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SEMILINEAR ELLIPTIC EQUATION
ON A THIN NETWORK-SHAPED DOMAIN

LEERFERFREAER Mg Bl (Satoshi Kosugi)

§1. INTRODUCTION

We consider the following semilinear elliptic equation in a thin network-shaped

domain (¢) C R™ (n > 3) with variable thickness (see Figure 1):

: Au+ f(u)=0 in Q(c)
(1.1) { —a—u =0 on 90(¢)

where v denotes the unit outward normal vector on 9Q((¢) and f is a real valued smooth
function on R. We consider a situation that Q(() approaches a certain geometric graph
G when ( tends to zero (see Figure 2). In this paper, we study the asymptotic hehavior
of the solutions of (1.1) as ( — 0.

Many researchers have studied partial differential equations on thin domains and
associated low dimensional equations. Among them, Yanagida [8] has studied the
existence of a stable stationary solution of reaction-diffusion equations on thin tubular
domains when an associated one-dimensional equation has a stable stationary solution
and in [9], classified geometric graphs a,(",cording to stability of non-constant steady
states of a reaction-diffusion equation. Hale and Raugel [3] have studied the upper
semi-continuity at { = 0 of the attractors of reaction-diffusion equations on a thin
L-shaped domain of R?. , 4 _

In our previous work [11], we specified a network-shaped domain constructed by
several self similar regions which approach points and several cylindrical regions which
approach straight line segments and we considered the convergence of solutions of
(1.1) on that domain when the domain degenerates into the graph. In this paper, we
present generalized results than the results of [11] in the seuse that thin portions of
network-shaped domains are not necessarily cylindrical regions. .

An outline of this paper is as follows: In §2, we consider (1.1) on a special network-
shaped domain. This domain Q(({) approaches a geometric graph such that several |
smooth arcs meet one point. In this situation, we prove that the solution of (1.1)
converges to a solution of an associated limit equation which is a certain system of

- ordinary differential equations (cf. Theorem 2.1). In §3, we consider a certain inverse
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Figure 1 Figure 2

problem of Theorem 2.1, namely, we prove that if the linearized equation around a
solution of the limit equation has no zero eigenvalue, then (1.1) has a solution which

approaches the solution of the limit equation (cf. Theorem 3.1).

Acknowledgment. 1 wish to express my sincere gratitude to Professor Shuichi Jimbo

for valuable advice and comments.

§2. SIMPLE CASE

We define a simple network-shaped domain () as follows: We first specify a
connected geometric graph G such that several smooth arcs meet one point, that is, let
O be a point of R™ and p; a C* mapping from an interval [0, [;] to R™ with p;(0) = O
and |dp;/ds(s)| =1 for i =1,..., N where s denotes the arc length parameter and /;
is the length of the arc P; = {p;(s) : 0 < s < [;}. We assume dp;/ds(0) # dp;: [ds(0)
(i # ') and the graph G = {0} UJY, P; dose not intersect itself, that is, ¢ satisfies
the following condition: For z € G\ {O} there exists a neighborhood U of z of R"
such that UNG = U N P; with z € P; \ {O}. In this section and §3, we put O the
origin to simplify an argument.

Let Qi(s) be an (n—1)-dimensional bounded domain with a smooth boundary which
depends on s € [0,/;] smoothly, that is, for ¢ € {0,/;] and a neighborhood I 3 t, there
exists a C3-diffeomorphism ¢(s,-) : Qi(t) 3 € — g(s,€) € Q:(s) for s € I such that
g(-,-) is a C3-mapping from I x Q;(t) to R"™! with |lg|lcarxq:()) < oo and

(21) Tim lg(s, €) — Ell o iy = 0
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where £ = (£&,,...,¢,) € R*1,
For:=1,...,N, let ¢;1(s) be dp;/ds(s) and let {¢;1(3),¢i2(s),...,qin(s)} be an
orthonormal base of R™ which depends on s € [0,/;] smoothly. We define S;(s, () by

Si(s,¢) = {l = pi(s) + CZiji,j(S) eR":y¢€ Qi(s)}

Jj=2

where ( > 0 is a small parameter and § = (y2,...,yn). We remark S;(s, () is a subset
of the normal plane at p;(s). We define D;({) C R™ by

Di(¢()={r € Si(s,(): CI<s< i} (0<(< ()

* where (* >0 and [ > 0 are constants such that Di(¢)# 0, Di(¢)NDu({) =0 (z £ ¢')
and that sup{|z—pi(3)| : @ € Si(s,¢)} is smaller than the radius of curvature at bi(s) for
any 0 < ¢ < ¢*, that is, the mapping (s, §) —  defined by x = p;(s)+¢ 2?:1 Y;4¢i,;(8)
has a one-to-one correspondence.

Let J(¢) be a connected open set which degenerates into the point O as ¢ — 0
satisfying the following conditions (2.2) to (2.4).

(2:2) J(Q) N Di(¢) =0, 8J(¢) N OD(() = Si((L.¢) for 0 < (<™
N N )
(2.3) d (U Di(O)U J(g_)) \ | Sili, ¢) is class C*.
=1 =1
(2.4) There exists a set J = lil}}) ¢~1J(¢) such that J is a connected open set and there
g—)
exists a C-diffeomorphism G¢ : J 3 y — G(y) € ¢~1J(¢) with lim [|G¢(y)~yllcacs) =
: i
0 where (T1J(¢) = {71z : 2 € J(()}, J is a set defined by

N n |
T= {Zyj(li,j(o) € Qi(0), sy < 21} uJ
=1

j=1

and J(¢) is a subset of Q(() defined by

N

j@)=L)%M@+C§:w%AQ:§EQA@,KSS<2K}UJ@)
i=1 ’ .

=1

Now, we define a simple network shaped domain Q(¢) by

N
Q¢) = Di()u (0.
=1 ) »
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We prepare a certain system of ordinary differential equations used in the main
result in this section. Let ai(s) be (n — 1)-dimensional volume of Q;(s), that is, ai(s)

is a smooth function defined by a;(s) = fQ‘e (s) Y- The system of ODEs.is

r 33) - (a,(S) (b)) —!—f((b(s)) =0 on (0,l;) for¢=1,...,N,
N
xci;bl(l)_o fori=1,...,N

where each ¢; is an unknown function on the interval [0, /;].

We impose the following condition.
(26) f € C*(R), limsup f(¢) <0, liminf f(§) >0
£—oo — =00

‘Then, the equation (1.1) has at least one solution by the monotone method (éee Sat-
tinger [10]). The equation (2.5) is not a usual two-points boundary value problem.
However, we can prove the existence of solutions of (2.5) by a manner similar to the
monotone method.

Now we present the main result of this section.

Theorem 2.1. Let {(n}S5-; be a positive sequence which satisfies lim (n = 0 and
m—o0

let Q(¢) be a simple network shaped domain. Assume that f satisfies (2.6) and Uy, 13
any solution of (1.1) at ( = (. ‘Then, there ezist a solution ¥ = (¥1,...,%nN) of (2.5)
and o subsequence {Cm(r) they C {Cm}io=y such that

im  sup |¥,p(z)—%i(0)=0 for1<:<N,

k=00 1€ J(Crm(r))

lim sup  |[T@my(r) —i(s)| =0 for1<i < N

k0% 2€Di (¢m(x))
where s € (I(, ;) defined by Si(s,¢) D z for x € D;(().

Proof of Theorem 2.1. Let M, be a constant M; = max{|{| : f({) = 0}. Then, we

have

(2.7) sup |¥(z)] < M,
z€N(C)

by the maximum principle. Let § > 0 be a small constant and we take finite constants
si; € (0,1;) (1 £¢ <N, 1< j < N(1i)) such that sin < 6/2, li — sinG) < 6/2
and that 0 < s;,j41 — 8:; < 6/2 and we put s;0 = ¢l and 3; N(i)+1 = li. We define



13

D; ;(¢) C Di(€) as D; j(¢) = {z € Si(s,(): 8ij-1 <8< 841} for1 <j< N(7). Let
A1(D;,5(€)) be the first eigenvalue of the Laplacian operator with a certain boundary

condition, that is,
Au+Adu=0 1in D;;(¢),

u=0 on T,
Ou/dv =0 on 0D; ;(O)\T

where T' = S;(s; j—1,() U Si(8;j+1,() inthecase1 < j < N(i)—1land T = Si(84,j-1,¢)
in the case j = N(¢). It is well known that A{(D; j(¢)) > 0 and A\ (D; ;(¢)) — oo as the
radius of D; j(() goes to zero. Without loss of generality, we may take small constants

¢* > 0 and 6 > 0 satisfying the following conditions (2.8) and (2.9):

min{\(Ds,;(¢) : 1 <i < N,1<j < N(§)}
> max{|f'(€)]: || < My +1}  for ¢ € (0,(*]

o —1/2 . -1/2
(2.9) 6 < — min sup |f(&)]+1 o | 2 sup | f(€)]
: a |€]<3 My +1 1¢1<1

where a* = min{a;(s) : 0 < s <[;,1 <7 < N} and a* = max{a;(s): 0<s<[;,1<
t < N}
To see the behavior of ¥, on J((y, ), we define Up,(y) as

(28)

L’Trn(_y) = \Ilm(a:)7 T = CmGg‘m('y)’ (y E '])‘

Then, we have the following:

Lemma 2.2. There exist positive constants My and Ms such that the function Uy,

restricted on J satisfies ||Un||c2(5) < M2 and for small {,,
[ 19 Unwldy < My
J

Proof of Lemma 2.2. From the definition of G; = G¢(y) = (G¢1(y), .- - yGen(y)), we

obtain the Jacobian matrix DG, satisfies

DG = (Z54) = Bto(l)inC¥(J)yasc 0
Ay; ij

. where E denotes the identity matrix on R, that is, %in(lj 10G..;/Byi — lg2e 5y = 0 and
%E{% 16G¢,i/9y;lic2( 7y = O (i # j)-
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From a simple calculation, Uy, satisfies LcUn(y) + szf (Unm(y)) =0in J where Le¢

is an elliptic differential operator

9?
Lo= 3 aiilCGuga-+ 3 AilG, y)—.

1<,5<n 1<j<n

Here, the matrix (a; ;) satisfies (a;;) = DG ™" - tDG:™' = E +o(1) in C2(J) as
C — 0 and B; (1 < j < n) satisfies 3; = o(() in CcY(J) as ¢ — 0. We put

= aJ\ U 1 {EJ 1¥34:,5(0) : y1 =21, § € Qi(0)}. Then, we obtain v((G¢(y)) -
tDG“1 - *W,Un(y) = 0 on T. Let #(y) be the outward normal vector at y €
T. We obtain |[v((G¢(y)) - *DG; 1 oy) = 14 0(1) in CUT) as ¢ — 0 and
lv((G¢(y)) - *DGe™ 1|lcyz(T) < constant for any (. Therefore, by (2.7) and apply-

ing the Schauder interior estimates and boundary estimates, ||Un|/c2¢s) is bounded
independently of (,.

Changing of variables, we obtain
/Iva.m(y) DG -'DGT 'V Up(y) det DGidy

?’Cz_"/ V¥ |2dz < Cz""‘/’ VT, [*dr
J(¢) Q(¢)

=7 f(Wm)Umdz < GO sup [F(6)|My
2(0) el

On the other hand, when (,, > 0 is small,
/ VyUn(y) - DGC_I -tDGZ1 'V, U (y) det DG dy > —1—/ VU, (y)2dy.
J 2Jg

Therefore, we complete the proof of Lemma 2.2. [

For:=1,...,N andfor j = 1,...,N(7), to see the behavior of ¥,, on the S;(s; ;, (),
we define a function V,i7(z) (2 € [-2,2] X Qi(si,;)) as

Vil (2) = Um(e), @ = pilsiy+Cyn) + () yrdin(sij +Cur),
k=2

y=(z1,9(si; +(21,%)), z=(21,%) € [-2,2] x Qi(si,;)

where { = (n and C3-diffeomorphism ¢(s,-) : Qi(si;) — Qi(s) satisfies (2.1). Then,

we have the following:
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Lemma 2.3. There exist positive constants My and Ms such that the function V3iJ

restricted on [—1,1] X Qi(s; ;) satisfies ||V7i,’j||c2([—1,1]xQ) < M, and for small (,

f V.V (2)Pdz < MsCm
[—'1,1] XQ

where Q = Q;(s;,5).

Proof of Lemma 2.8. In this proof, we put t = s; j, Ve = V47, Q = Qi(s:i ), p(s) =
pi(s) and ¢;(s) = ¢; j(s) for short. We remark p'(s) = ¢;(s). The Jacobian matrixes
satisfy ‘

Dz n
D_y = C (t(ﬂ + C]§2 yjtqjlvtq27 e ,th) )

(1 0o ... 0\

99 99 99
38 362 3§n
@: =F+ol)inC?as(—0
Dz : : :
.99n  Ogn 9gn
\"2s 76 2¢, /)

where ¢; = ¢;(t+(y1), ¢ = ¢;'(t+Cy1), 9 = (92, . 9n), 09:/ds = 8g;[Ds(t + (21, %)
and 9g;/9¢; = 0¢i/¢;(t + (z1,%). Then, we have

q1 — 1 q1 -

Dyt 14+¢m Dy

Jr o _ ) Yy - 2

Dy =( i D =FE+ol)inCas(—0
n — (Y "
"1+ (m

where

e =G y) = D ygi (E+ Con) - Panl(t + Con).
i=2
From a simple calculation, V,, satisfies £ Vi + (m’f(Vin) = 0 in [-2,2] x Q where

L¢ is an elliptic differential operator

8? .0
Le= Z Otij(C,z)a—zigz—j + Z ﬂj(ga“)%'
1<i,j<n 1<j<n
Here, the matrix (a;j)i<i j<n satisfies
(aj;) = (2&-1 . Qf—l t&_l t&—l
77T De Dy Dy - Dz
=E +0(1)in C*([-2,2] x Q) as ( = 0



16

and B;(¢, 2) = o(C) in C1((~2,2) x Q) as ¢ — 0.
We set T = (—2,2) x 8Q. Then, we obtain

‘Dz ! .tDy’1 ¢

Cmv(2) - Dy D, V:Vi(z)=0o0nT.
Let (%) = (2(%), ..., (%)) be the outward normal vector at 3 € 8Q. Then, (0,¥(2)) -
is the outward normal vector at z = (z1,%) € T. From the definition of x for z € T,

we have v(z) — 21—2 j(%)gj(t) as ¢ — 0, thus we obtain
-1 t -1
Cmy(z) - D; . IDDy 4H0,#(3)) =1+ 0(1) in C%(T) as ¢ — 0,
‘De? tgg_l
Dy Dz

< constant.
C2(T)

Cmv(T) -

Therefore, applying the Schauder estimates, there exists a constant My > 0 such that
Vimlle2(=1,11x@) < Ma.
Changing of variables, we have

. Dr~! ‘Dz Dz
V.Vi(z) == . A,V (2) det e dz
/[_1,1le Val2) 37 B ()det 22

=/ |wmwwws/ V0,0 ()2 da
D(¢m)

R{¢m)

_ / F(Tm(2))Tm(2)dz < [QCn)| sup |F(E)IM
Q(Cm)

€| < My

Dz Dz Dy . . ) . ;
where D> = Dy D and D({) = {z € Si(s,¢) : |t — s| < ¢}. On the other hand, for

small (,, we have
Dz™! 'Dz7! Dz
V. Vi(2) — - AV, Vo (z) det )
/[nle (2)- Dz Dz Dz

> 9"‘9 / IV, Vin(2)[2dz.
< [-1,11xQ .

Thus, we have

U cop 1716)101.

/ V. Vi (2)|?dz < 2=
[-11]xQ ¢ l€l< M,

Therefore, we complete the proof of Lemma 2.3. O

From Lemma 2.2 and Lemma 2.3, applying the Ascoli-Arzela theorem, there exist
a subsequence {Cm(k)}re; C {{m}m=1 and constant functions Uy on J and Vi on
[-1,1] x Qi(si,j) (1 £ i< N, 1< j < N(4)) such that Uy — Uso in C'(J) and
V;l’“(’k) — VI in CY([-1,1] X Q:(si,j)) as k —:00. From the definition of Uy, and V,};J,

‘we obtain the following:
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Lemma 2.4. There exist a subsequence {Cpm(r)}22; C {Cm}5=; and constants ¢o and
$ij (1<i<N,1<j<N(z)) such that

lim sup |¥pu)(z)— o] =0,

k=00 2€ (Gm(x))

lim sup | O (k) () — di | = 0.

k—oo T€Si(s; J ;C'm(l.,))

Hereafter, we denote by same notation {(,,}5°_, the subsequence {Cm(ry 332, for

short. To construct an upper solution of ¥,, on the portion D; j((n) C D;i(m), we con-

sider the following one-dimensional differential equations on the interval (8i,5—1+8ij41):

d
(! (a(s d¢>+f(¢’)+( 13 =9 (sij-1 < <3”+1)

ai(s) ds ds
d’(si,j-—l, = ¢i,j-—1 + sup | m(T - ¢i.j-—1]_)
TE€S;(8; j—1,m)
(2-10) 9 ¢(Si,j+1) = ¢z’,j+1 + sup I‘I’m(T) - ¢iﬁj+1|

£E€S5:(8: 5 41,(m)
in the case 1 <j < N(i) - 1,

dyr . _
\ d—z/(si‘j.}_l) =(m in the case j = N(2).
S X -

Here, we put ¢; ¢ = ¢ for convenience. Then, we have the following:

Lemma 2.5. Let 6 > 0 satisfy (2.9). Then, fori=1,...,N,j=1,...,N(i) and for
any Cm <1 the equation (2.10) has a unique solution 9“] m(8) (8ij-1 <8 < i 1)

Proof of Lemma 2.5. In this proof, we put ¢ = (p, s’ = 54 j—1, 5" = 8; j+1, a(s) = a;i(s),
A(s) = f:; ai(t)7dt, V' = ¢; ;1 + sup{|¥,,(z) — $ij—1] : * € Si(sij—1,(m)} and
V' = @i jr1+sup{|¥n(x) — di j+1] : * € Si(5i,j41,Cm)} for short. It is easy to see that
s —s' < 8, |b'] < My and [b"] < M; for any (. In the case 1 < j < N(i) — 1, we put
w(s) = {b'(A(s") — A(s)) + 0" A(s)}/A(s"). Then, we have w(s') = b, w(s") = b",

lw(s)| < M; and —ﬁgg ( (s )—(5)) =0 (s’ <s<s"). We define the mapping F

on C°([s',s"]) by
Fo0) = | TR (stuter o) + ) it

" A(s)(A(s") — A(1)) o
A(s") (f(¢(t) + w(t)) + ¢V ) a(t)dt.

Then, F is a contraction mapping on { € C”([s’,,s”]_) s [¥]lce < 1} by (2.9) and
¢ = F(¢) satisfies #(s’) = 0, ¢(s") = 0 and : : :

aéws@@)<ﬂ)+ﬂw@+w@ L0 (s <s<s)
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From the contraction mapping theorem, the equation (2.10) has a uniquer solution.

In the case j = N(i), we put w(s) = a(s")(A(s) + b’ and
F)(s) = / A(t) (f(z/’(t) + () +¢1*) a(t)dt
+ / T AGs) ( F((t) + w(t)) +'c;1/3) a(t)dt.

Then, the equa.tio1{ (2.10) has a unique solution by an argument similar to that of the
above cases.

Therefore, we complete the proof of Lemma 2.5. O

We define b = bi(x), by = bi(z) € R for z € dD;(¢) \ Si(¢l,{) U Si(1;, () as
follows: Let (s,7) satisfy = = pi(s) + CE?:I y;qi,i(s). Let ki(z) (j =1,...,n —2)
be tangent vectors at x on 8D;(() in the normal plane at p;(s) satisfying that ~7(z)
(1 < j < n—2) are orthogonal to each ofher. Let 7 = (in(5,9),. .., 7a(s,9)) be the
unit outword normal vector of Q;(s) at § and we put vg(x) = Z?:z vi(s, ¥)gi,;(s).
Then, ¢i1(s), £7(s) (1 £ j < n—2) and vs(x) are orthogonal to each other. Let z(%) be
the point of dD;(¢) N S;(t, ¢) such that z(t) — « is orthogonal to x’(z) (1 < j < n—2)
and we define £(z) as ‘

z(t)—«x

(2.11) hc('r):}l_rg rEmp

We put bi(z) = K(T) -tgi1(s) and by(z) = k(z) - tvs(a). Clearly, we have

#(2) = b ()i () + bi(@)vs(e),
(2.12) bi(z)=1+0((), b(z)=0(¢) as(—0.

Thus, we have

bi (’II) ) bi(;l‘_)
2.13 = gia(s —
(2.13) =) NAOETIO als)+ Vi ()2 + by ()

Indeed, we put §#(t) = (y2(t),. .., yn(t)) € 8Q;(t) satisfying x — 2(t) orthogonal to ()
(1 <j <n—2) where 2(t) = pi(t) + ¢ 2j-2 ¥;(t)¢:,;(t). Then, we have

=vs(z).

bi(zx)=1+¢ Zyj(s)qi,j'(s) -¢i,1(8)

j=2

by(z) = ¢ Y (5'(9)5(s, §(s)) + yj(5)gi ;' () - ‘ws())

i=2



Therefore, we obtain (2.12).

From Lemma 3.1 of Yanagida [8], we obtain

(2.14) R = [t
385 (s,6)

where 9S;(s,¢) = dD;(¢) N Si(s, ().
For:=1,...,N and j = 1,...,N(7), we take a fixed point §* € Q;(si,;) and let
g(s, ) Qi(sij) — Qis) be C3- dlﬁ'eomorphlsm We define a function Wz Lim(8) =
Wi m(s,9) on Qi(s) (s € [si,j—1,5i;+1]) by the solution of

AW = az'(s) ) + (23 ) dw; in Q;(s)
Y - ) z’] m( Q'm an(s} WE m 1(6
(2.15) oW ( )
x
(91/ ZC ] m( ) + Cm 23 a;(s) on 9Q;(s)
satisfying W(g(s,3')) = 1. To show that W}.  exists, it is sufficient to show

i,7,m

: ai'(s) . 2/3/ -
2.16 / 0} ;. (8)+ (m dw; ¢ dy
(2:16) Qi(s) { ai(s) 7 ()% 5Qi(s)

_ / {52(”9:‘,, (s )+c.,n2/”a.i<.s>}dw@-
2Qi(s) L Cm

From the definition of «;, we have

ai'(s) gu
~/C2i(3) ai(s) b ]m(b ) dj = a;’ (s) 6 1] m(s)

From (2.14), we have

bz u : -n u
AQ'(S) ZCEH )62 g m(S)dwy N le /BS (s,6m) b2( ') 9; ., m(b ) dog
= ai'(s) 6% m(s)

Clearly, we have

/ g,,,z/?*/ dwg dg:/ (m2Pai(s) dwy
Qi(s) 8Q;(s) aQ;(s)

Therefore, we obtain (2.16).
Since Q;(s) and ¢(s,-) depend on s smoothly, W} 'im(8.9) is a smooth function of
(s,9). From (2.12), we remark |W}; _|lc> is bounded independently of (.
For:=1,...,N,j3=1,...,N(2) and (,, we define a function ®zfm on D; i(Cm)
by
O ; (@) =085 (Y1) + (oW (91, 0) + Cm @ € Dy j(Cm)

where y = (y1, ) satisfies z = p;(y1 )+Cm Ej___l Y;j ¢i,j(y1). Then, we have the following:

19
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Lemma 2.6. The function ©F ;. (z) is an upper solution of ¥, restricted on D; ;((m),

t,J,m
that 1s,

\Pm(T) < Chy (I') T € Di,j(Cm)-

t,7,m>

Lemma 2.6. In this proof, we put p = p;, ¢; = ¢ij, by = b}, by = b}, O = (CLI.
bm = 6}, and Wy, = W, for short. From a simple calculation, we have the

Jacobian matrix

Dx- = A X |
EJ - (tQI + Cm Z y7 tqj"’ thq:h L ] émtqn) )

j=1
( . )
1 + Cm71 «
Dz 1 72 1
=z | ——q1 + —q
Dy - 1+ ¢mm @ Cm 2

07 1
\ "1 @t;m ot Z_q)

where ¢; = ¢;(1), ¢i' = ¢;' (1) Y6 = 2j=2 ¥j ' (y1) - *qx(y1). From (2.10) and (2.15)

we obtain

d?6,, S -
AI(")M(*T) + f(@,n(_a?)) = ds2 (yl) + AgVVm(yl, y) + f(@m(a“)) + O(Cm)

= "_le/3 + sz/s/ dwé
9Q(y1)

+ f(Om(x)) — F(Om(n )) + O(Cm)
= (o ? + O((m?®) as Cu — 0.

Therefore, for small (,, we obtain
Am (Gm - \I’m)(m) + h(m)(em - \I/m) (17) <0 in Dz',j(Cm)

where h(z) = [ f'(tOm(2) + (1 — 1) Um(z))dt.
Let T = 8D; j(¢m) \ Si(8i,j—1,Cm) U Si(8i,j+1,¢,, ). From (2.13) and (2.15), we have

t . —1 t .
V(:r)tvzn(@m "\Pm) = I/(ZL') % . ('C'{'H—Ti(yl),o,...,0>
Yy ds

t . —1

, v Dz -
+ szy(a})} 5; : tv(s,gj)Wm(yla y)

= (n'**ai(s) + O(¢n”)
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onz €T as (;, — 0. In the case 1 < j < N(:i) — 1, for small (,, we have

Om(z) = Tp(z) 20 ze Si(84,-15Cm ) U Si(3i,j41,¢m )-

In the case j = N(i), we have

@m(;l?) m(l) 0 ze€ Si(si,j—13Cm)a
1/(.1') : tvl‘(em - \I"m) = Cm + O(sz) HANS Si(lia Cm) as C‘m — 0.

Because of |h(z)| < sup |f'(€)| and (2.8), applying the strong maximum prin-
- | lel<My+1
ciple we obtain Lemma 2.6. O

From an argument similar to that of Lemma 2.5, we define 6! .

i.jm @s the unique

solution of

(1 d [ Y
ai(s) ds ( )d ) +fW)~(n'P =0 (8i4-1 <8 < $ij41)
Y(8i-1) = ¢ij—1 — sup ¥ () — @i j—1]
€S (5:;-1.m)
 P(si41) = @i j1 — sup () = Gij41]

T€Si(5i,j 41,Cm)
in the case 1 < j < N(7) —
di . R

\ ds 3ij+1) = —Cm in the case j = N (7).

We define VV}J m{(8.9) on Q;(s) (s € [sij—1.3:,+1)) by the solution of

AW = 2 4'(s) g (s) = Cm®/? Joqus "7 in Qi(s)

ai(s ) R
OW  bi(z ) '
31/ = 2C( ) l,],m( ) - CmZ/a 1(5 on an(*")

satisfying W(g(s, §')) = 1 where g(s,-) : Qi(s:;) — Qi(s) is C*-diffeomorphism and
we define ©! . (z) (z € D; ;((m)) by '

i,5,m
G)lz] m( ) = 61,] m(yl + Cm z ] m (y1, f/) Gm € Di,j(Cm)

where y = (y1, ) satisfies ¢ = p;(y1) + (m Z;‘l:l Y; ¢i,j(y1). From an argument similar

to the proof of Lemma 2.6, we have the following:

Lemma 2.7. The functwn el . j:m(z) 18 a lower solution of ¥, restricted on D; i(Cm),
that is,

z]m($)<‘1; (.17) meD,J(Cm
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We define 8; j.00(s) (8ij—1 < s < 8ij+1) by the limit of 6}, m asm — 00 where

si0 = 0 for short. From the definition of 6} ; ' im and 91 omo the function 6; ; oo(s) satisfies
1 d do; . .
ao) ds (ai(s)—f—) + f(6:,5, (sij—1 <8 < 3ij+1)
< 61:,]‘,00(‘82',].—1) = ¢i»j_1’
-,j,oo(s,-,]-_*.l) = (}5,',]'+1 in the case 1 <j < N(7) — 1,
de a]) 3 y )
S (sij+1) =0 in the case j = N(2).

and 91 j.m converge to 6; ;.o uniformly on the interval [s; j_y.si j4+1] as m — oo where

we put 6?c 1(11)n( 5) = 6:‘ 1(1,1, (¢1) (0 < s <¢l). Thus, ¥, restricted on D; ;((n ) satisfies

sup  |Upm(2) — 0ijec(s)] =0 asm — oo
€D ;($rm)

where s satisfies S;(s,(m) 2 . Moreover, we obtain 6; Gioo(8) = 8ij41,00(8) (855 <8<

Sij+1) by Lemma 2.6 and Lemma 2.7. Indeed, we have

le 1,3,00 oo ) — 9i,j+1,oo(3)| < lel,J,OO(“') - \Ijm(fl’l,)l + |\Pm(41") - Gi,j—i-l,oo(s)l

< sup () = bijec(t)+ sup  [T(@) = 05 t1,00(t)]
IeDi,j(Cm) 17€Di,j+l(g-m.)

—0 (m— o)

where &' € D; j((m) N Di j+1(Cm) satisfies @’ € Si(s,(m) and t satisfies Si(t,(m) 3 2.
We define ¥;(s) (0 < s < ;) by

$i(8) = 6; joo(s) (Sijo1 <8< sijer) 1<) <N().

Then, (¢1,...,¢¥n) satisfies

1 d dd!z ) l .
A ais i) = <<l i< N
ai(s) ds (a,( 5)+f(¢') 0 (0<s<l, 1<i1<N),

d'¢’i
ds

¥1(0) = --- = n(0), (li)=0 (1 <2< N),

¥, restricted on D;((y,) coﬁverges 1; uniformly and ¥,, restricted on J((,, ) converges

¥i(0) uniformly as m — oo.

Lemma 2.8. (¥1,...,%N) satisfies

a;(0 dd‘(())_o

Mz

=1
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Proof of Lemma 2.8. We have

1 n—1 1 n—1
— / f(¥,(2))de = —— / AV, (z)dz
Cm Q) Cm Q(¢m)

1 -l d¥,,
= -0 / 7 (T)
Cm QU Cm) GV

= 0.

Letting m tend to infinity, we obtain

N l;
> [ aorstnionds = o
i=1 V0

" Thus, we obtain

O

Therefore, we complete the proof of Theorem 2.1. O

"~ §3. INVERSE PROBLEM

In this section, we consider a certain inverse problem. We have proved a solution of
(1.1) approaches to a solution of an associated limit equation (2.5) as ¢ tends to zero.
In that situation, conversely, the following problem occurs naturally:

- When a solution of (2.5) is given, can we prove the existence of a solution of (1.1)
which approaches it? |

We have a positive answer. We can prove that (1.1) on a simple network-shaped
domain has a solution which approaches a solution of (2.5) when the solution of (2.5)

satisfies a certain condition, that is, we have the following;:

THEOREM 3.1. Suppose that there ezists a solution ¢ = (¢1,...,%n) of (2.5) such that

the linearized equatibn

(1 4 (ai(s)dqsi) + f(i(s)di =0 (0<s<l), 1<i<N,

ai(s) ds ds
. N
(3.1) § 61(0) = -+ = ¢,(0), __Zlai(0)¢i'(0)=0,
dé;

\'J;(li)zo’ 1SiSN
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has no solution except the trivial solution ($1,...,¢.) =(0,...,0), namely, we suppose
the eigenvalue problem of the linearized equation around v has mo zero eigennvalue.
Then, there ezists a constant (, > 0 such that the equation (1.1) has a solution ¥ for

any ¢ € (0,¢«] and that {¥; : 0 < ¢ < («} satisfies

lim sup |¥e(z)—i(0)]=0 for1<i<N,
$—02eJ(¢)

lim sup |Pe(x)—9i(s)|=0 for1<i<N
¢—0zeDi(q)

where s € (I(,1;) defined by Si(s,¢) 3 2.
PROOF OF THEOREM 3.1. We construct an approximate solution of (1.1). Let a
solution 9 = (1, ...,¢,) of (2.5) satisfy the assumption of Theorem 3.1. We define a
Lipschitz continuous function \I'Z.O) as '
o0 (z) = { 11(0) z € J(C),
: Billi(s — /(L — ) 2 €Di(C) for 1<i<N
~ where s € (I(,1;) satisfies S;(s,¢) 2 z.
After this, let ||-||¢ denote a norm ||g||¢ = sup |g(x)| of CO(2(C)).
r€R(C)

LEMMA 3.2. There exzists a constant (' > O such that if ®; satisfies

A® + f(T(2)@ =0 in Q).
(3.2) L
i@_ﬂ_ -0 on 9€2(()
v
for any ¢ € (0,('], then &¢ =0 in Q(().

PROOF OF LEMMA 3.2. Suppose that there exists a positive sequence {(m, } %, with
lim (» = 0 such that the equation (3.2) at ( = (,, has a nontrivial solution Wy, # 0
m—o0
in Q(Cm). Let Wi (x) = Wi(2)/||Wanll¢,,- Clearly, Wy, satisfies (3.2) and [|[Wi||¢,, =1
for any m 2 1. ' '
From an argument similar to the proof of Theorem 2.1, we obtain a nontrivial
solution of (3.1). This contradicts the assumption of Theorem 3.1.
Thus we complete the proof of Lemma 3.2. 0O
For ®; € L*(Q(¢)) we consider the equation
Au+ f(T0)u =& in Q(),
( 3.3) Su
— =0 on 9Q(().

From Lemma 3.2, the equation (3.3) has a unique solution for each ®;. We denote by
Ac®, the solution of (3.3) for ®..
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LEMMA 3.3. There exist constants Mg > 0 and ("' > 0 such that
Ac®elle = M@l

for any ¢ € (0,¢"] and &, € CO(Q(C)) satisfying A.® € CXQC)) N CURC)).

PROOF OF LEMMA 3.3. We assume the contrary, that is, assume there exist a se-

quence {(m}oo—; with lim (n = 0 and C° functions ©,, such that ||l = 1 and
m—oo

l4c¢,. Omll¢,. — oo for m — co. Let

Agm (-)m(a:) ~ Om ()

Up(a) = 26m2miT) g (= Zmit)
" “A‘;m@nz ”Cm , ™ ) “‘44717.@”7-”(1)1-

- Then, (Up, (:jm) satisfies

AUm- + fl(“I’(;::)Um = ém in Q( C‘m )~
U,
ov

ulle, =1, 18mllg, =0 asm — oo.

=0 on aQ(Cm )s

From an argument similar to the proof of Theorem 2.1, we obtain a nontrivial solution
of (3.1). This contradicts the assumption of Theorem 3.1. Thus we complete the proof
of Lemma 3.3. O

We define a sequence {\II(C”)};?__O C C%NCQ)) as
TP = A (IR - () forp2o0.

From Schauder estimates and Theorem 4.45 of Troianiello [11], we remark \Ilép ) €
C%((()) N CUQAC)).
We take a constant 6 > 0 such that

-1
(3.4) d<min<{ 1, <2M5 sup |f"(f)|>

|€|< My +2

Then, we have the following:

LEMMA 3.4. There exists a positive constant (, such that
3.5 e - 9®|| <5
O P -e

for any p 2 1 and ¢ € (0,(4].
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PROOF OF LEMMA 3.4. We prove Lemma 3.4 by the induction. From H\IIE.])” ¢ <
MGHf’(‘P(CO))\I/(CO) —f(‘II(CO) ”C S M6 (Supif|<1\'11 |f,(§)lM1 + Suplg'(Ml If(f)l), there ex-
ists a solution 1/1(1) = (1/’51) 1/(1)) of

(1 4 dy! | .
e B )+ e = Fals)ends) - F@i(s))
a;(s)ds ds
om0<s<l; for1<i< N,
a | | N dpiV
D) = - =0, X a0 =0,
@Z(l)
(ll)=0 for1Si<N
\

and \I'E.l) converges to ¥} as ( — 0 by an argumenb similar to the proof of Theorem
2.1. Thus, ¢ — V) = (3 — d)il), co N — gb ) satisfies (3.1). Therefore we obtain
=@ and [T — ¥ — 0as ¢ — 0.

Let {, > 0 be a small constant satisfying
12~ 9P <5/2 for ¢ € (0,6
We assume U'” satisfies (3.5). Then, we have
¢
+1) (0 (p+1) (1) (1) 0)
1) — e Ol S 1EY - v+ v -
and from (3.4) and (3.5) we have
“\I,(P-H) _ \I,(_l)“C
e —— (o - s
1
( ( 0 (P (0
/0 {_f( g‘” FeP 4 (1 1) ))} dt(e — o)

1 1 ’
0) a(?) g, (0) (p)
/O/Of”‘(\lfg P11 )P~ 00)) tdndr (v -

<Ms sup |f"(6)|6* <é6/2
|E]< M1 42

< Ms

.
< M

So, we have

34. O

‘If(g..p+l) _ @20)“6 < § for ¢ € (0,(+]. We complete the proof of Lemma

From Lemma 3.4, we have H\Il(p'H) ‘Ifi'.p)llc < 2"1||\I/£.p) - \p?’“””g < 6277 for
any p = 1. We have immediately that the sequence {\I'(gp )};‘;1 is a Cauchy se-
quence in C°(Q(()). We denote by ¥, the limit of \I’i.p‘) as p — oo. We obtain
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Ue = A(f( lIl(O) f(¥)) € C2(Q(C) ). So, ¥, satisfies (1.1). On the other hand,

we obtain

0) (1) (1) (0)
19 = O S e — T + o — o,
- 0) (1). (0)
<o — T+ (1T — TV

Therefore, [T, — \IIE.O)HC < QH\IJ(CD — \IIEO)HC — 0 as ( — 0. We complete the proof of
Theorem 3.1. [ '

10.

11.
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