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EXISTNCE OF QUASIISOMETRIC MAPPINGS
AND ROYDEN COMPACTIFICATIONS !

HERIA (FEER) W =8 (MrTsurU NAKAT)

1. Introduction. Consider a d-dimensional (d > 2) Riemannian manifold D of class C*®
which is orientable and countable but not necessarily connected and given an exponent 1 <
p < 00. The Royden p-algebra M,(D) of D is defined by M, (D) := LY*(D)NL>(D)NC(D),
which is a commutative Banach algeba, i.e. the so-called normed ring, under pointwise
addition and multiplication with ||u; M,(D)|| := |lu; L*°(D)||+||Vu; LP(D)|| as norm, where
LY?(D) is the Dirichlet space, i.e. the space of locally integrable real valued functions u
on D whose distributional gradients Vu of u belong to L#(D) considered with respect to
the metric structure on D. The maximal ideal space D;, (cf. e.g. p.298 in [20]) of M,(D)
is referred to as the Royden p-compactification of D, which is also characterized as the
compact Hausdorff space containing D as its open and dense subspace such that every
function in M,(D) is continuously extended to D;, and M,(D) is uniformly dense in C(Dj)
(cf. e.g. [17], [18], [11] and also p.154 in [14]).

Suppose that D and D' are d-dimensional (d > 2) Riemannian manifolds of class C®
which are orientabl and countable but not necessarily connected. Moreover we always
assume in this note that none of the components of D and D' is compact, which is however
not an essential restriction and postulated only for the sake of simplicity. In 1982, the
present author and H. Tanaka [13] (see also [10]) jointly showed that two conformal Royden
compactifications D} and (D')}; are homeomorphic if and only if there exists an almost
quasiconformal mapping of D onto I)’. Here we say that a homeomorphism f of D onto D’
is an almost quasiconformal mapping of D onto D' if there exists a compact subset £ C D
such that f = f|D \ E is a quasiconformal mapping of D\ E onto D'\ f(E). There are
many ways of defining quasiconfrmality but the following metric defiition is convenient for
applying to Riemannian manifolds (cf. e.g. p.113 in [19]): the homemrphism f of D\ E
onto D'\ f(E) is quasiconfomal, by defintion, if

, ( max p'(f(w)vf(y)))
< 00,

. (zy)=r"
2 sup | limsup i
@) s | P " min J (@), F @)

plzy)=r

where p and p’ are geodesic distances on D \ E and D'\ f(F). It has been an open question
for a long period since the above result was obtained as for what can be said about the
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counterpart of the above result for nonconformal case, i.e. if the ekponent d in the above
result is replaced by 1 < p < d. The purpose of this note is to settle this question by
establishing the main theorem mentioned below.

To state our result we need to introduce a class of special kind of almost quasiconformal
mappings. A homeomorphism f of D onto D’ is said to be an almost quasiisometric
mapping of D onto D' if there exists a compact set E C D such that f = f|[D\ E is a
quasiisometric mapping of D \ E onto D'\ f(E). Here the homeomorphism f of D\ E
onto D'\ f(E) is quasiisometric, by definition, if there exists a constant K € [1,00) such
that

OIS Eolm,) < F(F(@), fB) < Kplz,)

for every pair of points = and y in D\ E, where we always set p(z,y) = ¢/(f(z), f(y)) = o
if the component of D \ E containing z and that containing y are different. From (3) it
follows that

77 S min P (f(x), fy) £ max p'(f(z), f(y)) < Kr
plz,y)=r plz,y)=r

for any fixed x € D and for any sufficiently small positive number 7 > 0, which implies
that the left hand side term of (2) is dominated by K2. Thus a quasiisometric mapping
is automatically a quasiconformal mapping but obviously there exists a quasiconformal
mapping which is not a quasiisometric mapping. Then our main result of this paper is
stated as follows.

4. MAIN THEOREM. When 1 < p < d, Royden compactifications D}, and (D'), are
homeomorphic if and only if there exists an almost quasiisometric mapping of D onto D'.
More precisely, any almost quasiisometric mapping of D onto D' is uniquely extended to a
homeomorphism of D}, onto (D );; conversely, the restriction to D of any homeomorphism
of D} onto (D)} is an almost quasiisometric mapping of D onto D'.

It may be interesting to compare the above topological result with the former relevant
algebraic results obtained by the present author (8] and [9], Lewis [6], and Lelon-Ferrand [5]
(cf. also Soderborg [15]): Royden algebas My(D) and My(D') are algebraically isomorphic
if and only if there exists a quasiconformal mapping of D onto D’; when 1 < p < d, Mp(D)
and M, (D) are algebraically isomorphic if and only if there exists a quasiisometric mapping
of D onto D’. All these results including our present main theorem are shown to be invalid
when d < p < oo by giving a counter example, which will be discussed elsewhere. Another
important problem related to the above main result is the following: does the existence of
an almost quasiisometric (almost quasiconformal, resp.) mapping of D onto D’ imply that
of a quasiisometric (quasiconformal, resp) mapping of D onto D'? It is affirmative for the
quasiconformal case if D is the unit ball in the d-dimensional Euclidean space R? (Gehring
[2], see also Soderborg [16]); it is also affirmative again for the quasiconformal case if the
dimensions of D and D’ are 2. Except for these partial results though not easy to prove,
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the problem is widely open.

5. Royden compactifications of Riemannian manifolds. By a Riemannian manifold
D of dimension d > 2 we always mean in this note an orientable and countable but not
necessarily connedted C'° manifold D of dimension d with a metric tensor (g;;) of class C*™.
We also assume that any component of D is not compact only for the sake of simplicity.

We say that U or more precisely (U, z) is a parametric domain on D if the following two
conditions are satisfied: firstly U is a domain, i.e. a connected open set, in D; secondly x
is a C* diffeomorphism of U onto a domain z(U) in the Euclidean space R¢ of dimension
d > 2. The map z = (2',---, 2% is referred to as a parameter on U. We often identify
a generic point P of U with its parameter z(P) and denote them by a same letter z, for
example. In other words we view U to be embedded in R? by identifying U with z(U) so
that U itself may be considered as a Riemannian manifold (U, g;;) with metric tensor ( 9ij)
restricted on U and at the same time as an Euclidean subdomain (U, 6;;) with the natural
metric tensor (6;;), 6;; being the Kronecker delta.

Take a parametric domain (U, ) on D. The metric tensor (g;;) on D gives rise to a d x d
matrix (gi;()) of functions g;;(z) on U. We say that (U, z) is a A-domain with \ € [1, 00)
if the following matrix inequalities hold:

© 16.5) < (9(2)) < X(6:)

for every x € U. It is important that any point of D has a A-domain as its neighborhood
for any A € (1,00). This comes from the fact that there exists a parametric ball (U, z) at
any point P € D (i.e. a parametric domain (U, ) such that z(P) = 0 and z(U) is a ball in
R centered at the origin 0) such that (g;(z)) with respect to (U, z) satisfies g;;(0) = 6;;.

"The metric tensor (gi;) on D defines the line element ds on D by ds® = g;;(z)dz’dz? in

each parametric domain (U,z = (z%,---,x%)). Here and hereafter we follow the Einstein
convention: whenever an index i appears both in the upper and lower positions, it is
understood that summation for ¢ = 1, - - -, d is carried out. The length of a rectifiable curve

v on D is given by [, ds. The geodesic distance p(z,y) between two points z and y in D is
given by
p(z,y) = pp(z,y) mf/ ds,

Where the infimum is taken with respect to rectifiable curves v connecting = and y. Needless
to say, if there is no such curve v, i.e. if z and y are in the different components of D,
then, as the infimum of empty set, we understand that p(z,y) = co. When (U,z) is a
parametric domain and considered as the Riemannian mamfold (U, 6;), then py(z,y) can
~ also be given by

- p(z,y) = pu(=,y) mfZIscz i1,
=0 )
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where the infimum is taken with respect to every polygonal line = x, %1, -+, Tn-1,Zn = ¥
such that every line segment [z;_1,z;] = {(1 — t)zs—1 +tz; : 0 < ¢ < 1} C U for each
1=1,---,n.

We write (¢7) := (gi;)~! and g := det(gs;). We denote by dV the volume elemnt on D
so that :

dV (z) = \/g(x)dz* A --- A d2®

in each parametric domain (U,z = (z},---,2%)). On (U, §;;) we also have the volume ele-
ment (Lebesgue measure) dz = da' - - dz?. Sometimes we use dz to mean (dz',---,dz?)
but there will be no confusion by context. The Riemannian volume element dV'(z) and
the Euclidean (Lebesgue) volume element dz are mutually absolutely continuous and
the Radon-Nikodym densities dV(z)/dz = \/@ and dz/dV(z) = 1/ \/R;) are locally
bounded on U. Thus a.e.dV and a.e.dx are identical and we can loosely use a.e. without
referring to dV or dz.

For each z € D, the tangent space to D at = will be denoted by T, D. We denote by
(h, k) the inner product of two tangent vectors h and k in T, D and by |A| the length of
h € T,D so that if (hy,- -+, hg) and (ky, - -, kq) are covariant components of h and k, then

(h, k) = g”hik; and |h| = (h, h)* = (g h;h;)' 2.

Since we may consider two metric tensors (gi;) and (6;;) on a parametric domain (U, z),
we occasionally write (h, k)g,, or (h, k)s,; and similarly |h|g,; or |h[s,; to make clear whether
they are considered on (U, g;;) or on (U, 6;;).

Let G be an open subset of D. In this note we use the notation L?(G) (1 < p < 00)
in two ways. The first is the standard use: LP(G) = LP(G, gs;) is the Banach space of
measurable functions u on G with the finite norm ||u; LP(G)|| given by

1

s 2@l = ([ luFav)” (1 <p <o)

and ||u; L°(G)|| is the essential supremum of |u| on G. The second use: for a measurable
vector field X on G we write X € LP(G) = LP(G; g;;) if | X| = |X|y,; € LP(G) in the first
sense and we set

1X; LP(G)| == (|| X]; LG

The Dirichlet space LY?(G) = L**(G; gi;) (1 < p < 00) is the class of functions u € Lj,.(G)

with the distributional gradients Vu € LP(G), where the distributional gradient Vu is
determined by the relation

/G (Vu, W)dV = — /G udivldV
for every C* vector field ¥ on G with compact support in G. In the parametric domain
(U,z) in G we have Vu = (Ou/dz',--+,0u/0z%). If ¥ = (41, -+, %q) in U, then

o ..
div® = - (/agp;).

Nz ot
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The Sobolev space W'P(G) = WP(G, g;;) (1 < p < 0o) is the Banach space L1?(G)NLP(G)
equipped with the norm

lu; WH(G)|| = [fu; LP(G) || + [|Vu; P(G)|-

Given a Riemannian manifold D of dimension d > 2 and given an exponent 1 < p < 00,
the Royden p-algebra M,(D) is the Banach algebra L'?(D)N L*®(D)NC(D) equipped with
the norm

(7) lw; Mp(D)]| = |lu; L=(D)|| + [|Vu; LP(D)]].

By the standard mollifier method we can show that the subalgebra M,(D) N C*(D) is
dense in M,(D) with respect to the norm in (7). Henc M,(D) may also be defined as
the completion of {u € C®(D) : [ju; Mp(D)|| < oo} without appealing to the Dirichlet
‘space. It is important that M,(D) is closed under lattice operations U and N given by
(uUv)(z) = max(u(z),v(z)) and (v Nv)(z) = min(u(z),v(z)) (cf. e.g. p.21in [4]). The
maximal ideal space Dy of M,(D) is referred to as the Royden p-compactification, which
can also be characterized as the compact Hausdorff space containing D as its open and
dense subspace such that every function u € M,(D) is continuously extended to D} and
M, (D), viewed as a subspace of C(Dj) by this continuous extension, is dense in C(Dy)
with respect to its supremum norm.

8. Capacities of rings. A ring R in a Riemannian manifold D is a subset R of D
with the following properties: R is a subdomain of D so that R is contained in a unique
component Dg of D; Dy \ R consists of exactly two components one of which, denoted by
C1, is compact and the other of which, denoted by Cp, is noncompact. The set C; will be
referred to as the inner part of R° := D\ R and the set D\ (RU C}) as the outer part of
R°. We denote by W(R) the class of functions v € W2 (R) N C(D) such that u = 1 on
the inner part of R° and u = 0 on the outer part of R® which includes Cy. The p-capacity
cap,R (1 < p < 00) of the ring R C D is given by

0 cap,R = inf [Vui LZ(R)|”

for 1 < p < 0o and cap, R = infuew(r) |[Vu; L(R)||. Note that cap,R does not depend
upon which Riemannian manifold D the ring R is embedded as far as the metric structure
on R is unaltered. The following inequality will be essentially made use of (cf. e.g. p.32 in
[4]): if 1 <p <ooandif Risaring in D and R (1 < k < n) are disjoint rings contained
in R each of which separates the boundary components of R, then

(10) (cap,R) ™7 > 3" (cap,Ri) 7.

k=1
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Suppose that a ring R is contained in a parametric domain (U, z) on D for which two
metric structures (g;;) and (6;;) can be considered. If the need occurs to indicate that
cap, R is considered on (U, é;;), then we write

_ Y= P
cap, Rt = cap,(R, 6;;) ue%fR) /R [Vu(z)ls,, d;
if cap, R is considered on (U, gy;), then we write

cap, B = cap,(R, ;) = inf /R Vulg,dV

for 1 < p < oo. Similar considerations are applied to cap.,(R, gij) and capy (R, 6;;). If
moreover U is a A-domain for any A € [1,00), then (6) implies that

1 dip
() a3 a0y, 8) < capy(R, ig) <A capy(R, ).

In the case p = 0o, the inequality corresponding to the above takes the following form:
N2cap, (R, 6i;) < capo(R, gij) < AY2capy, (R, 6;;), which however will not be used in
this note.

We fix a parametric domain (U, z) in D. It is possible that the parametric domain is the
d-dimensional Euclidean space R? itself. A ring R contained in U is said to be a spherical
ring in (U, z) if '

(12) R={ze€U:a<|z—P|<b},

where P € U and a and b are positive numbers with 0 < a < b < infy |z — P|. At
this point we must be careful: in the case where the above R happens to be included in
another parametric domain (V,y) of D, R may not be a spherical ring in (V,y) even if R
is a spherical ring in (U, z). Namely, the notion of sperical rings cannot be introduced to
the general Riemannian manifold D and is strictly attached to the parametric domain in
question. Let R be a spherical ring in a parametric domain (U, ) with the above expression
(12). Then we have (cf. e.g. p.35 in [4])

.bq__aq 1-p
wd( , ) (1<p<oo, p#d),

B\ 1
Wy <log E) (p=d),

where we have set ¢ = (p — d)/(p — 1) and wy is the surface area of the Euclidean unit
sphere S%1. In passing we state that cap; (R, 6;;) = waa®™! and cap.(R,6;) = 1/(b — a),
which are also not used in this note.

(13) cap,R = capp(R, 8ij) =
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Another important ring in R? which we use later is a Teichmiiller ring Ry defined by
Ry = R*\ {te; : t € [~1,0] U [1,00)}, where e; is the unit vector (1,0, - - -,0) in R?%. We
set -

(14) . td = capd(RT, (S,,J)

Finally in this section we state a separation lemma on the topology of the Royden
compactification. Let (Ry)n>1 be a sequence of rings R, in D (n = 1,2,---) with the
following properties: (Rp, U Cn1) N (Rm U Cr1) = 0 for n # m, where C,; is the inner part
of (Rn)® = D\ Rp; (Rn)nz1 does not accumulate in D, ie. {n: EN (R, U Cr1) # 0} is a
finite set for anyvcompact set £ in D. Such a sequence (R,)n>1 will be called an admissible
sequence, which defines two disjoint closed sets X and Y in D as follows:

8

(D\ (B U Cai)).

1

X:=JCu and Y =

n=1 n

We denote by cl(X; Dy) the closure of X in D2. Althoﬁgh XNY =0in D, cl(X; D%) and
cl(Y; D,) may intersect on the Royden p-boundary

['y(D) :== D, \ D.
Concerning to this we have the following result.

15. LEMMA. The set cl(Up2, Ry; Dy) for an admissible sequence (Ry)a>1 in D separates
c(X; Dy) and cl(Y; Dy) in D; in the sense that

(16) (cl(X; Dp)) (Ncl(Y; D2)) = 0

if and only if

(17) > cap,R, < 0o.

n=1

PRrOOF: First we show that (16) implies (17). By (16) the Urysohn theorem assures the
existence of a function u € C(Dj) such that u = 3 on cl(X; D) and u = —2 on cl(Y; Dy).
Since M, (D) is dense in C(Dj), there is a function v € M,(D) such that v > 2 on X and
v<-—lonY. Finally let w = ((vN1)U0) € My(D), which satisfies w|X = 1, w|Y = 0 and
0<w<lonD. Setw,=won R,UCn and w, =00n D\ (R, UCp) forn=1,2,---.
Clearly wn € W(R,) so that cap,Ry, < [|[Vwn; LP(R,)|P (n = 1,2,--+) and w = £, w,.
Since the supports of w, in D (n =1,2,---) are mutually disjoint, we see that

5_’31 cap, R < i Vs L2 (B P =[5 LED) P < s My (D) < o,

ie. (17) has been deduced.
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Conversely, suppose that (17) is the case. We wish to derive (16) from (17). Choose a
function w, € W(R,) such that ||Vw,; LP(R,)|IP < 2cap,R, for each n =1,2,---. We may
suppose that 0 < w, < 1 on D by replacing w, with (w, N 1) U0 if necessary (see e.g. p.20
in [4]). Clearly w:= Y02, wn € My(D) since |jw; L®(D)|| =1 and

|[Vw; ZP(D)|IP = [[Vwn; LP(Dy)|IP < 2 > cap, R, < 00.
n=1 n=1
Observe that w = 1 on X and w = 0 on Y. Hence, by the continuity of w on D}, we see
that w = 1 on cl(X; D}) and w = 0 on cl(Y; D), which yields (16). O
As a consequence of the separation lemma above we can characterize points in the Roy-
den p-boundary T',(D) = Dj; \ D among points in D)} in terms of their being not Gs for
1 < p < d. This is no longer true for d < p < co. Recall that a point ¢ € D is said to
be Gg if there exists a countable sequence (£2)¢>1 of open neighborhoods Q; of  such that

Ni>1% = {C}

18. COROLLARY TO LEMMA 15. A point ¢ in D3 (1 < p < d) belongs to D if and only if
C 18 G(s. .

ProoF: We only have to show that ( € Tp(D) = Dy \ D is not Gs. Contrariwise sup-
pose ¢ is Gs so that there exists a sequence (€%)i>1 of open neighborhoods of ¢ such
that Q; D cl(Qiy1; DF) (i = 1,2,--) and N1 = {¢}. Since D is dense in Dy, H; :=
D N (% \ cl(Qur1; D;)) is a nonempty open subset of D for each i. Hence we can find
a sequence (P,)n>1 of points P, € H, (n = 1,2,--+) and a sequence ((Un, Zn))n>1 of 2-
domains (U, *,) contained in Hy, (n = 1,2,---) such that Up, = {zn : |Zn — P, < r.}
(rn, >0) (n=1,2,---). Let Ry, := {Zp : G < |ZTp — Pa| < bp} (0 < an <bp:= ro/2) be a
spherical ring in (Uy, #,). Clearly (Ry)n>1 is an admissible sequence. ‘Since cap,(Rn, 6i) =
wa(lgl/(1 = (an/ba)®))P1ald=7 by (13) for 1 < p < d, capy(Rn, 8ij) = wa/(log(bn/an))* ™,
and cap; (Rn, 6ij) = waal™!, we can see that cap,(Rn,di;) < 27" by choosing a, € (0,7/2)
enough small so that cap,R = cap,(R, gij) < 2@+P)/2cap (R, 6;5) < od+p)/29—n (n =
1,2,--+) by (11). Hence (17) is satisfied but (16) is invalid because the intersection on
the left hand side of (16) contains ¢ due to the fact that R, C Hn (n =1,2,- -). This is
clearly a contradiction to Lemma 15. 0O

19. Analytic properties of quasiisometric mappings. A quasiisometric (quasi-
conformal, resp.) mapping f of a Riemannian manifold D onto another D' is, as de-
fined in §1 (Introduction), a homeomorphism f of D onto D’ such that K lp(z,y) <
o(f(x), f(y)) < Kp(z,y) for every pair of points z and y in D for some fixed K € [1,00)
(SupmeD(hm Suprlo((maxp(:c,y):r p'(f(:U), f(y)))/(minp(m,y):r pl(f(x)’ f(y)))) < o0, resp.), where
p and p' are geodesic distances on D and D', respectively. In this case we also say that f
is K-quasiisometric referring to K. For simplicity, quasiisometric (quasiconformal, resp.)
mappings will occasionally be abbreviated as qi (qc, resp.). Consider a K-qgi f of a d-
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dimensional Riemannian manifold D equipped with the metric tensor (g;;) onto another
d-dimensional Riemannian manifold D’ equipped with the metric tensor (9;)- Fix an ar-
bitrary A € (0,00) and choose any A-domain (U, z) in D and any A-domain (U’,z') in D’
such that f(U) = U’. The mapping [ : (U, 6;;) — (U’,§;;) has the representation

(20) ' = f(z) = (f'(z), -, f4(2))

on U in terms of the parameters x and z’. As the composite mapping of id. : (U, §;;) —
(U,9i5), f: (Uygij) — (U, 4g;), and id. : (U, g};) — (U',6;;), we see that the mapping
[ (U, 65) — (U, 85) is AK-qi since id. : (U, 8i5) — (U, gi5) and id. : (U, g};) — (U, 655)
are v/A-qi as the consequence of \~!|dz|? < ds® < Mdz|% where dz = (dz!,---,dz9),
|dz|? = 6;jdz*da?, and ds® = g;;(z)dz*dz?, which is deduced from A7 (6;) < (gij) < A(6i).
“ Hence we see that

(@) le =l < (@)~ )] < MKz —y

whenever the line segment [z,y] := {(1 —t)z+ty:t € [0,1]} C U and [f(), f(¥)] C U".
In paticular (21) implies that

@) limsup @+ 1) = J(@)

<MK < oo
h—0 |h| -

for every x € U and

f@+h) = f@)] 1

(23) lim (l;lf 7 2%

h—

> 0.

As an important consequence of (22), the Rademacher-Stepanoff theorem (cf. e.g. p.218
in [1]) assures that f(z) is differentiable at a.e. x € U, i.e.

(24) flz+h) = fl@) = ['(@h+e@ k] (lime(z,h) =0)

for a.e. € U, where f'(z) is the d x d matrix (0f*/0xz7). Fix an arbitrary vector h with
|h| = 1. Then for any positive number ¢ > 0 we have, by replacing h in(24) with th,

\f(z + th) — f(=2)]
[th]

|f'(z)h] — le(z, th)| <
and on letting ¢ | 0 we obtain by (22) that |f'(z)h| < AK. Therefore
(25) | ()] = sup |[f'(@)h] < AK

for a.e. x € U. Similarly we have

|f(z +th) — f(z)]

7 @I+ e, th)] 2
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and hence by (23) we deduce |f'(z)h| > 1/AK. Hence

1 N / 1
(26) U(f'(z)) = nf |F (@) = 13-

From (25) it follows that |0f(z)/927| < |f'(z)| < MK for ae. z € U (i,j = 1,---,d)
and thus |[Vf| = (4, |V£il2)Y2 € L>(U). By (21), f(z) is ACL (absolutely continuous
on almost all straight lines which are parallel to coordinate axes). That f(x) is ACL and
V[ € L®(U) is necessary and sufficient for f to belong to L"*(U) (cf. e.g. pp.8-9 in [7])
so that, by the continuity of f, we have

(27) f € Wige(D).
By (25) and (26) we have the matrix inequality
(f'(@)*(65) < f'()* () < 1f(2)*(655)

for a.e. z € U, where f'(z)* is the transposed matrix of f'(z). Let Ai(z) > --- > Ay(z) be
)

the square roots of the proper values of the symmetric positive matrix f'(z)*f'(z). Then
1
o U (@) = Male) S -+ S Mi(o) = 17/ @)] S K.

Observe that [T, \i(z)? = det(f'(z)* f/(z)) = (det f'(x))? is the square of the Jacobian
Js(z) of f at z. Hence, by AKX > 1 (i = 2,3, +,d), we see that

d
(@) = M(@)” < M@)AK)P < M(@) MK TIOAKXi(2))

§=2
d
= MK 2 T] Mi(z) = (AK) P72 J(2)),
=1
i.e. we have deduced that
(28) | If'(2)P < (AK)"P2|J; ()]

for a.e. x € U. This is used to prove the following result.

29. PROPOSITION. The pull-back v =uo f of any u in My(D') by a K-qi f of D onto D'
belongs to M,(D) and satisfies the inequality

(30) [ 1vo(a)l, @)z < K47 [ [Vu(e)ly g (a)da

and in particular

(1) lv; My(D) || < K422 M,(D)].
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ProoF: The inequality (30) is nothing but ||Vv; LP(D)|| < K¢+2=2/?||Vy; LP(D’)||. This
with [jv; L®(D)|| = [lu; L*°(D’)|| implies (31). Suppose that Proposition 29 is true if u €
M,(D')NC=(D'). Since My(D")NC*®(D') is dense in M,(D"), for an arbitrary u € M,(D'),
there exists a sequence (ug)r>1 in My(D') N C*(D') such that ||u — wuz; M,(D')|| — 0
(k — o0). In particular ||ug — ug; My(D')]| — 0 (k,kK' — o00). By our assumption,
Ve = up o f € My(D) (k = 1,2,--+). By (31), the inequalities ||vx — vp; Mp(D)|| <
K@ P=2/p|lyy, — wy; My(D')|| assure that |jvy, — vp; Mp(D)|| — 0 (k, &' — 00). By the
completeness of M,(D), since ||v — vg; L2(D)|| — 0 (k — o0), we see that v € M,(D).
By the validity of (30) (and hence of (31)) for vy, we see that (30) is valid for v. For this
reason we can assume u € M,(D') N C’°°(D’ ) to prove Proposition 29.

It is clear by (25) that v = uo f € W N L®(D)NC(D) if u € M,(D") N C=(D").
Hence we only have to prove (30) to deduce v € M,(D). Fix an arbitrary A € (1,00). Let
D = U2, Ex be a union of disjoint Borel sets E, in D such that each Ej is contained in a
A-domain Uy in D and Ej, = f(£}) in a A-domain U}, = f(Ui) in D' for k =1,2,---. Fix a
k and consider the AK-qi f of (Ug, 6;;) onto (Uj, 6;;) with the representation (20) on Uy in
terms of the parameter z in Uy and 2z’ in Uj. By the chain rule we have

(32) Vu(z) = f'(z)"Vu(f(2))
for a.e. £ € U. Since |f'(z)*| = |f'(z)], (28) and (32) yield
[Vu(@) P < (AK)H*72|Vu(f(2))P| 5 ()|

for a.e. 2 € Up. In view of (22), the formula of the change of variables in integrations is
valid for 2’ = f(z):

L, IVl f@)Pse)lda = / Vu(z!)Pda.
From the above two displayed relations we deduce

/ Vo()[Pde < (AK)H+P~2 / Vu(a')Pdz.

Observe that [Vo[?, < A/2|VolP and /g < A¥2, and simlarly, that |VulP < 3/ ZIVUIP
and 1 < )\d/ 2,/q'. The above displayed inequality then nnplles that

| P < )\2(d+p-1) prd+p—2 NP ot (2 d.
/jEk }Vv(m)lgij\/g(x)dx_)\ K - |Vu(z")[P1/ ¢ (2')dz

On adding these inequalities for £ = 1,2,--- we obtain (30) with K%*~2 replaced by
A2(pd=1) gd+p=2 Gince ) € (1,00) is arbitrary, we deduce (30) itself by letting A | 1. O

33. Distortion of rings and their capacities. Throughout this section we fix two
nonempty open sets V and V' in R? (or, what amounts to the same, two parametric domains
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(V,z) and (V',2’) in certain Riemannian manifolds D and D, respectively, considered as
(V,6;;) and (V',6;;)) and consider homeomorphisms f of V' onto V'. We introduce two
classes of such homeomorphisms f. The first class Lip(K) = Lip(K;V, V') for a positive
constant K € (0, 00) is the family of homeomorphisms f of V' onto V' such that

Joax |f(z) — F(P)]

(34) lim sup
rl0 T

<K

at every point P € V. If the inverse f~! of a homeomorphism f of V' onto V" satisfies the
similar property as (34), then we should write f~ € Lip(K;V’,V) but we often loosely
write f~! € Lip(K). This class was first introduced by Gehring [3]. Note that f(R) may
be viewed as a ring in V’ in the natural fashion along with a ring R in V: the inner part
and the outer part of f(R)® = V'\ f(R) are the images of those of R° = V' \ R under
f, respectively. For each p € (1,00) the second class Q(K,8) = Qp(K,6;V, V') for two
constants K € (0,00) and § € (0, co] is defined to be the family of homeomorphisms f of
V onto V' satisfying the following condition:

(35) cap,f(R) < Kcap,R
for every spherical ring R in V such that R CV and
(36) cap, R < 6.

In the case § = oo the condition (36) is redundant and thus the condition is given only by
(35). The same remark as for the use of notation f ~1 € Lip(K) also applies to the use of
L e Qp(K, ). Clearly we see that Qp(K,00) C Qp(K,8) C Qp(K', &) for 0 < K < K' <
0o and 0 < & < 6§ < oo. The class @,(K,00) was introduced by Gehring (3] under the
notation @,(K). The following result plays a key role in the proof of our main theorem 4
in this paper.

37. LEMMA. Suppose that 1 <p < d, 0 < K <00, and 0 < 6 < o0 are arbitrarily given.
Then f, f~' € Qu(K, &) implies that f, f~' € Lip(K:), where K, depends only upon d, p,
and K and does not depend on 6. Ezplicitly, K, can be chosen as

o\
(38) K, = Ki(K):= K& exp <(2d+1w;+"1§[(2g—_;)t;3>d_1> ,

Recall that t; was given in (14). This lemma 37 is partly a generalization of the Gehring
theorem ([3]): f,f™! € Qp(K,00) for 1 < p < co withp #d and 0 < K < o0 implies
f, f~' € Lip(K'), where K’ depends only upon d, p, and K. Namely, Lemma 37 contains
the Gehring theorem for 1 < p < d. However Lemma 37 is no longer true especially for
small finite positive numbers § > 0 if 1 < p < d is replaced by d < p < co. Nevertheless,
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Lemma 37 can be proven by suitably modifying the original Gehring proof ([3]) of his
theorem. A complete proof of Lemma 37 can be found in [12].

If we assume that f is Ki-qi, then f, f~! € Lip(K;), which is the conclusion of Lemma,
37, follows immediately. We now prove the converse of this so that f, f~! € Lip(K) can
be used for the definition of K-qi in the case of mappings between space open sets.

39. LEMMA. If f, f~! € Lip(K), then f is a K-qi of V onto V.

PRrOOF: We define positive numbers s(r) > 0 for sufficiently small positive numbers > 0
by minj;—pj=, | f(z) — f(P)| =: s(r) for an arbitrarily fixed P € V. On setting P’ := f(P)
we see that maxz_pr—s(r [f7Ha') — f~1(P')] = r. Observe that s(r) | 0 as | 0. Hence,
by f~t € Lip(K) = Lip(K; V', V), we see that

ol @)= JTHP)

limsu = limsu id Pl
o © s(r) o T s(r)
max |7 (a!) — (P
< limsup el < K.
510 S
Therefore we infer that
max |f(z) — f(P)| max |f(z) — f(P)]
limsupl = Pl=r = limsup | P=FE" T
r10 ;avmﬁfl |f(x) — f(P)] rl0 T s(r)
max |1(z) - F(P)
< {limsup le—Pl=r (hm sup r ) K2,
- rl0 r rio  s(r)

which concludes that f is a qc of V onto V' by the metric definition (2) of quasiconformality.
This assures that f is differentiable a.e. on V and f € W4(V) (cf. e.g. pp.109-111 in
[19]). The latter in particular implies that f is ACL in an arbitrarily given direction I: f
is absolutely continuous on almost all straight hnes which are parallel to [. Suppose that
f is differentiable at z € V, i.e.

f@+h) = f(z) = f'@)h+e@ A (lme(z,h) =0)

For any |h| = 1 and any small ¢ > 0, we have

ax |f(y) - f(z)]
t

+ |e(z, th)|.
On letting ¢ | 0 we deduce |f'(z)h| < K since f € Lip(K). We can thus conclude that

(40) |f(x)] = sup |f'(z)h| < K
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for a.e. £ € U. We now maintain that

(41) [f(z) = f(y)| < K|z —y|

for any line segment [z,y] = {(1—t)z+ty:t € [0,1]} C V. Since f is ACL in the direction
of [z,y], we see that f is absolutely continuous in V' on almost all straight lines L parallel
to [z,4]. As a consequence of (40), |f'(z)| < K in V on almost all straight lines L parallel
to [z,y] a.e. with respect to the linear measure on L. Hence we can find a sequence of line
segments [T, yn] C V with the following properties: 2, — = and y, — y as n — 00; f
is absolutely continuous on [Ty, yn]; |f/(2)] < K a.e. on [T, Ys] with respect to the linear
measure. Then

Pl = fwl < [ 1@ = [ 1)
<[ Gl <K |

|dz| = Klzn — val,
[#n.Yn T, Yn)
ie. |f(zn) — f(yn)] < K|Zn — Y| (n =1,2,--), from which (41) follows by the continuity
of f. By the symmetry of the situations for f and f~', we deduce the same inequality for

f~! so that .
7l =yl <1f(z) - fW)| < Klz -yl

for every « and y in V with [z,y] C V and [f(z), f(y)] C V’. Thus we can show the validity
of (3) with respect to &;;-geodesic distances p on V and p’ on V' so that f:V — V'isa
K-qi. O

Combining Lemmas 37 and 39, we obtain the following result, which will be used in the
final part of the proof of the main theorem 4.

42. THEOREM. Suppose that 1 < p < d, 0 < K < 00, and 0 < § < oo are arbitrarily
given. Then f, f~! € Q,(K, &) implies that f is a Ki-qi of V onto V', where K; = K1(K)
is given by (38) so that it is independent of 6.

43. Proof of the main theorem. In this section we assume that the exponent p is fixed
in (1,d) and we choose two Riemannian manifolds D and D’ of the same dimension d > 2
which are orientable and countable and any component of D and D’ is not compact. The
proof of the main theorem 4 consits of two parts.

First part : Assume that there exists an almost quasiisometric mapping f of D onto I, i.e.
f is a homeomorphism of D onto D’ and there exists a compact subset £ C D such that
f = fID\ E is a K-quasiisometric mapping of D \ E onto D'\ E’, where E' = f(E) is a
compact subset of D' and K a constant in [1,00). We are to show that f can be extended
to a homeomorphism f* of the Royden compactification Dj of D onto that (D'); of I'.
Choose an arbitrary point ¢ in the Royden p-boundary I',(D) = Dj \ D. Since D is dense
in Dy, the point £ is an accumulation point of D.
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We first show that the net (f(z,)) in D’ converges to a point § € T'p(D') for any net
(z») in D convergent to §. Clearly (f(z,)) does not accumulate at any point in D’ along
with () so that the cluster points of (f(z,)) are contained in I'y(D’). Contrariwise we
assume the existence of two subnets (zx/) and (zx~) of () such that (f(zx)) and (f(zx))
are convergent to ' and 7" in [',(D’), respectively, with o' # 7. Since M,(D') is dense
in C((D');) and forms a lattice, we can find a function v € M,(D’) such that v = 0
in a neighborhood G of E', u(n') = 0, and u(n”) = 1. Viewing u € M,(D'\ E'), we
see by Proposition 29 that v := uo f € M,(D \ E). Since v = 0 on the neighborhood
G = f7Y(G") of E = f~'(E'), we can conclude that v € M,(D). From v(zyx) = u(f(zy))
and v(zav) = u(f(zar)) it follows that v(§) = u(r) = 0 and v(€) = u(n") = 1, which is a
contradiction.

We next show that the nets (f(zx)) and (f(ya»)) in D' converge to a point in I',(D’) for
any two nets (zx) and (ya») convergent to £ € I'y(D). In fact, let (z) be a net convergent
to £ such that (z)) contains (zx) and (y»r) as its subnets. Then we see that lim, f(zy) =
limy f(yar) = limy f(25). Hence we have shown that f*(§) = limgep ¢ f(2) € Tp(D')
for any £ € I',(D). On setting f* = f on D, we see that f* is a continuous mapping of
Dy onto (D');. The uniqueness of f* on D} is a consequence of the denseness of D in D3,
Similarly we can show that f~! can also be uniquely extended to a continuous mapping
(f71)* of (D'); onto D2, Since (f~')* o f* and f* o (f~)* are identities on D; and (D');,
respectively, as the unique extensions of id. : D — D and id. : D/ — D', respectively,
we see that f* is a homeomorphism of D} onto (D')s which is the unique extension of
f:D—D. O

Second part : Suppose the existence of a homeomorphism f* of D; onto (D' );‘, We are
to show that f := f*|D is an almost quasiisometric mapping of D onto I, which is the
essential part of this note. ‘

Choose an arbitrary point z € D. Since z is Gs, f*(z) € (D')* is also Gs so that
f*(z) € D' by Corollary 18. Thus we have shown that f*(D) C D'. Similarly we can
conclude that (f*)™'(D’) C D. These show that f*(D) = D’ and therefore f := f*|D is a
homeomorphism of D onto D’. We are to show that f is an almost quasusometrlc mapping
of D onto D'.

- We fix a family V = Vp = {V} of open sets V in D with the following properties:
V is contained in a 2-domain Uy in D and V' := f(V) is contained in the 2-domain
Uy, = f(Uy) in D'; UyeyV = D. This is possible since the family of 2-domains forms a
base of open sets on any Riemannian manifold and f : D — D’ is a homeomorphism. We set
Vi={V':V'= f(V) (V €V)}, which enjoys the same properties as V does. We also fix
an exhaustion ()1 of D, i.e. O, is a relatively compact open subset of D (n = 1,2, - - ),
Q0 CQpy (n=1,2,---), and Up31Qy = D. Then () )n>1 with @, := f(Q,) (n=1,2,--)
also forms an exhaustion of D'. We set D, := D\ §, and D/, := f(D,) = D' \ O
(n=1,2,--+). Then (Dp)n>1 ((Dh)n>1, resp.) is a decreasing sequence of open sets D,
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(D', resp.) with compact complements D \ D, (D' \ D5, resp.) such that Ny>1Dp = @
(Nu>1 D!, = 0, resp.). If weset Vp, :={VND,:V &€Vpand VND, #0} (n=1,2,--),
then Vp, plays the same role for D, as V does for D. Take an arbitrary n € {1,2,---}. If
feQy2mrt 27V N D, V' ND,) (f7 € Q2?7127 V' N D,V N Dy), resp.) for
every V € V with VN D, # 0 (so that V' N D}, # 0), where V' = f(V) and V' N D,, =
fn f(D,) = f(VND,), then we write

fem) (f7"€(n), resp.).

Hence, for example, f & (n) means that there exists a V € ¥V with V N D, # 0 such that
f Q2127 vVnD, V' ND,). We maintain

44. ASSERTION. If f € (n) (f~* € (n), resp.) for some n, then f € (m) (f~' € (m),
resp.) for every m > n.

In fact, f € (n) assures that f € @,(2"**71,27™ V N D,, V' N D,) for every V € V with
V N D, # 0. Choose any V € V with V N D,, # 0. Since D, C D,, VN D, # 0 along
with V N D,, # 0 and therefore f € @Q,(2""~1,27™, V N D,, V' N D,). In view of the fact
that 2ntP~1 < 2m+P-1 gnd 2™ > 2°™ we have the inclusion relation @,(2™+7~1,27™V N
D, V'NDL) D Qp(27tP~1, 27 VN D, VN D)) so that f € @Qp(2™771,27™ VN Dy, VN
D), ie. f € (m), which completes the proof of Assertion 44. Next we assert

45. ASSERTION. If f € (n) and f~! € (n) for some n, then f = f|Dy, is a qi of Dy, onto
D!.

Indeed, by Theorem 42, we see that f : (V N Dy, 8;) — (V' N Dy, é;) is a Ki-qi with
Ky = K;(2"t*1) (cf. (38) in Lemma 37). Clearly id. : (V N Dy, g:) — (V N Dy, b;)
and id. : (V' N D}, 6;) — (V' N D,,g;;) are V/2-qi, where (g/;) is the metric tensor on D".
Therefore, as the suitable composition of these maps above, we see that f : (VN Dx, g;;) —
(V' N D,,g,;) is a 2K;-gi. Since this is true for every V € V with VN D, # 0 and
UyeyV = D D D, we can conclude that f : D, — D), is a 2K1-qi. The proof of Assertion
45 is thus complete.

To complete the proof of this second part it is sufficient to show that f : D, — D}, is a gi
for some n. We prove it by contradiction. Contrariwise suppose that f : D, — D, is not
gi for every n = 1,2,---. Then we maintain that either f & (n) for every n or f~! & (n)
for every n. In fact, if f &€ (n) for every n, then we are done. Otherwise, there is a k with
f € (k). Then by Assertion 44 we have f € (n) for every n > k. In this case we must
have f~! & (n) for every n and the assertion is assured. To see this assume that f~! € (I)
for some I. Then f~! € (n) for every n > [ again by Assertion 44. Then f € (kUI)
and f~! € (kU!). By Assertion 45 we see that f is a gi of Dy onto Dy, contradicting
our assumption. On interchanging the roles of f and f~! (and thus those of D and D) if
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necessary, we can assume that

fg({n’) (n:1327"')7

from which we will derive a contradiction.
The fact that f ¢ (1) implies the existence of a 2-domain V € Vp, such that f ¢
Qp(21P71 271V, (V). We can then find a spherical ring S; C V(C D;) such that

cap,S; < 277, cap,f(S1) > 2'*7 " cap,S;.

Here cap,S; means Capp(Sl,éij). We set n; := 1. Let ny be the least integer such that

ng > ny + 1 (and hence Dy,41 D D,,) and Dp, NS, = 0. Since f & (ny), there exists

aV € Vp, with f & Qp(2"%71,27,V, f(V)). Hence we can find a spherical ring
Sny C V(C D,,) such that

cap,Sn, <272, cap,f(Sn,) > 2" cap,Sn,,

where cap,S,, means cap,(Sh,, ;). Repeating this process we can construct a sequence
(Sn )1 of spherical rings Sy, with the following properties: ng + 1 < ngi1; Sn, C Dy, ;
Snk N Sng =0 (k # l)v

46 cap,Sn, <27,  cap,f(Sn,) > 2" P cap S, (k=1,2,---).
pPong p " png

Fix a k and set T" = S,,. Since it is a spherical ring in a 2-domain (Uv,,,»x) and
contained in V,,, T" has a representation 7' = {z : a < |z — P| < b}, where P € V,, and
0 <a<b<oo Letl=][2"/cap,T)/®"V] > 0, where [ ] is the Gaussian symbol,
which means that

—ng

(47) < 2

[+ 1Pt < opipp 1
- cappT < ( + ) -

Using the notation ¢ = (p — d)/(p — 1) (cf. (13)) we set

_ad 4 ibe\ @
tj::((l 7)a +]b) (7=0,1,---,0).

l

We divide the ring T" into ! small sphherical rings 7} given by
Tj::{x:tj_1<|:v—P]<tj} (]ZO,l,,l)

By (13) we have cap, I’ = cap, (T, 6i;) = wa((b? — a?)/q)*7>. Similarly'

2 —t2_\'?
ca,pij:wd ( J ‘ qJ 1)
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(L=faf+4b  (—j+Da?+(G-1p\"7"
l l |
q

q __ 4
= Wy (b ¢ ) Pl = lp“lca,ppT,
q

i.e. we have shown that cap,T; = lp‘lcappT . Therefore we have the following identity for
the subdivision {Tj}ISjSl of T:

!
(48) > (cap,T; )TF = (cappT)ﬁ.
=1
Concerning the induced subdivision {f(T})} of f(T), the general inequality (10) implies
the inequality ' ’
!

L 1
(49) > (cap,f(T;)) ™ < (cap,f(T)) 7.
j=1
Now suppose that cap, f(T}) < 2™*?~'cap,T} for every 1 < j <. Then (cap, f(. VAP >
2(m+p—1)/(1=P) (cap, T;)/3=P) for every 1 < j < I. By using (49) and (48) we deduce

1

l
(cap, f(T )i-» Z cap,,f (7
7j=1

ng+p—1 ! ng+p—1
> 2" Y (cap,T3) 77 =2 15 (cap,T)T7,

=1

which means that cap,f(T) < 2™**~'cap,T. This contradicts (46) since T = Sp,. There-
fore there must exist a number jo € {1,---,!} such that

(50) - cap,f(Tj,) > 2™ cap, T},

We now set Ry := Tj,. By (47) we have IPteap, T < 27™ < 2P"'P~'cap,T. Since
lp“lcappT = cap, 1}, = cap, Ry, we see that

cap, Ry < 27 < 2”_lcapka.

This is equivalent to cap,Rr < 27™(< < 27 (since ny > k)) and cap, Ry > 2~m~P+l  The
latter inequality with (50) implies that cap,f(Rx) > 2"~ cap, Ry > 2™tP~1. 27 P+ =
1. By (46), cap,(Rx, gi;) < 2(@+9)/2 . 27k and cap,(f(Rk), 9i5) > d+p)/2,

We have thus constructed an admissible sequence (Ry)x>1 of rings Ry in D in the sense
of §8 (cf. Lemma 15) such that cap, Ry = cap, (R, gi;) and cap,f(Rx) = cap,(f(Ex), gi;)
satisfy

(51) cap, Ry < od+p)/2 9=k and cap,f(Rx) > o(d+p)/2
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for every k = 1,2, --. Let Cy; be the inner part of R = D\ R;, and we set

o0 .

X:={JCu ad Y= D\ (RUGCW)

k=1 k=1

as in 88 (cf. Lemma 15). The first inequality in (51) implies that
oo 00 dip L dip
anpka<Z 2 .277 =277 <0
k=1 k=1

and therefore Lemma 15 assures that
(€l(X; D)) N (A(Y; D) = 0.
Due to the fact that f* is a homeomorphism of D} onto ()%, we see that
(el(f(X); (D)) N ((F(Y); (D)) = f*(el(X, D)) N £*(cl(Y; D))
= fH((d(X; Dp) N (el(Y; D)) = f*(0) = 0.

Since again (f(Rx))r>1 is an admissible sequence of rings f(R;) on D', the above relation
must imply by Lemma 15 that 3532 cap,f(R:) < co. However the second inequality in
(51) implies that ' '

> cap,f(Ry) 2 3 2% = o0,
k=1 k=1

which is a contradiction. This comes from the erroneous assumption that f : D, — D,

is not a qi for every n = 1,2,-- -, and thus we have established the existence of an n such

that f = f|D, is a qi of D,, onto D!,. The second part of the proof for the main theorem

4 is herewith complete. _ 0
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