectifiable curve γ on D is given by $\int_{\gamma} ds$. The geodesic distance $\rho(x, y)$ between two points x and y in D is given by

 $\rho(x,y) = \rho_D(x,y) = \inf_{\gamma} \int_{\gamma} ds,$

where the infimum is taken with respect to rectifiable curves γ connecting x and y. Needless to say, if there is no such curve γ , i.e. if x and y are in the different components of D, then, as the infimum of empty set, we understand that $\rho(x,y) = \infty$. When (U,x) is a parametric domain and considered as the Riemannian manifold (U,δ_{ij}) , then $\rho_U(x,y)$ can also be given by

$$\rho(x,y) = \rho_U(x,y) = \inf \sum_{i=0}^n |x_i - x_{i-1}|,$$

where the infimum is taken with respect to every polygonal line $x = x_0, x_1, \dots, x_{n-1}, x_n = y$ such that every line segment $[x_{i-1}, x_i] = \{(1-t)x_{i-1} + tx_i : 0 \le t \le 1\} \subset U$ for each $i = 1, \dots, n$.

We write $(g^{ij}) := (g_{ij})^{-1}$ and $g := \det(g_{ij})$. We denote by dV the volume elemnt on D so that

$$dV(x) = \sqrt{g(x)}dx^1 \wedge \dots \wedge dx^d$$

in each parametric domain $(U, x = (x^1, \dots, x^d))$. On (U, δ_{ij}) we also have the volume element (Lebesgue measure) $dx = dx^1 \cdots dx^d$. Sometimes we use dx to mean (dx^1, \dots, dx^d) but there will be no confusion by context. The Riemannian volume element dV(x) and the Euclidean (Lebesgue) volume element dx are mutually absolutely continuous and the Radon-Nikodym densities $dV(x)/dx = \sqrt{g(x)}$ and $dx/dV(x) = 1/\sqrt{g(x)}$ are locally bounded on U. Thus a.e. dV and a.e. dx are identical and we can loosely use a.e. without referring to dV or dx.

For each $x \in D$, the tangent space to D at x will be denoted by T_xD . We denote by $\langle h, k \rangle$ the inner product of two tangent vectors h and k in T_xD and by |h| the length of $h \in T_xD$ so that if (h_1, \dots, h_d) and (k_1, \dots, k_d) are covariant components of h and k, then

$$\langle h, k \rangle = g^{ij} h_i k_i$$
 and $|h| = \langle h, h \rangle^{1/2} = (g^{ij} h_i h_j)^{1/2}$.

Since we may consider two metric tensors (g_{ij}) and $(\delta_{i,j})$ on a parametric domain (U, x), we occasionally write $\langle h, k \rangle_{g_{ij}}$ or $\langle h, k \rangle_{\delta_{ij}}$ and similarly $|h|_{g_{ij}}$ or $|h|_{\delta_{ij}}$ to make clear whether they are considered on (U, g_{ij}) or on (U, δ_{ij}) .

Let G be an open subset of D. In this note we use the notation $L^p(G)$ $(1 \le p \le \infty)$ in two ways. The first is the standard use: $L^p(G) = L^p(G; g_{ij})$ is the Banach space of measurable functions u on G with the finite norm $||u; L^p(G)||$ given by

$$||u; L^p(G)|| := \left(\int_G |u|^p dV\right)^{\frac{1}{p}} \qquad (1 \le p < \infty)$$

and $||u; L^{\infty}(G)||$ is the essential supremum of |u| on G. The second use: for a measurable vector field X on G we write $X \in L^p(G) = L^p(G; g_{ij})$ if $|X| = |X|_{g_{ij}} \in L^p(G)$ in the first sense and we set

$$||X; L^p(G)|| := |||X|; L^p(G)||.$$

The Dirichlet space $L^{1,p}(G) = L^{1,p}(G; g_{ij})$ $(1 \le p \le \infty)$ is the class of functions $u \in L^1_{loc}(G)$ with the distributional gradients $\nabla u \in L^p(G)$, where the distributional gradient ∇u is determined by the relation

$$\int_{G} \langle \nabla u, \Psi \rangle dV = -\int_{G} u \operatorname{div} \Psi dV$$

for every C^{∞} vector field Ψ on G with compact support in G. In the parametric domain (U,x) in G we have $\nabla u = (\partial u/\partial x^1, \dots, \partial u/\partial x^d)$. If $\Psi = (\psi_1, \dots, \psi_d)$ in U, then

$$\operatorname{div}\Psi = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} (\sqrt{g} g^{ij} \psi_j).$$

The Sobolev space $W^{1,p}(G) = W^{1,p}(G, g_{ij})$ $(1 \le p \le \infty)$ is the Banach space $L^{1,p}(G) \cap L^p(G)$ equipped with the norm

$$||u; W^{1,p}(G)|| := ||u; L^p(G)|| + ||\nabla u; L^p(G)||.$$

Given a Riemannian manifold D of dimension $d \geq 2$ and given an exponent $1 , the Royden p-algebra <math>M_p(D)$ is the Banach algebra $L^{1,p}(D) \cap L^{\infty}(D) \cap C(D)$ equipped with the norm

(7)
$$||u; M_p(D)|| := ||u; L^{\infty}(D)|| + ||\nabla u; L^p(D)||.$$

By the standard mollifier method we can show that the subalgebra $M_p(D) \cap C^{\infty}(D)$ is dense in $M_p(D)$ with respect to the norm in (7). Henc $M_p(D)$ may also be defined as the completion of $\{u \in C^{\infty}(D) : \|u; M_p(D)\| < \infty\}$ without appealing to the Dirichlet space. It is important that $M_p(D)$ is closed under lattice operations \cup and \cap given by $(u \cup v)(x) = \max(u(x), v(x))$ and $(u \cap v)(x) = \min(u(x), v(x))$ (cf. e.g. p.21 in [4]). The maximal ideal space D_p^* of $M_p(D)$ is referred to as the Royden p-compactification, which can also be characterized as the compact Hausdorff space containing D as its open and dense subspace such that every function $u \in M_p(D)$ is continuously extended to D_p^* and $M_p(D)$, viewed as a subspace of $C(D_p^*)$ by this continuous extension, is dense in $C(D_p^*)$ with respect to its supremum norm.

8. Capacities of rings. A ring R in a Riemannian manifold D is a subset R of D with the following properties: R is a subdomain of D so that R is contained in a unique component D_R of D; $D_R \setminus R$ consists of exactly two components one of which, denoted by C_1 , is compact and the other of which, denoted by C_0 , is noncompact. The set C_1 will be referred to as the inner part of $R^c := D \setminus R$ and the set $D \setminus (R \cup C_1)$ as the outer part of R^c . We denote by W(R) the class of functions $u \in W^{1,1}_{loc}(R) \cap C(D)$ such that u = 1 on the inner part of R^c and u = 0 on the outer part of R^c which includes C_0 . The p-capacity $\operatorname{cap}_p R$ $(1 \le p \le \infty)$ of the ring $R \subset D$ is given by

(9)
$$\operatorname{cap}_{p}R := \inf_{u \in W(R)} \|\nabla u; L^{p}(R)\|^{p}$$

for $1 \leq p < \infty$ and $\operatorname{cap}_{\infty} R := \inf_{u \in W(R)} \|\nabla u; L^{\infty}(R)\|$. Note that $\operatorname{cap}_{p} R$ does not depend upon which Riemannian manifold D the ring R is embedded as far as the metric structure on R is unaltered. The following inequality will be essentially made use of (cf. e.g. p.32 in [4]): if 1 and if <math>R is a ring in D and R_k $(1 \leq k \leq n)$ are disjoint rings contained in R each of which separates the boundary components of R, then

(10)
$$(\operatorname{cap}_{p} R)^{\frac{1}{1-p}} \ge \sum_{k=1}^{n} (\operatorname{cap}_{p} R_{k})^{\frac{1}{1-p}}.$$

Suppose that a ring R is contained in a parametric domain (U, x) on D for which two metric structures (g_{ij}) and (δ_{ij}) can be considered. If the need occurs to indicate that $\operatorname{cap}_p R$ is considered on (U, δ_{ij}) , then we write

$$\operatorname{cap}_{p} R = \operatorname{cap}_{p}(R, \delta_{ij}) = \inf_{u \in W(R)} \int_{R} |\nabla u(x)|_{\delta_{ij}}^{p} dx;$$

if $cap_n R$ is considered on (U, g_{ij}) , then we write

$$\operatorname{cap}_{p} R = \operatorname{cap}_{p}(R, g_{ij}) = \inf_{u \in W(R)} \int_{R} |\nabla u|_{g_{ij}}^{p} dV$$

for $1 \leq p < \infty$. Similar considerations are applied to $\text{cap}_{\infty}(R, g_{ij})$ and $\text{cap}_{\infty}(R, \delta_{ij})$. If moreover U is a λ -domain for any $\lambda \in [1, \infty)$, then (6) implies that

(11)
$$\frac{1}{\lambda^{\frac{d+p}{2}}} \operatorname{cap}_{p}(R, \delta_{ij}) \leq \operatorname{cap}_{p}(R, g_{ij}) \leq \lambda^{\frac{d+p}{2}} \operatorname{cap}_{p}(R, \delta_{ij}).$$

In the case $p = \infty$, the inequality corresponding to the above takes the following form: $\lambda^{-1/2} \operatorname{cap}_{\infty}(R, \delta_{ij}) \leq \operatorname{cap}_{\infty}(R, g_{ij}) \leq \lambda^{1/2} \operatorname{cap}_{\infty}(R, \delta_{ij})$, which however will not be used in this note.

We fix a parametric domain (U, x) in D. It is possible that the parametric domain is the d-dimensional Euclidean space \mathbf{R}^d itself. A ring R contained in U is said to be a *spherical* ring in (U, x) if

(12)
$$R = \{x \in U : a < |x - P| < b\},\$$

where $P \in U$ and a and b are positive numbers with $0 < a < b < \inf_{U} |x - P|$. At this point we must be careful: in the case where the above R happens to be included in another parametric domain (V, y) of D, R may not be a spherical ring in (V, y) even if R is a spherical ring in (U, x). Namely, the notion of sperical rings cannot be introduced to the general Riemannian manifold D and is strictly attached to the parametric domain in question. Let R be a spherical ring in a parametric domain (U, x) with the above expression (12). Then we have (cf. e.g. p.35 in [4])

(13)
$$\operatorname{cap}_{p} R = \operatorname{cap}_{p}(R, \delta_{ij}) = \begin{cases} \omega_{d} \left(\frac{b^{q} - a^{q}}{q} \right)^{1-p} & (1$$

where we have set q = (p-d)/(p-1) and ω_d is the surface area of the Euclidean unit sphere S^{d-1} . In passing we state that $\operatorname{cap}_1(R, \delta_{ij}) = \omega_d a^{d-1}$ and $\operatorname{cap}_{\infty}(R, \delta_{ij}) = 1/(b-a)$, which are also not used in this note.

Another important ring in \mathbf{R}^d which we use later is a *Teichmüller ring* R_T defined by $R_T = \mathbf{R}^d \setminus \{te_1 : t \in [-1,0] \cup [1,\infty)\}$, where e_1 is the unit vector $(1,0,\cdots,0)$ in \mathbf{R}^d . We set

$$(14) t_d := \operatorname{cap}_d(R_T, \delta_{ij}).$$

Finally in this section we state a separation lemma on the topology of the Royden compactification. Let $(R_n)_{n\geq 1}$ be a sequence of rings R_n in D $(n=1,2,\cdots)$ with the following properties: $(R_n \cup C_{n1}) \cap (R_m \cup C_{m1}) = \emptyset$ for $n \neq m$, where C_{n1} is the inner part of $(R_n)^c = D \setminus R_n$; $(R_n)_{n\geq 1}$ does not accumulate in D, i.e. $\{n: E \cap (\overline{R_n} \cup C_{n1}) \neq \emptyset\}$ is a finite set for any compact set E in D. Such a sequence $(R_n)_{n\geq 1}$ will be called an *admissible sequence*, which defines two disjoint closed sets X and Y in D as follows:

$$X := \bigcup_{n=1}^{\infty} C_{n1}$$
 and $Y := \bigcap_{n=1}^{\infty} (D \setminus (R_n \cup C_{n1})).$

We denote by $\operatorname{cl}(X; D_p^*)$ the closure of X in D_p^* . Although $X \cap Y = \emptyset$ in D, $\operatorname{cl}(X; D_P^*)$ and $\operatorname{cl}(Y; D_p^*)$ may intersect on the *Royden p-boundary*

$$\Gamma_p(D) := D_p^* \setminus D.$$

Concerning to this we have the following result.

15. LEMMA. The set $\operatorname{cl}(\bigcup_{n=1}^{\infty} R_n; D_p^*)$ for an admissible sequence $(R_n)_{n\geq 1}$ in D separates $\operatorname{cl}(X; D_p^*)$ and $\operatorname{cl}(Y; D_p^*)$ in D_p^* in the sense that

$$(\operatorname{cl}(X; D_P^*)) \cap (\operatorname{cl}(Y; D_P^*)) = \emptyset$$

if and only if

(17)
$$\sum_{n=1}^{\infty} \operatorname{cap}_{p} R_{n} < \infty.$$

PROOF: First we show that (16) implies (17). By (16) the Urysohn theorem assures the existence of a function $u \in C(D_p^*)$ such that u = 3 on $\operatorname{cl}(X; D_p^*)$ and u = -2 on $\operatorname{cl}(Y; D_p^*)$. Since $M_p(D)$ is dense in $C(D_p^*)$, there is a function $v \in M_p(D)$ such that v > 2 on X and v < -1 on Y. Finally let $w = ((v \cap 1) \cup 0) \in M_p(D)$, which satisfies w|X = 1, w|Y = 0 and $0 \le w \le 1$ on D. Set $w_n = w$ on $R_n \cup C_{n1}$ and $w_n = 0$ on $D \setminus (R_n \cup C_{n1})$ for $n = 1, 2, \cdots$. Clearly $w_n \in W(R_n)$ so that $\operatorname{cap}_p R_n \le ||\nabla w_n; L^p(R_n)||^p$ $(n = 1, 2, \cdots)$ and $w = \sum_{n=1}^{\infty} w_n$. Since the supports of w_n in D $(n = 1, 2, \cdots)$ are mutually disjoint, we see that

$$\sum_{n=1}^{\infty} \operatorname{cap}_{p} R_{n} \leq \sum_{n=1}^{\infty} \|\nabla w_{n}; L^{p}(R_{n})\|^{p} = \|\nabla w; L^{p}(D)\|^{p} \leq \|w; M_{p}(D)\|^{p} < \infty,$$

i.e. (17) has been deduced.

Conversely, suppose that (17) is the case. We wish to derive (16) from (17). Choose a function $w_n \in W(R_n)$ such that $\|\nabla w_n; L^p(R_n)\|^p < 2\text{cap}_p R_n$ for each $n = 1, 2, \cdots$. We may suppose that $0 \le w_n \le 1$ on D by replacing w_n with $(w_n \cap 1) \cup 0$ if necessary (see e.g. p.20 in [4]). Clearly $w := \sum_{n=1}^{\infty} w_n \in M_p(D)$ since $\|w; L^{\infty}(D)\| = 1$ and

$$\|\nabla w; L^p(D)\|^p = \sum_{n=1}^{\infty} \|\nabla w_n; L^p(D_n)\|^p \le 2 \sum_{n=1}^{\infty} \text{cap}_p R_n < \infty.$$

Observe that w=1 on X and w=0 on Y. Hence, by the continuity of w on D_p^* , we see that w=1 on $cl(X;D_p^*)$ and w=0 on $cl(Y;D_p^*)$, which yields (16).

As a consequence of the separation lemma above we can characterize points in the Royden p-boundary $\Gamma_p(D) = D_p^* \setminus D$ among points in D_p^* in terms of their being not G_δ for $1 \leq p \leq d$. This is no longer true for $d . Recall that a point <math>\zeta \in D_p^*$ is said to be G_δ if there exists a countable sequence $(\Omega_i)_{i\geq 1}$ of open neighborhoods Ω_i of ζ such that $\bigcap_{i\geq 1} \Omega_i = \{\zeta\}$.

18. COROLLARY TO LEMMA 15. A point ζ in D_p^* $(1 \leq p \leq d)$ belongs to D if and only if ζ is G_{δ} .

PROOF: We only have to show that $\zeta \in \Gamma_p(D) = D_p^* \setminus D$ is not G_δ . Contrariwise suppose ζ is G_δ so that there exists a sequence $(\Omega_i)_{i\geq 1}$ of open neighborhoods of ζ such that $\Omega_i \supset \operatorname{cl}(\Omega_{i+1}; D_p^*)$ $(i=1,2,\cdots)$ and $\cap_{i\geq 1}\Omega_i = \{\zeta\}$. Since D is dense in D_p^* , $H_i := D \cap (\Omega_i \setminus \operatorname{cl}(\Omega_{i+1}; D_p^*))$ is a nonempty open subset of D for each i. Hence we can find a sequence $(P_n)_{n\geq 1}$ of points $P_n \in H_n$ $(n=1,2,\cdots)$ and a sequence $((U_n,x_n))_{n\geq 1}$ of 2-domains (U_n,x_n) contained in H_n $(n=1,2,\cdots)$ such that $U_n = \{x_n : |x_n-P_n| < r_n\}$ $(r_n>0)$ $(n=1,2,\cdots)$. Let $R_n := \{x_n : a_n < |x_n-P_n| < b_n\}$ $(0 < a_n < b_n := r_n/2)$ be a spherical ring in (U_n,x_n) . Clearly $(R_n)_{n\geq 1}$ is an admissible sequence. Since $\operatorname{cap}_p(R_n,\delta_{ij}) = \omega_d(|q|/(1-(a_n/b_n)^{|q|}))^{p-1}a_n^{|d-p|}$ by (13) for $1 , <math>\operatorname{cap}_d(R_n,\delta_{ij}) = \omega_d/(\log(b_n/a_n))^{d-1}$, and $\operatorname{cap}_1(R_n,\delta_{ij}) = \omega_da_n^{d-1}$, we can see that $\operatorname{cap}_p(R_n,\delta_{ij}) < 2^{-n}$ by choosing $a_n \in (0,r_n/2)$ enough small so that $\operatorname{cap}_p R = \operatorname{cap}_p(R,g_{ij}) \le 2^{(d+p)/2} \operatorname{cap}_p(R,\delta_{ij}) < 2^{(d+p)/2} - n$ $(n=1,2,\cdots)$ by (11). Hence (17) is satisfied but (16) is invalid because the intersection on the left hand side of (16) contains ζ due to the fact that $R_n \subset H_n$ $(n=1,2,\cdots)$. This is clearly a contradiction to Lemma 15.

19. Analytic properties of quasiisometric mappings. A quasiisometric (quasiconformal, resp.) mapping f of a Riemannian manifold D onto another D' is, as defined in §1 (Introduction), a homeomorphism f of D onto D' such that $K^{-1}\rho(x,y) \leq \rho(f(x), f(y)) \leq K\rho(x,y)$ for every pair of points x and y in D for some fixed $K \in [1,\infty)$ (sup_{$x \in D$}(lim sup_{$r \downarrow 0$}((max_{$\rho(x,y)=r$} $\rho'(f(x), f(y)))/(\min_{\rho(x,y)=r} \rho'(f(x), f(y)))$) $< \infty$, resp.), where ρ and ρ' are geodesic distances on D and D', respectively. In this case we also say that f is K-quasiisometric referring to K. For simplicity, quasiisometric (quasiconformal, resp.) mappings will occasionally be abbreviated as qi (qc, resp.). Consider a K-qi f of a d-

dimensional Riemannian manifold D equipped with the metric tensor (g_{ij}) onto another d-dimensional Riemannian manifold D' equipped with the metric tensor (g'_{ij}) . Fix an arbitrary $\lambda \in (0, \infty)$ and choose any λ -domain (U, x) in D and any λ -domain (U', x') in D' such that f(U) = U'. The mapping $f: (U, \delta_{ij}) \to (U', \delta_{ij})$ has the representation

(20)
$$x' = f(x) = (f^{1}(x), \dots, f^{d}(x))$$

on U in terms of the parameters x and x'. As the composite mapping of id. : $(U, \delta_{ij}) \rightarrow (U, g_{ij})$, $f: (U, g_{ij}) \rightarrow (U', g'_{ij})$, and id. : $(U', g'_{ij}) \rightarrow (U', \delta_{ij})$, we see that the mapping $f: (U, \delta_{ij}) \rightarrow (U', \delta_{ij})$ is λK -qi since id. : $(U, \delta_{ij}) \rightarrow (U, g_{ij})$ and id. : $(U', g'_{ij}) \rightarrow (U', \delta_{ij})$ are $\sqrt{\lambda}$ -qi as the consequence of $\lambda^{-1}|dx|^2 \leq ds^2 \leq \lambda |dx|^2$, where $dx = (dx^1, \dots, dx^d)$, $|dx|^2 = \delta_{ij}dx^idx^j$, and $ds^2 = g_{ij}(x)dx^idx^j$, which is deduced from $\lambda^{-1}(\delta_{ij}) \leq (g_{ij}) \leq \lambda(\delta_{ij})$. Hence we see that

(21)
$$\frac{1}{\lambda K}|x-y| \le |f(x) - f(y)| \le \lambda K|x-y|$$

whenever the line segment $[x,y] := \{(1-t)x + ty : t \in [0,1]\} \subset U$ and $[f(x),f(y)] \subset U'$. In paticular (21) implies that

(22)
$$\limsup_{h \to 0} \frac{|f(x+h) - f(x)|}{|h|} \le \lambda K < \infty$$

for every $x \in U$ and

(23)
$$\liminf_{h\to 0} \frac{|f(x+h)-f(x)|}{|h|} \ge \frac{1}{\lambda K} > 0.$$

As an important consequence of (22), the Rademacher-Stepanoff theorem (cf. e.g. p.218 in [1]) assures that f(x) is differentiable at a.e. $x \in U$, i.e.

(24)
$$f(x+h) - f(x) = f'(x)h + \varepsilon(x,h)|h| \qquad (\lim_{h \to 0} \varepsilon(x,h) = 0)$$

for a.e. $x \in U$, where f'(x) is the $d \times d$ matrix $(\partial f^i/\partial x^j)$. Fix an arbitrary vector h with |h| = 1. Then for any positive number t > 0 we have, by replacing h in (24) with th,

$$|f'(x)h| - |\varepsilon(x, th)| \le \frac{|f(x+th) - f(x)|}{|th|}$$

and on letting $t\downarrow 0$ we obtain by (22) that $|f'(x)h|\leq \lambda K$. Therefore

(25)
$$|f'(x)| := \sup_{|h|=1} |f'(x)h| \le \lambda K$$

for a.e. $x \in U$. Similarly we have

$$|f'(x)h| + |\varepsilon(x,th)| \ge \frac{|f(x+th) - f(x)|}{|th|}$$

and hence by (23) we deduce $|f'(x)h| \ge 1/\lambda K$. Hence

(26)
$$l(f'(x)) := \inf_{|h|=1} |f'(x)h| \ge \frac{1}{\lambda K}.$$

From (25) it follows that $|\partial f^i(x)/\partial x^j| \leq |f'(x)| \leq \lambda K$ for a.e. $x \in U$ $(i, j = 1, \dots, d)$ and thus $|\nabla f| = (\sum_{i=1}^d |\nabla f_i|^2)^{1/2} \in L^{\infty}(U)$. By (21), f(x) is ACL (absolutely continuous on almost all straight lines which are parallel to coordinate axes). That f(x) is ACL and $\nabla f \in L^{\infty}(U)$ is necessary and sufficient for f to belong to $L^{1,\infty}(U)$ (cf. e.g. pp.8-9 in [7]) so that, by the continuity of f, we have

$$(27) f \in W_{loc}^{1,\infty}(D).$$

By (25) and (26) we have the matrix inequality

$$l(f'(x))^2(\delta_{ij}) \le f'(x)^* f'(x) \le |f'(x)|^2(\delta_{ij})$$

for a.e. $x \in U$, where $f'(x)^*$ is the transposed matrix of f'(x). Let $\lambda_1(x) \ge \cdots \ge \lambda_d(x)$ be the square roots of the proper values of the symmetric positive matrix $f'(x)^*f'(x)$. Then

$$\frac{1}{\lambda K} \le l(f'(x)) = \lambda_d(x) \le \dots \le \lambda_1(x) = |f'(x)| \le \lambda K.$$

Observe that $\prod_{i=1}^d \lambda_i(x)^2 = \det(f'(x)^* f'(x)) = (\det f'(x))^2$ is the square of the Jacobian $J_f(x)$ of f at x. Hence, by $\lambda K \lambda_i \geq 1$ $(i = 2, 3, \dots, d)$, we see that

$$|f'(x)|^p = \lambda_1(x)^p \le \lambda_1(x)(\lambda K)^{p-1} \le \lambda_1(x)(\lambda K)^{p-1} \prod_{i=2}^d (\lambda K \lambda_i(x))$$
$$= (\lambda K)^{d+p-2} \prod_{i=1}^d \lambda_i(x) = (\lambda K)^{d+p-2} |J_f(x)|,$$

i.e. we have deduced that

(28)
$$|f'(x)|^p \le (\lambda K)^{d+p-2} |J_f(x)|$$

for a.e. $x \in U$. This is used to prove the following result.

29. PROPOSITION. The pull-back $v = u \circ f$ of any u in $M_p(D')$ by a K-qi f of D onto D' belongs to $M_p(D)$ and satisfies the inequality

(30)
$$\int_{D} |\nabla v(x)|_{g_{ij}}^{p} \sqrt{g(x)} dx \le K^{d+p-2} \int_{D'} |\nabla u(x')|_{g'_{ij}}^{p} \sqrt{g'(x')} dx'$$

and in particular

(31)
$$||v; M_p(D)|| \le K^{(d+p-2)/p} ||u; M_p(D')||.$$

PROOF: The inequality (30) is nothing but $\|\nabla v; L^p(D)\| \leq K^{(d+p-2)/p} \|\nabla u; L^p(D')\|$. This with $\|v; L^\infty(D)\| = \|u; L^\infty(D')\|$ implies (31). Suppose that Proposition 29 is true if $u \in M_p(D') \cap C^\infty(D')$. Since $M_p(D') \cap C^\infty(D')$ is dense in $M_p(D')$, for an arbitrary $u \in M_p(D')$, there exists a sequence $(u_k)_{k\geq 1}$ in $M_p(D') \cap C^\infty(D')$ such that $\|u-u_k; M_p(D')\| \to 0$ $(k \to \infty)$. In particular $\|u_k-u_{k'}; M_p(D')\| \to 0$ $(k,k'\to\infty)$. By our assumption, $v_k := u_k \circ f \in M_p(D)$ $(k = 1, 2, \cdots)$. By (31), the inequalities $\|v_k-v_{k'}; M_p(D)\| \leq K^{(d+p-2)/p} \|u_k-u_{k'}; M_p(D')\|$ assure that $\|v_k-v_{k'}; M_p(D)\| \to 0$ $(k,k'\to\infty)$. By the completeness of $M_p(D)$, since $\|v-v_k; L^\infty(D)\| \to 0$ $(k\to\infty)$, we see that $v \in M_p(D)$. By the validity of (30) (and hence of (31)) for v_k , we see that (30) is valid for v. For this reason we can assume $u \in M_p(D') \cap C^\infty(D')$ to prove Proposition 29.

It is clear by (25) that $v = u \circ f \in W_{loc}^{1,\infty} \cap L^{\infty}(D) \cap C(D)$ if $u \in M_p(D') \cap C^{\infty}(D')$. Hence we only have to prove (30) to deduce $v \in M_p(D)$. Fix an arbitrary $\lambda \in (1,\infty)$. Let $D = \bigcup_{k=1}^{\infty} E_k$ be a union of disjoint Borel sets E_k in D such that each E_k is contained in a λ -domain U_k in D and $E'_k = f(E_k)$ in a λ -domain $U'_k = f(U_k)$ in D' for $k = 1, 2, \cdots$. Fix a k and consider the λK -qi f of (U_k, δ_{ij}) onto (U'_k, δ_{ij}) with the representation (20) on U_k in terms of the parameter x in U_k and x' in U'_k . By the chain rule we have

(32)
$$\nabla v(x) = f'(x)^* \nabla u(f(x))$$

for a.e. $x \in U_k$. Since $|f'(x)^*| = |f'(x)|$, (28) and (32) yield

$$|\nabla v(x)|^p \le (\lambda K)^{d+p-2} |\nabla u(f(x))|^p |J_f(x)|$$

for a.e. $x \in U_k$. In view of (22), the formula of the change of variables in integrations is valid for x' = f(x):

$$\int_{E_k} |\nabla u(f(x))|^p |J_f(x)| dx = \int_{E'_k} |\nabla u(x')|^p dx'.$$

From the above two displayed relations we deduce

$$\int_{E_k} |\nabla v(x)|^p dx \le (\lambda K)^{d+p-2} \int_{E_k'} |\nabla u(x')|^p dx'.$$

Observe that $|\nabla v|_{g_{ij}}^p \leq \lambda^{p/2} |\nabla v|^p$ and $\sqrt{g} \leq \lambda^{d/2}$, and similarly, that $|\nabla u|^p \leq \lambda^{p/2} |\nabla u|_{g'_{ij}}^p$ and $1 \leq \lambda^{d/2} \sqrt{g'}$. The above displayed inequality then implies that

$$\int_{E_k} |\nabla v(x)|_{g_{ij}}^p \sqrt{g(x)} dx \leq \lambda^{2(d+p-1)} K^{d+p-2} \int_{E_k'} |\nabla u(x')|^p \sqrt{g'(x')} dx'.$$

On adding these inequalities for $k=1,2,\cdots$ we obtain (30) with K^{d+p-2} replaced by $\lambda^{2(p+d-1)}K^{d+p-2}$. Since $\lambda \in (1,\infty)$ is arbitrary, we deduce (30) itself by letting $\lambda \downarrow 1$.

33. Distortion of rings and their capacities. Throughout this section we fix two nonempty open sets V and V' in \mathbb{R}^d (or, what amounts to the same, two parametric domains

(V,x) and (V',x') in certain Riemannian manifolds D and D', respectively, considered as (V,δ_{ij}) and (V',δ_{ij}) and consider homeomorphisms f of V onto V'. We introduce two classes of such homeomorphisms f. The first class Lip(K) = Lip(K;V,V') for a positive constant $K \in (0,\infty)$ is the family of homeomorphisms f of V onto V' such that

(34)
$$\limsup_{r\downarrow 0} \frac{\max\limits_{|x-P|=r} |f(x) - f(P)|}{r} \le K$$

at every point $P \in V$. If the inverse f^{-1} of a homeomorphism f of V onto V' satisfies the similar property as (34), then we should write $f^{-1} \in Lip(K; V', V)$ but we often loosely write $f^{-1} \in Lip(K)$. This class was first introduced by Gehring [3]. Note that f(R) may be viewed as a ring in V' in the natural fashion along with a ring R in V: the inner part and the outer part of $f(R)^c = V' \setminus f(R)$ are the images of those of $R^c = V \setminus R$ under f, respectively. For each $p \in (1, \infty)$ the second class $Q_p(K, \delta) = Q_p(K, \delta; V, V')$ for two constants $K \in (0, \infty)$ and $\delta \in (0, \infty]$ is defined to be the family of homeomorphisms f of V onto V' satisfying the following condition:

$$\operatorname{cap}_{p} f(R) \le K \operatorname{cap}_{p} R$$

for every spherical ring R in V such that $\overline{R} \subset V$ and

$$\operatorname{cap}_{p}R < \delta.$$

In the case $\delta = \infty$ the condition (36) is redundant and thus the condition is given only by (35). The same remark as for the use of notation $f^{-1} \in Lip(K)$ also applies to the use of $f^{-1} \in Q_p(K, \delta)$. Clearly we see that $Q_p(K, \infty) \subset Q_p(K, \delta) \subset Q_p(K', \delta')$ for $0 < K \le K' < \infty$ and $0 < \delta' \le \delta \le \infty$. The class $Q_p(K, \infty)$ was introduced by Gehring [3] under the notation $Q_p(K)$. The following result plays a key role in the proof of our main theorem 4 in this paper.

37. Lemma. Suppose that $1 \leq p < d$, $0 < K < \infty$, and $0 < \delta \leq \infty$ are arbitrarily given. Then $f, f^{-1} \in Q_p(K, \delta)$ implies that $f, f^{-1} \in Lip(K_1)$, where K_1 depends only upon d, p, and K and does not depend on δ . Explicitly, K_1 can be chosen as

(38)
$$K_1 = K_1(K) := K^{\frac{1}{d-p}} \exp\left(\left(2^{d+1}\omega_d^{1+\frac{1}{d}}K^{\frac{2(d-1)}{d-p}}t_d^{-\frac{1}{d}}\right)^{\frac{d}{d-1}}\right).$$

Recall that t_d was given in (14). This lemma 37 is partly a generalization of the Gehring theorem ([3]): $f, f^{-1} \in Q_p(K, \infty)$ for $1 \le p < \infty$ with $p \ne d$ and $0 < K < \infty$ implies $f, f^{-1} \in Lip(K')$, where K' depends only upon d, p, and K. Namely, Lemma 37 contains the Gehring theorem for $1 \le p < d$. However Lemma 37 is no longer true especially for small finite positive numbers $\delta > 0$ if $1 \le p < d$ is replaced by d . Nevertheless,

Lemma 37 can be proven by suitably modifying the original Gehring proof ([3]) of his theorem. A complete proof of Lemma 37 can be found in [12].

If we assume that f is K_1 -qi, then $f, f^{-1} \in Lip(K_1)$, which is the conclusion of Lemma 37, follows immediately. We now prove the converse of this so that $f, f^{-1} \in Lip(K)$ can be used for the definition of K-qi in the case of mappings between space open sets.

39. Lemma. If $f, f^{-1} \in Lip(K)$, then f is a K-qi of V onto V'.

PROOF: We define positive numbers s(r) > 0 for sufficiently small positive numbers r > 0 by $\min_{|x-P|=r} |f(x) - f(P)| =: s(r)$ for an arbitrarily fixed $P \in V$. On setting P' := f(P) we see that $\max_{|x'-P'|=s(r)} |f^{-1}(x') - f^{-1}(P')| = r$. Observe that $s(r) \downarrow 0$ as $r \downarrow 0$. Hence, by $f^{-1} \in Lip(K) = Lip(K; V', V)$, we see that

$$\limsup_{r \downarrow 0} \frac{r}{s(r)} = \limsup_{r \downarrow 0} \frac{\max_{|x'-P'|=s(r)} |f^{-1}(x') - f^{-1}(P')|}{s(r)}$$

$$\leq \limsup_{s \downarrow 0} \frac{\max_{|x'-P'|=s} |f^{-1}(x') - f^{-1}(P')|}{s} \leq K.$$

Therefore we infer that

$$\begin{split} \limsup_{r\downarrow 0} \frac{\max\limits_{|x-P|=r}|f(x)-f(P)|}{\min\limits_{|x-P|=r}|f(x)-f(P)|} &= \limsup_{r\downarrow 0} \left(\frac{\max\limits_{|x-P|=r}|f(x)-f(P)|}{r} \cdot \frac{r}{s(r)}\right) \\ &\leq \left(\limsup_{r\downarrow 0} \frac{\max\limits_{|x-P|=r}|f(x)-f(P)|}{r}\right) \cdot \left(\limsup_{r\downarrow 0} \frac{r}{s(r)}\right) \leq K^2, \end{split}$$

which concludes that f is a qc of V onto V' by the metric definition (2) of quasiconformality. This assures that f is differentiable a.e. on V and $f \in W^{1,d}_{loc}(V)$ (cf. e.g. pp.109-111 in [19]). The latter in particular implies that f is ACL in an arbitrarily given direction l: f is absolutely continuous on almost all straight lines which are parallel to l. Suppose that f is differentiable at $x \in V$, i.e.

$$f(x+h) - f(x) = f'(x)h + \varepsilon(x,h)|h|$$
 $(\lim_{h\to 0} \varepsilon(x,h) = 0).$

For any |h| = 1 and any small t > 0, we have

$$|f'(x)h| \le \frac{|f(x+th) - f(x)|}{|th|} + |\varepsilon(x,th)| \le \frac{\max\limits_{|y-x|=t}|f(y) - f(x)|}{t} + |\varepsilon(x,th)|.$$

On letting $t\downarrow 0$ we deduce $|f'(x)h|\leq K$ since $f\in Lip(K)$. We can thus conclude that

$$|f'(x)| = \sup_{|h|=1} |f'(x)h| \le K$$

for a.e. $x \in U$. We now maintain that

$$|f(x) - f(y)| \le K|x - y|$$

for any line segment $[x,y] = \{(1-t)x+ty: t \in [0,1]\} \subset V$. Since f is ACL in the direction of [x,y], we see that f is absolutely continuous in V on almost all straight lines L parallel to [x,y]. As a consequence of (40), $|f'(x)| \leq K$ in V on almost all straight lines L parallel to [x,y] a.e. with respect to the linear measure on L. Hence we can find a sequence of line segments $[x_n,y_n] \subset V$ with the following properties: $x_n \to x$ and $y_n \to y$ as $n \to \infty$; f is absolutely continuous on $[x_n,y_n]$; $|f'(x)| \leq K$ a.e. on $[x_n,y_n]$ with respect to the linear measure. Then

$$|f(x_n) - f(y_n)| \le \int_{[x_n, y_n]} |df(z)| = \int_{[x_n, y_n]} |f'(z)| dz|$$

$$\le \int_{[x_n, y_n]} |f'(z)| |dz| \le K \int_{[x_n, y_n]} |dz| = K|x_n - y_n|,$$

i.e. $|f(x_n) - f(y_n)| \le K|x_n - y_n|$ $(n = 1, 2, \dots)$, from which (41) follows by the continuity of f. By the symmetry of the situations for f and f^{-1} , we deduce the same inequality for f^{-1} so that

$$\frac{1}{K}|x-y| \le |f(x) - f(y)| \le K|x-y|$$

for every x and y in V with $[x,y] \subset V$ and $[f(x),f(y)] \subset V'$. Thus we can show the validity of (3) with respect to δ_{ij} -geodesic distances ρ on V and ρ' on V' so that $f:V \to V'$ is a K-qi.

Combining Lemmas 37 and 39, we obtain the following result, which will be used in the final part of the proof of the main theorem 4.

- 42. THEOREM. Suppose that $1 \leq p < d$, $0 < K < \infty$, and $0 < \delta \leq \infty$ are arbitrarily given. Then $f, f^{-1} \in Q_p(K, \delta)$ implies that f is a K_1 -qi of V onto V', where $K_1 = K_1(K)$ is given by (38) so that it is independent of δ .
- 43. Proof of the main theorem. In this section we assume that the exponent p is fixed in (1,d) and we choose two Riemannian manifolds D and D' of the same dimension $d \geq 2$ which are orientable and countable and any component of D and D' is not compact. The proof of the main theorem 4 consits of two parts.

First part: Assume that there exists an almost quasiisometric mapping f of D onto D', i.e. f is a homeomorphism of D onto D' and there exists a compact subset $E \subset D$ such that $f = f|D \setminus E$ is a K-quasiisometric mapping of $D \setminus E$ onto $D' \setminus E'$, where E' = f(E) is a compact subset of D' and K a constant in $[1, \infty)$. We are to show that f can be extended to a homeomorphism f^* of the Royden compactification D_p^* of D onto that $(D')_p^*$ of D'. Choose an arbitrary point ξ in the Royden p-boundary $\Gamma_p(D) = D_p^* \setminus D$. Since D is dense in D_p^* , the point ξ is an accumulation point of D.

We first show that the net $(f(x_{\lambda}))$ in D' converges to a point $\xi' \in \Gamma_p(D')$ for any net (x_{λ}) in D convergent to ξ . Clearly $(f(x_{\lambda}))$ does not accumulate at any point in D' along with (x_{λ}) so that the cluster points of $(f(x_{\lambda}))$ are contained in $\Gamma_p(D')$. Contrariwise we assume the existence of two subnets $(x_{\lambda'})$ and $(x_{\lambda''})$ of (x_{λ}) such that $(f(x_{\lambda'}))$ and $(f(x_{\lambda''}))$ are convergent to η' and η'' in $\Gamma_p(D')$, respectively, with $\eta' \neq \eta''$. Since $M_p(D')$ is dense in $C((D')_p^*)$ and forms a lattice, we can find a function $u \in M_p(D')$ such that $u \equiv 0$ in a neighborhood G' of E', $u(\eta') = 0$, and $u(\eta'') = 1$. Viewing $u \in M_p(D' \setminus E')$, we see by Proposition 29 that $v := u \circ f \in M_p(D \setminus E)$. Since $v \equiv 0$ on the neighborhood $G = f^{-1}(G')$ of $E = f^{-1}(E')$, we can conclude that $v \in M_p(D)$. From $v(x_{\lambda'}) = u(f(x_{\lambda'}))$ and $v(x_{\lambda''}) = u(f(x_{\lambda''}))$ it follows that $v(\xi) = u(\eta') = 0$ and $v(\xi) = u(\eta'') = 1$, which is a contradiction.

We next show that the nets $(f(x_{\lambda'}))$ and $(f(y_{\lambda''}))$ in D' converge to a point in $\Gamma_p(D')$ for any two nets $(x_{\lambda'})$ and $(y_{\lambda''})$ convergent to $\xi \in \Gamma_p(D)$. In fact, let (z_{λ}) be a net convergent to ξ such that (z_{λ}) contains $(x_{\lambda'})$ and $(y_{\lambda''})$ as its subnets. Then we see that $\lim_{\lambda} f(x_{\lambda'}) = \lim_{\lambda''} f(y_{\lambda''}) = \lim_{\lambda} f(z_{\lambda})$. Hence we have shown that $f^*(\xi) := \lim_{x \in D, x \to \xi} f(x) \in \Gamma_p(D')$ for any $\xi \in \Gamma_p(D)$. On setting $f^* = f$ on D, we see that f^* is a continuous mapping of D_p^* onto $(D')_p^*$. The uniqueness of f^* on D_p^* is a consequence of the denseness of f^* in f^* similarly we can show that f^{-1} can also be uniquely extended to a continuous mapping $(f^{-1})^*$ of $(D')_p^*$ onto $(f^{-1})^*$ of $(f^{-1})^*$ are identities on $(f^{-1})^*$ respectively, as the unique extensions of f^* onto f^* and $f^* \circ (f^{-1})^*$ are identities on f^* or f^* and f^* or f^* is a homeomorphism of f^* onto f^* onto f^* which is the unique extension of f^* onto f^* is a homeomorphism of f^* onto f^* onto f^* which is the unique extension of f^* onto f^* onto f^* onto f^* onto f^* onto f^* which is the unique extension of f^* onto $f^$

Second part: Suppose the existence of a homeomorphism f^* of D_p^* onto $(D')_p^*$. We are to show that $f := f^*|D$ is an almost quasiisometric mapping of D onto D', which is the essential part of this note.

Choose an arbitrary point $x \in D$. Since x is G_{δ} , $f^*(x) \in (D')_p^*$ is also G_{δ} so that $f^*(x) \in D'$ by Corollary 18. Thus we have shown that $f^*(D) \subset D'$. Similarly we can conclude that $(f^*)^{-1}(D') \subset D$. These show that $f^*(D) = D'$ and therefore $f := f^*|D$ is a homeomorphism of D onto D'. We are to show that f is an almost quasiisometric mapping of D onto D'.

We fix a family $V = V_D = \{V\}$ of open sets V in D with the following properties: V is contained in a 2-domain U_V in D and V' := f(V) is contained in the 2-domain $U'_{V'} = f(U_V)$ in D'; $\bigcup_{V \in \mathcal{V}} V = D$. This is possible since the family of 2-domains forms a base of open sets on any Riemannian manifold and $f: D \to D'$ is a homeomorphism. We set $V' := \{V': V' = f(V) \mid (V \in \mathcal{V})\}$, which enjoys the same properties as \mathcal{V} does. We also fix an exhaustion $(\Omega_n)_{n\geq 1}$ of D, i.e. Ω_n is a relatively compact open subset of D $(n=1,2,\cdots)$, $\overline{\Omega_n} \subset \Omega_{n+1}$ $(n=1,2,\cdots)$, and $\bigcup_{n\geq 1}\Omega_n = D$. Then $(\Omega'_n)_{n\geq 1}$ with $\Omega'_n := f(\Omega_n)$ $(n=1,2,\cdots)$ also forms an exhaustion of D'. We set $D_n := D \setminus \overline{\Omega_n}$ and $D'_n := f(D_n) = D' \setminus \overline{\Omega'_n}$ $(n=1,2,\cdots)$. Then $(D_n)_{n\geq 1}$ $(D'_n)_{n\geq 1}$, resp.) is a decreasing sequence of open sets D_n

 $(D'_n, \text{ resp.})$ with compact complements $D \setminus D_n$ $(D' \setminus D'_n, \text{ resp.})$ such that $\bigcap_{n \geq 1} D_n = \emptyset$ $(\bigcap_{n \geq 1} D'_n = \emptyset, \text{ resp.})$. If we set $\mathcal{V}_{D_n} := \{V \cap D_n : V \in \mathcal{V}_D \text{ and } V \cap D_n \neq \emptyset\}$ $(n = 1, 2, \cdots)$, then \mathcal{V}_{D_n} plays the same role for D_n as \mathcal{V} does for D. Take an arbitrary $n \in \{1, 2, \cdots\}$. If $f \in Q_p(2^{n+p-1}, 2^{-n}; V \cap D_n, V' \cap D'_n)$ $(f^{-1} \in Q_p(2^{n+p-1}, 2^{-n}; V' \cap D'_n, V \cap D_n)$, resp.) for every $V \in \mathcal{V}$ with $V \cap D_n \neq \emptyset$ (so that $V' \cap D'_n \neq \emptyset$), where V' = f(V) and $V' \cap D'_n = f(V) \cap f(D_n) = f(V \cap D_n)$, then we write

$$f \in (n)$$
 $(f^{-1} \in (n), \text{ resp.}).$

Hence, for example, $f \notin (n)$ means that there exists a $V \in \mathcal{V}$ with $V \cap D_n \neq \emptyset$ such that $f \notin Q_p(2^{n+p-1}, 2^{-n}; V \cap D_n, V' \cap D_n')$. We maintain

44. Assertion. If $f \in (n)$ $(f^{-1} \in (n), resp.)$ for some n, then $f \in (m)$ $(f^{-1} \in (m), resp.)$ for every $m \ge n$.

In fact, $f \in (n)$ assures that $f \in Q_p(2^{n+p-1}, 2^{-n}; V \cap D_n, V' \cap D'_n)$ for every $V \in \mathcal{V}$ with $V \cap D_n \neq \emptyset$. Choose any $V \in \mathcal{V}$ with $V \cap D_m \neq \emptyset$. Since $D_m \subset D_n$, $V \cap D_n \neq \emptyset$ along with $V \cap D_m \neq \emptyset$ and therefore $f \in Q_p(2^{n+p-1}, 2^{-n}; V \cap D_n, V' \cap D'_n)$. In view of the fact that $2^{n+p-1} \leq 2^{m+p-1}$ and $2^{-n} \geq 2^{-m}$, we have the inclusion relation $Q_p(2^{m+p-1}, 2^{-m}; V \cap D_m, V' \cap D'_m) \supset Q_p(2^{n+p-1}, 2^{-n}; V \cap D_n, V' \cap D'_n)$ so that $f \in Q_p(2^{m+p-1}, 2^{-m}; V \cap D_m, V' \cap D'_m)$, i.e. $f \in (m)$, which completes the proof of Assertion 44. Next we assert

45. ASSERTION. If $f \in (n)$ and $f^{-1} \in (n)$ for some n, then $f = f|D_n$ is a qi of D_n onto D'_n .

Indeed, by Theorem 42, we see that $f:(V\cap D_n,\delta_{ij})\to (V'\cap D'_n,\delta_{ij})$ is a K_1 -qi with $K_1=K_1(2^{n+p-1})$ (cf. (38) in Lemma 37). Clearly $id.:(V\cap D_n,g_{ij})\to (V\cap D_n,\delta_{ij})$ and $id.:(V'\cap D'_n,\delta_{ij})\to (V'\cap D'_n,g'_{ij})$ are $\sqrt{2}$ -qi, where (g'_{ij}) is the metric tensor on D'. Therefore, as the suitable composition of these maps above, we see that $f:(V\cap D_n,g_{ij})\to (V'\cap D'_n,g'_{ij})$ is a $2K_1$ -qi. Since this is true for every $V\in\mathcal{V}$ with $V\cap D_n\neq\emptyset$ and $\cup_{V\in\mathcal{V}}V=D\supset D_n$, we can conclude that $f:D_n\to D'_n$ is a $2K_1$ -qi. The proof of Assertion 45 is thus complete.

To complete the proof of this second part it is sufficient to show that $f: D_n \to D'_n$ is a qi for some n. We prove it by contradiction. Contrariwise suppose that $f: D_n \to D'_n$ is not qi for every $n = 1, 2, \cdots$. Then we maintain that either $f \notin (n)$ for every n or $f^{-1} \notin (n)$ for every n. In fact, if $f \notin (n)$ for every n, then we are done. Otherwise, there is a k with $f \in (k)$. Then by Assertion 44 we have $f \in (n)$ for every $n \ge k$. In this case we must have $f^{-1} \notin (n)$ for every n and the assertion is assured. To see this assume that $f^{-1} \in (l)$ for some l. Then $f^{-1} \in (n)$ for every $n \ge l$ again by Assertion 44. Then $f \in (k \cup l)$ and $f^{-1} \in (k \cup l)$. By Assertion 45 we see that f is a qi of $D_{k \cup l}$ onto $D'_{k \cup l}$, contradicting our assumption. On interchanging the roles of f and f^{-1} (and thus those of f and f^{-1}) if

necessary, we can assume that

$$f \not\in (n)$$
 $(n = 1, 2, \cdots),$

from which we will derive a contradiction.

The fact that $f \notin (1)$ implies the existence of a 2-domain $V \in \mathcal{V}_{D_1}$ such that $f \notin Q_p(2^{1+p-1}, 2^{-1}; V, f(V))$. We can then find a spherical ring $S_1 \subset V(\subset D_1)$ such that

$$cap_p S_1 < 2^{-1}, cap_p f(S_1) > 2^{1+p-1} cap_p S_1.$$

Here $\operatorname{cap}_p S_1$ means $\operatorname{cap}_p(S_1, \delta_{ij})$. We set $n_1 := 1$. Let n_2 be the least integer such that $n_2 \geq n_1 + 1$ (and hence $D_{n_1+1} \supset D_{n_2}$) and $\overline{D_{n_2}} \cap \overline{S_{n_1}} = \emptyset$. Since $f \not\in (n_2)$, there exists a $V \in \mathcal{V}_{D_{n_2}}$ with $f \not\in Q_p(2^{n_2+p-1}, 2^{-n_2}; V, f(V))$. Hence we can find a spherical ring $S_{n_2} \subset V(\subset D_{n_2})$ such that

$$\operatorname{cap}_{p} S_{n_{2}} < 2^{-n_{2}}, \qquad \operatorname{cap}_{p} f(S_{n_{2}}) > 2^{n_{2}+p-1} \operatorname{cap}_{p} S_{n_{2}},$$

where $\operatorname{cap}_p S_{n_2}$ means $\operatorname{cap}_p (S_{n_2}, \delta_{ij})$. Repeating this process we can construct a sequence $(S_{n_k})_{k\geq 1}$ of spherical rings S_{n_k} with the following properties: $n_k + 1 \leq n_{k+1}$; $S_{n_k} \subset D_{n_k}$; $\overline{S_{n_k}} \cap \overline{S_{n_l}} = \emptyset$ $(k \neq l)$;

(46)
$$\operatorname{cap}_{n} S_{n_{k}} < 2^{-n_{k}}, \quad \operatorname{cap}_{n} f(S_{n_{k}}) > 2^{n_{k}+p-1} \operatorname{cap}_{n} S_{n_{k}} \quad (k = 1, 2, \cdots).$$

Fix a k and set $T = S_{n_k}$. Since it is a spherical ring in a 2-domain $(U_{V_{n_k}}, x)$ and contained in V_{n_k} , T has a representation $T = \{x : a < |x - P| < b\}$, where $P \in V_{n_k}$ and $0 < a < b < \infty$. Let $l = [(2^{-n_k}/\text{cap}_p T)^{1/(p-1)}] > 0$, where [] is the Gaussian symbol, which means that

(47)
$$l^{p-1} \le \frac{2^{-n_k}}{\operatorname{cap}_p T} < (l+1)^{p-1} \le 2^{p-1} l^{p-1}.$$

Using the notation q = (p - d)/(p - 1) (cf. (13)) we set

$$t_j:=\left(rac{(l-j)a^q+jb^q}{l}
ight)^{rac{1}{q}} \qquad (j=0,1,\cdots,l).$$

We divide the ring T into l small sphherical rings T_j given by

$$T_j := \{x : t_{j-1} < |x - P| < t_j\} \qquad (j = 0, 1, \dots, l).$$

By (13) we have $\operatorname{cap}_p T = \operatorname{cap}_p(T, \delta_{ij}) = \omega_d((b^q - a^q)/q)^{1-p}$. Similarly

$$cap_p T_j = \omega_d \left(\frac{t_j^q - t_{j-1}^q}{q} \right)^{1-p}$$

$$= \omega_d \left(\frac{(l-j)a^q + jb^q}{l} - \frac{(l-j+1)a^q + (j-1)b^q}{l} \right)^{1-p}$$
$$= \omega_d \left(\frac{b^q - a^q}{q} \right) l^{p-1} = l^{p-1} \text{cap}_p T,$$

i.e. we have shown that $\operatorname{cap}_p T_j = l^{p-1} \operatorname{cap}_p T$. Therefore we have the following identity for the subdivision $\{T_j\}_{1 \leq j \leq l}$ of T:

(48)
$$\sum_{j=1}^{l} (\operatorname{cap}_{p} T_{j})^{\frac{1}{1-p}} = (\operatorname{cap}_{p} T)^{\frac{1}{1-p}}.$$

Concerning the induced subdivision $\{f(T_j)\}\$ of f(T), the general inequality (10) implies the inequality

(49)
$$\sum_{j=1}^{l} (\operatorname{cap}_{p} f(T_{j}))^{\frac{1}{1-p}} \leq (\operatorname{cap}_{p} f(T))^{\frac{1}{1-p}}.$$

Now suppose that $\text{cap}_p f(T_j) \leq 2^{n_k+p-1} \text{cap}_p T_j$ for every $1 \leq j \leq l$. Then $(\text{cap}_p f(T_j))^{1/(1-p)} \geq 2^{(n_k+p-1)/(1-p)} (\text{cap}_p T_j)^{1/(1-p)}$ for every $1 \leq j \leq l$. By using (49) and (48) we deduce

$$(\operatorname{cap}_p f(T))^{\frac{1}{1-p}} \ge \sum_{j=1}^l (\operatorname{cap}_p f(T_j))^{\frac{1}{1-p}}$$

$$\ge 2^{\frac{n_k+p-1}{1-p}} \sum_{j=1}^l (\operatorname{cap}_p T_j)^{\frac{1}{1-p}} = 2^{\frac{n_k+p-1}{1-p}} (\operatorname{cap}_p T)^{\frac{1}{1-p}},$$

which means that $\operatorname{cap}_p f(T) \leq 2^{n_k+p-1} \operatorname{cap}_p T$. This contradicts (46) since $T = S_{n_k}$. Therefore there must exist a number $j_0 \in \{1, \dots, l\}$ such that

(50)
$$\operatorname{cap}_{p} f(T_{j_{0}}) > 2^{n_{k}+p-1} \operatorname{cap}_{p} T_{j_{0}}.$$

We now set $R_k := T_{j_0}$. By (47) we have $l^{p-1} \operatorname{cap}_p T \leq 2^{-n_k} \leq 2^{p-1} l^{p-1} \operatorname{cap}_p T$. Since $l^{p-1} \operatorname{cap}_p T = \operatorname{cap}_p T_{j_0} = \operatorname{cap}_p R_k$, we see that

$$\operatorname{cap}_{p} R_{k} \le 2^{-n_{k}} \le 2^{p-1} \operatorname{cap}_{p} R_{k}.$$

This is equivalent to $\text{cap}_p R_k \leq 2^{-n_k} (< 2^{-k} \text{ (since } n_k > k))$ and $\text{cap}_p R_k \geq 2^{-n_k-p+1}$. The latter inequality with (50) implies that $\text{cap}_p f(R_k) > 2^{n_k+p-1} \text{cap}_p R_k \geq 2^{n_k+p-1} \cdot 2^{-n_k-p+1} = 1$. By (46), $\text{cap}_p(R_k, g_{ij}) < 2^{(d+p)/2} \cdot 2^{-k}$ and $\text{cap}_p(f(R_k), g_{ij}) > 2^{(d+p)/2}$.

We have thus constructed an admissible sequence $(R_k)_{k\geq 1}$ of rings R_k in D in the sense of §8 (cf. Lemma 15) such that $\operatorname{cap}_p R_k = \operatorname{cap}_p(R_k, g_{ij})$ and $\operatorname{cap}_p f(R_k) = \operatorname{cap}_p(f(R_k), g'_{ij})$ satisfy

(51)
$$\operatorname{cap}_{p} R_{k} < 2^{(d+p)/2} \cdot 2^{-k} \quad \text{and} \quad \operatorname{cap}_{p} f(R_{k}) > 2^{(d+p)/2}$$

for every $k = 1, 2, \cdots$. Let C_{k1} be the inner part of $R_k^c = D \setminus R_k$ and we set

$$X := \bigcup_{k=1}^{\infty} C_{k1}$$
 and $Y := \bigcap_{k=1}^{\infty} (D \setminus (R_k \cup C_{k1}))$

as in §8 (cf. Lemma 15). The first inequality in (51) implies that

$$\sum_{k=1}^{\infty} \operatorname{cap}_{p} R_{k} < \sum_{k=1}^{\infty} 2^{\frac{d+p}{2}} \cdot 2^{-k} = 2^{\frac{d+p}{2}} < \infty$$

and therefore Lemma 15 assures that

$$(\operatorname{cl}(X; D_p^*)) \cap (\operatorname{cl}(Y; D_p^*)) = \emptyset.$$

Due to the fact that f^* is a homeomorphism of D_p^* onto $(D')_p^*$, we see that

$$(\operatorname{cl}(f(X); (D')_p^*)) \cap (\operatorname{cl}(f(Y); (D')_p^*)) = f^*(\operatorname{cl}(X, D_p^*)) \cap f^*(\operatorname{cl}(Y; D_p^*))$$
$$= f^*((\operatorname{cl}(X; D_p^*)) \cap (\operatorname{cl}(Y; D_p^*))) = f^*(\emptyset) = \emptyset.$$

Since again $(f(R_k))_{k\geq 1}$ is an admissible sequence of rings $f(R_k)$ on D', the above relation must imply by Lemma 15 that $\sum_{k=1}^{\infty} \operatorname{cap}_p f(R_k) < \infty$. However the second inequality in (51) implies that

$$\sum_{k=1}^{\infty} \operatorname{cap}_{p} f(R_{k}) \ge \sum_{k=1}^{\infty} 2^{\frac{d+p}{2}} = \infty,$$

which is a contradiction. This comes from the erroneous assumption that $f: D_n \to D'_n$ is not a qi for every $n = 1, 2, \dots$, and thus we have established the existence of an n such that $f = f|D_n$ is a qi of D_n onto D'_n . The second part of the proof for the main theorem 4 is herewith complete.

References

- [1] H. Federer: Geometric Measure Theory, Reprint of the 1969 Edition, Springer, 1996.
- F. W. Gehring: Extension theorems for quasiconformal mappings in n-space, J. d'Analyse Math., 19(1967), 149-169.
- [3] F. W. Gehring: Lipschitz mappings and the p-capacity of rings in n-space, Annals of Mathematics Studies, 66(1971), 175-193.
- [4] J. Heinonen, T. Kilpeläinen, and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, 1993.
- [5] J. LELONG-FERRAND: Etude d'une classe d'applications Liée à des homomorphismes d'algebres de fonctions, et generalisant les quasi conformes, Duke Math. J., 40(1973), 163-186.
- [6] L. G. LEWIS: Quasiconformal mappings and Royden algebras in space, Trans. Amer. Math. Soc., 158(1971), 481-492.

- [7] V. G. Maz'ya: Sobolev Spaces, Springer, 1985.
- [8] M. Nakai: Algebraic criterion on quasiconformal equivalence of Riemann surfaces, Nagoya Math. J., 16(1960), 157-184.
- [9] M. Nakai: Royden algebras and quasi-isometries of Riemannian manifolds, Pacific J. Math., 40(1972), 397-414.
- [10] M. Nakai: Existence of quasiconformal mappings between Riemann surfaces, Hokkaido Math. J., 10(1981) Sp., 525-530.
- [11] M. NAKAI: Potential theory on Royden compactifications, Bull. Nagoya Inst. Tech., 47(1995), 171-191 (in Japanese).
- [12] M. NAKAI: Quasiisometric mappings and the variational capacity, RIMS Koukyuroku (Seminar Note at Res. Inst. Math. Sci. Kyoto Univ.), 1016(1997), 117-135.
- [13] M. NAKAI AND H. TANAKA: Existence of quasiconformal mappings between Riemannian manifolds, Kodai Math. J., 5(1982), 122-131.
- [14] L. Sario and M. Nakai: Classification Theory of Riemann Surfaces, Springer, 1970.
- [15] N. Soderborg: Quasiregular mappings with finite multiplicity and Royden algebras, Indiana Univ. Math. J., 49(1991), 1143-1167.
- [16] N. Soderborg: A characterization of domains quasiconformally equivalent to the unit ball, Michigan Math. J., 41(1994), 363-370.
- [17] H. Tanaka: Harmonic boundaries of Riemannian manifolds, Nomlinear Analysis, 14(1990), 55-67.
- [18] H. Tanaka: Kuramochi boundaries of Riemannian manifolds, Potential Theory (ed. by M. Kishi), pp.321-329, Walter de Gruyter, 1992.
- [19] J. VÄISÄLÄ: Lectures on n-dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer, 1971.
- [20] K. Yosida: Functional Analysis, Springer, 1965.