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Dynamics of Polynomial Automorphisms of C?:
Investigating stable and unstable manifolds using transcendental

entire functions

W EHA (Jin, Teisuke)*
FEIL49 A 30 H

nE

We study the structure of stable and unstable manifolds. Let a be a saddle point and let W (a)
be its unstable manifold. There exists a biholomorphic mapping H : C — W*(a). Then each of
H = (h1, h2) becomes a transcendental entire function. Because such a function has many interesting
properties, we can investigate about W*(a). In this paper, first we inquire into the properties as
functions. We show that an arbitrary algebraic variety intersects with W* (a) infinitely countable
times. Secondly we examine the structure of W*(a) on C. We prove Yoccoz inequality when H “YK)
is not connected. We explain the collision phenomenon.

1 Introduction

In this paper we use a notation z = (z,y) € C? and define m(2) = z, my(z) = y. Let P;j(y) be monic
polynomials degd; > 1 for j = 1,...,m. We call g;(z,y) = (y,p;(y) — 0;x) generalized Hénon mappings,
where §; # 0. Moreover we define

F=gpo0---0g1, 6=061---0p, d=dy---dp,.

For convenience, we define F; =gjo---0g;.

In [FM] Friedland and Milnor have classified polynomial automorphisms of C2 into three types: affine.
mapping, elementary mapping, composite of generalized Hénon mappings. They have investigated the
former two mappings completely. So we study the last one, i.e. F which we have defined.

Easily we obtain g;'(z,y) = (5p;j(z) — %y,z). It is similar to g;(z,y) if  and y are exchanged.
Therefore once we obtain a property about F', immediately we can apply it to the case of F~! with a
little modification.

1.1 Definitions and basic properties

We define K* = {z € C? | {F*"(2) | n € N} is bounded}, J* = 0K* K = K+ nK~, J =JtnJ-. |
They are closed sets and invariant under F'.
Let a be a k-periodic point and let eigenvalues of DF*(a) be A, N (|]A| > |N'|). We call a
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e a source if |A|, || > 1,

e asink if 0 < |A|, || < 1,

e a saddle point if 0 < |N| <1 < |A].
Katok showed the following theorem in [Ka).
Theorem 1.1. There exist saddle points.

In this paper we assume a is a fixed point, since we can replace F* by F. :
Let d(, ) be an appropriate distance in C2. For arbitrary X C C?, define a stable set W*(X) and an
unstable set W*(X) as follows:

We(X) = {z € C* | d(F"(2), F"(X)) >0 (n— o0)},
WH(X) = {z € C* | d(F"(2), F*(X)) = 0 (n — —o0)}.

The next theorem is well-known. See [MNTU, chapter 6] for example. The following equations act the
main role in applying Nevanlinna theory to dynamical systems. '

Theorem 1.2. Assume a is a fized point of saddle type. Then there exists a biholomorphic mapping
H:C — W*(a) such that ‘

FoH(t)=H(\x) (teC).
Similarly there is a biholomorphic mapping H' : C — W*(a) such that
FoH'(t)=H'(Nt) (teC).

By the theorem we can call stable/unstable set stable/unstable manifold when a is a saddle point.

Let us recall the notion of access. In general, let @ be a fixed point and A be a component of compliment
of (filled) Julia set (e.g. K*/~). Suppose a € OA. Then we say that a is accessible from A if and only if
there exists a curve v : [0, 1] — A which suffices:

v(0)=a and ~v((0,1]) C A.

We call such v an access. Moreover we call v a periodic access, if it satisfies F9(y) C v or F4(y) D v,
where g € N is the period of A.

1.2 The main theorems

- At first we will show the properties of H : C — W*(a) as holomorphic mapping.

Theorem 2.1. FEach of H is a transcendental entire function. Moreover they are of mean type of order
p = logd/log |\

In addition, if f is a holomorphic or rational function on C2, it will be shown that f o H is also
transcendental in Proposition 2.8 and 2.9. Using the fact, we can see the following.
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Theorem 2.11. Let P(x,y) be a non-constant polynomial of two variables. Then PoH has no Picard’s
ezceptional values, i.e. an arbitrary 1-dimensional algebraic variety intersects with W*/*(a) infinitely
countaeble times.

Using the order p, we begin to investigate the dynamical structure on an unstable manifold. Suppose
K=HYK *+). The followings decide the structure of K.

Theorem 3.1. If p < 1/2 then any component of K is compact and C \ K is connected.

Theorem 3.3. The number of components of C\ K never exceeds max{2p,1}. Therefore every com-
ponent of C\ K is periodic.

Corollary 3.7. 0 is periodically accessible from every component of C\I? . Especially each saddle point
is accessible from C2\ K*. '

Theorem 3.11. (Yoccoz inequality). Assume K is bridged i.e. the component of K containing 0 is
not a point. Then the following holds.

Relog A N Ng
|log A — 27ip/q|? = 2logd’

where we choose an appropriate branch of log \.

The above Yoccoz inequality doesn’t need connectivity. Instead, we introduce the notion of bridge. We
say that K is bridged if and only if some component of K is unbounded and contains 0. In Proposition
3.10, we will show that K is bridged when the component of K containing 0 is not a point. It seems that
the notion of bridge is the weakest topological criterion for Yoccoz inequality. But we will see that the
bridgedness is not nessecity criterion in Example 4.2.

In the sequel, we will proceed the relation between K+ and K+. A set meeting W*(a) approaches to
W*(a) by iteration. Then the structure in W¥(a) reflects the original set.

Proposition 4.1. If a point 20 € W*(a) is accessible from int K* then K+ = H-Y(K*) is bridged.
Therefore Yoccoz inequality holds there.

By the argument we will show in Example 4.2 that there exists W*(a) such that any points on it are not
accessible from int Kt though W#(a) is a dense subset of dint K*. It contrasts sharply with Corollary
3.7.

2 Transcendental entire function

v We denote H = (hi, h2) and H' = (h{, h5).
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2.1 Transcendence
We recall that the order p of f € O(C) is:

: ) loglog SUP|g|=r |f(z)]
p=ordf= llﬂi:}p logT ’

Moreover if p is finite, the type 7 is:

: log supy, i | /()|
7 = lim sup .

r—00 TP

We say f is of minimum type, mean type, maximum type of order p when 7 =0, 0 < 7 < 00, T = X,
respectively.

Theorem 2.1. hq, he, by, bl are transcendental entire functions. They are of mean type of orders:

logd
log [A]’

logd

p' =ordhy =ord hy = oz 1

p=ordh; =ord hy =

To prove the theorem, we quote the following.

Lemma 2.2. [BS1]. For R > 0, define V¥ = {(z,y) € C? | |z} > R, |z| > [y}, V~ = {(z,y) € C? |
lyl > R, ly| > ||}, V = {(z,y) € C? | || £ R, |y| £ R}. Then for sufficiently large R > 0,

Kt cvuVvt, F(KT)cVuvt (j=1,...,m-1),
K- cVuVvV™, Fi(K)cVuVv™ (=1,...,m-1),
KcCV,
V- F-YV-) C F(V-) C - S C2\ K+,
VtcFWVYH)cFX(VHc... /C?\K.

Let us proceed to prove the theorem.

Lemma 2.3. hs is non-constant.

Proof. Assume that ho is constant. Since H is non-constant, h; is not bounded. On the other hand
(h1(t), he) € W¥%(a) C VUV~ (t € C), it contradicts. 0O

Lemma 2.4. hy is of mean type of order p = logd/log|A|.

Proof. We assume that the order is p = logd/ log|\| and compute the type. If it is of mean type, we see
the tentative order is true. '
In this proof, we define for (y-1,%) = H(to),

(g—lagﬂ) '_9_1) (@'0,'3/"1) I—,z_) e (‘yvm—lygm)

and
Yo =720 F™(Y-1,%) (n=0,1,2,...).

Notice that yo = Jo, ¥1 = Um.
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- At first, we show that the type is greater than zero. Let (z,y) = H(t). Then we can take ly| large as we
like. By Lemma 2.2, |p;(y) —z| = |p;(y)|— || > |p;(y)| — max{|y|, R}. For any ¢ > 0 and sufficiently large
any |y|, |p;(y)| — max{|y|, R} 2(1- &)ly|%. Therefore if |7p| is sufficiently large, we obtain inductively

(@51l = Ipja (@) — Ti-1l = L = o)lgs|¥ " (7 =0,...,m—1).
By repetition
|Gim| 2 C—clgol?,
where C_, = (1 — g)%dm+ds--dm+-+1 Therefore we have
lyn| > C—clyn-1l* (n=1,2,...)
and obtain by repetition
Jgal 2 CF T g8 = G g

Recall yo = ha(to). By Theorem 1.2, y, = ha(A™to). Therefore

log max;—, |ha(t log |ha( A"t
lim sup g Il r [ha(t)] Zlimsup———()gl 2(X"to)|
r—00 'rp n—00 lAntolp
d”—1 .
logC =T |yold™ 2 1logC_.+ 1o
> lim sup 28C=e lyol” _ a=1l0gC—c +log |yo]

In the above calculation, we employ |A|? = d.

Secondly, we show that the type is bounded. Let (z,y) = H(t). Then |p;(y) — z| < |p; ()| + |z| <
Ip;(¥)| + max{|y|, R}. For any € > 0 there exists M > 1 such that |p;(y)| + max{|y|, R} < (1 +
e)(max{ly|, M})%. ie. |

[F541] £ (1 + &) (max{|], MHB+  (j=0,...,m—1) (2.1)
Then we obtain
|Fm| < Ce(max{|go], M})?,
where C; = (1 + ¢)%dm+ds-~dm+-+1 Therefore we have
|yl < Ce(max{lyn—1|, M}D? (n=1,2,...)

and obtain by repetition
n—1 _2 n ar-1 n
lynl < CE 4+ (max{jyol, M} = Ce™ (max{jyol, M}".
Then we have
log maxis|=r |ha(t)]

.
impup =
< lim sup - 28 REXAltol<IH<IN ol R (E)]
R (IAI*[to])?
i s (O8O0l <ltI<|xiol [ T2 © F™ 0 H{(t)]
= lim sup dltol?

n—00 0

d?—1

<l log max|so|<jtj<into) Ce” ' (max{|ha(t)], M})?
< lim sup —

T+ 00 d ltolp

_ Z1log Ce + log maxjs,|<jej<iaol (max{|ha(t)], M})
a ' ltol? =%
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In the calculation it is employed that [A|? = d. O

Remark 2.5. Similarly, we can compute the lower order of hs, and it is the same as the order. Indeed,

lim inf log log max|ij—r [ha = logd .
300 logr log ||

By the following lemma, we complete the proof of Theorem 2.1.

Lemma 2.6. Let 7,7’ be the types of hi, b} respectively. Then 0 < 7,7/ < 00 and for j =0,1,...,m

log MaX|¢|=r |71 oFjo H(t)l _

i B
msup v o
log maxsj— |2 0 Fj 0 H(t
r—00 ,rp
log maxyy—, |71 0 F; 0 H'(t !
lim sup & I4 rim = O = T ’
ren re dj---dh
. log maxjy|—r |2 0 Fj o H'(¢)] l
lim sup = ’
o0 P djt1---dy

where dy = dpn, dm+1 = di. Especially, all are of mean type.

Proof. For j =0,...,m, let
log max|s|—, |71 0 F; 0 H(t)|

a; = lim sup
7 r—00 rP

log maxyy—, |72 o Fj o H(t)|

B; = lim sup
J T—00 TP

We have |y| < (1 +¢)(max{|z|, M})% for (z,y) = F; o H(t) by (2.1). Therefore
log maxs|—r |72 0 F; o H(t)|

B; = limsup

r—00 TP
< lim sup 82— (L + E)(ma}:jim o Fjo H(t)|, M})%
1 (t]= FjoH(t
= d; lim sup 0g maxisj—r [z 0 Fy o H(?)| = d;a;.

P—00 rP

Moreover by definition of gj,y we obtain 8; = aj41. Therefore we have
doao = fo = 01, dioy 2 1 = @2, ..+, &m—10m-1 = Bm-1 = Q.

On the other hand,
log maxy|—, |71 0 F o H(t)|

am = lim sup
—00 rP

log max¢|—r |h1(At)]

= lim sup
r—00 rP
log maxy—, |h1(t
= dlim sup g ji=r [P (¢)] = dag
r—00 [d
By putting the above inequalities and equations together, we have
1 1 d
ap > —Q1 22> Q= ap = Qp.
do dm-1--do " dmo1---do °

Lemma 2.4 implies that all of a; are positive and bounded. This concludes the proposition. O
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Corollary 2.7. There exists Cy > 0 such that

K* c {(z,y) € C*| |y| < C1(l=|V/ + 1)},

Fi(KY) c {(z,y) € C? | |y| < Cu(Jz|/ %+ + 1)} (G=1,...m—1),
K~ c{(z,y) € C?| || < Cy(ly|V4 + 1)},
Fi(K™) C {(z,y) € C* | |z < Cr(ly|M% +1)} : (G=1,...m-1).

The degrees 1/d; are minimum.

Proof. The former fact is used in [BS2] without proof. Let us prove the last assertion.

Assume some 1/d; is not minimum. Then there exists v < 1/d; where the same relation holds. Then

_.C FioH®|"+1
lim sup S_limsupmaxltl_r im0 By 0 HOP +1)

r—00 P 7—00 TP

max— |11 0 Fj o H(t)]

maxy|—, |20 F; 0 H(t 1 F;oH(t
= ~ lim sup — 4 rlm2o Fyo H(E)| <-—limsup————l7r2° s o HE)l
700 i dj 00 TP
It contradicts with the previous proposition. _ O

2.2 Compositions with functions on C?

We shall investigate compositions of some kinds of functions and H.
Proposition 2.8. Let f € O(C?) be non-constant. Then f o H is a transcendental entire function.

Proof. First we show that f o H(t) does not have t = oo as a pole. By Picard’s theorem, for some yo € C
there exist infinitely many ¢ € C satisfying ha(t) = yo. By Lemma 2.2, we see that {h;(t) | ha(t) = yo}
is bounded. Then there exists a sequence {t;} such that t; — oo and a limit of H(t;) exists. Therefore
the limit of f o H(t;) also exists. This implies ¢t = oo is not a pole. '

Secondly we prove that f o H is not constant. Assume f o H is constant. By Picard’s theorem, for any
y € C except for at most one point yo € C there exist infinitely many ¢ satisfying h2(t) = y. By Lemma
2.2, {h1(t) | h2(t) = y} is bounded. Therefore the set has at least one limit point. On the other hand,
f(h1(t),y) is constant where ha(t) = y. By uniqueness theorem we obtain that f(-,y) is constant for each
fixed y. Then f(-, h2(t)) becomes constant, so it is concluded that f is a constant. |

Proposition 2.9. Let f be a non-constant rational function of two variables, i.e. there exist relatively

prime polynomials P(z,y), Q(z,y) (Q # 0) which satisfy f(x,y) = P(z,y)/Q(z,y). Then foH is a
transcendental meromorphic function.

To prove the proposition we prepare a lemma.
Lemma 2.10. Let P(z,y) be a non-constant polynomial. Then K~ N P~1(0) is compact unless empty.

Proof. Bedford and Smillie have shown in [BS1, Proposition 4.2] that for sufficiently large any n € N,
the terms of highest total degree of P o F™(z,y) consist of only power of y and some non-zero coefficient.
Then we can have {(z,y) | Po F™(z,y) = 0} C VUV™. Hence K~ N{(z,y) | Po F*(z,y) = 0} is
compact. Therefore

K~ 0{(z,y) | P(z,9) =0} = K~ N F"({(z,y) | P o F*(z,y) = 0})
= F" (K~ n{(z,y) | Po F"(z,y) = 0})
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is compact, too. O

Proof of Proposition 2.9. When @ is constant it reduces to Proposition 2.8. So we assume @ is non-
constant. We will show that ¢ = oo is neither a pole nor a regular point.

At first we prove f o H(t) doesn’t have t = oo as a pole. Since @ o H is transcendental by Proposition
2.8, there exists qo # 0 such that infinitely many ¢t € C satisfies Q o H(t) = go by Picard’s theorem.
Because the image of H is included in K~, it can be seen that {H(t) | Q o H(t) = qo} is bounded
according to the previous lemma. Po H is bounded on the set though ¢ can tend to co. Therefore ¢ = 0o
isn’t a pole. '

Similarly it can be shown that ¢ = oo is not zero point of f o H(t).

Otherwise assume that limg o0 fo H(t) = ¢, (c # 0,00). Then if we define f(m, y) = f(z,y) — ¢, we see
that fo H(t) has t = oo as a zero point. It contradicts with the previous statement. O

From now, we describe a property of H in Nevanlinna theory.

Theorem 2.11. Let P(z,y) be a non-constant polynomial of two variables. Then Po H has no Picard’s
exceptional values, i.e. an arbitrary 1-dimensional algebraic variety intersects with W*/*(a) infinitely
countable times. Further the intersection is bounded.

To prove the theorem, we quote theorems in Nevanlinna theory.

Definition 2.12. [T]. Assume f(t) is a meromorphic function on complex plane. Let n(r,a) be the
number of zero points of f(t) — a.in |t| < r. On the other hand if a = oo, n(r,a) means the number of
poles in |t| < r. We count the numbers with multiplicity. Define

N(r,a) = / n(r, ) —Tn(+0, @) dr + n(+0, a) logr + const.,

0
T(T‘,f)=/0 :qg')'dr’

S(r) = A(’") / / - (i{%)idmo, t = re®.

The constant term is defined appropriately in the theory. We denote N(r,00) = N(r, f) if we want express
the function f explicitly.

Theorem 2.13. [O, Theorem 3.3]. Let f be a meromorphic function on C. f is a rational function if
and only if '

T(r f)

- < 00

lim inf
r—oo logr

Theorem 2.14. [O, Theorem 9.2]. Let fi,..., fn be meromorphic functions on C. Suppose they satisfy
the followings.

1. YV ¢;fj = 0, where c; are constant,
2. fn/fx is not constant for any h # k,
3. N(r, f;) + N(r,1/f;) = o(T(r)) when r ¢ E, where E is a set whose length is bounded.

Then ¢y = - = cn = 0. Where T(r) = minpzx T(7, fr/fi)-

We prove this lemma using above theorems.
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Lemma 2.15. Let f1,..., fn be meromorphic functions on C. Assume all of them has finite zero points
and finite poles. If cy,...,cn, € C\ {0} satisfies

cLfi e+ enfa =0,
then for some h # k, fu/fi becomes a rational function.

Proof. Assume that any fj,/fi are transcendental. Then by Theorem 2.13
T(r, fu/f) _

lim inf

T—00 logr ’
for any h # k. Therefore T'(r) > O(logr). '
On the other hand, because all of f; have finite zero points and finite poles, we obtain for j = 1,...,n,

N(r, f3) = /0 n(r, ) -—rn(-l—O, ) dr + n(+0, 00) logr + const. < O(logr),

NG 1/f) = /0 n(r,0) — n(+0,0)

r

o N 3) + N(r,1/£) < O(logr).

dr + n(40,0) logr + const. < O(logr).

Hence 1., 2. and 3. in Theorem 2.14 are fulfilled. But the conclusion never holds. O

Proof of Theorem 2.11. We imitate a technique used in [Nt, Chapter 5].
First we show that at most two non-constant irreducible and relatively prime polynomials can have 0
as Picard’s exceptional value when they are composed with H.

Let Py, P, P; be non-constant, irreducible and relatively prime polynomials of two variables. Assume
that Py o H, P, o H, P30 H have finite zero points. Put

wy = Pl(hla hz)a
wy = Pa(hq, ha),
w3 = Ps(hy, ho).
Then w;, we, w3 are entire functions which have finite zero points. On the other hand, we can utilize the

polynomial ring’s theory to eliminate h;, A2 in the above equations. In fact, by system of resultants there
exists a non-constant polynomial Q which satisfies

Q('Ll)l, wa, w3) =0.

Then we have by expanding Q,
Q(wla w2, ?.U3) = Zqﬁjkw’iw%wlg =0.
‘i’j’k
Since each term has finite zero points and no poles, by the previous lemma there exist (i1,J1, k1) #

(i2, j2, k2) such that

witwPws' _ Pu(H)"Py(H) Py(H)k
wPwRwi?  Pi(H)2Pa(H)Jz P3(H)*

is a rational function. But it contradicts with Proposition 2.9.
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Secondly we prove that no non-constant irreducible and relatively prime polynomials can have 0 as
Picard’s exceptional value when they are composed with H.

Assume P is a non-constant polynomial such that P o H has 0 as Picard’s exceptional value. We can
limit P to irreducible. Then -

PoF"oH(t)=PoH(A\"t) (ne€Z)

also have 0 as Picard’s exceptional value. By the first conclusion of this proof, all of P o F™ must
be expressed by a power of two non-constant irreducible and relatively prime polynomials and suitable
coefficient. One of two must be P. Let us denote another S. Hence for any n € Z there exist ¢, j € NU{0}
and ¢, # 0 such that

Po F™(z,y) = cn(P(2,9))'(S(z, %))’

Clearly max{i, j} — oo when n — +o00. By the way since F is invertible, we obtain

P(z,y) = cn(P o F~™(,9))"(S o F~"(x,y))’.

It is clear that the degree of the right side increases when n — to0o. It contradicts.
The last statement is clear because of Lemma 2.10. ' [

3 Unstable slice

We denote K = H-1(K*) and call it unstable slice. K has positive capacity near any point. In fact,
let G be the plurisubharmonic function describing K+ (see [BS1]). Then G* o H is subharmonic and
non-negative. We can see the positivity of capacity easily. Moreover, we observe that K is invariant
under ¢ — At by Theorem 1.2. '

3.1 The case of broken K |

Let us investigate the simplest case. For A C C and r > 0, define 14(r) as follows:

1 fAN{lt|=r}#0,

0 otherwise.

1A(T) =

Theorem 3.1. Ifp < 1/2, for any o > 0,

1 /IWO 1(r)
dr < 2p.
log |\ Jr, T p

Especially any components of K are compact and C\ K is connected.

The reverse is false, i.e. p > 1/2 doesn’t have to imply that every component of K is compact. See
Remark 3.12 and Example 4.2.

To prove the theorem, we quote Precise form of Wiman’s theorem in [T].
¥
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Theorem 3.2. [T, Theorem III. 72.]. Let f(t) be an entire function of order p (0 < p < 1/2). Then for

any e (0<e < p),

lim sup
T2 /T1—00

1 /"2 Lliogminj, . |7(8)[>re—] dr >1-2p,
log(rz/71) 1 "

where
1 if the criterion is fulfilled,

1[cm’ten'on =
] 0 otherwise.

Proof of Theorem 3.1. We apply the previous theorem by f(t) = ha(t)/R. Let us estimate the integrand

at first:
Litog minyyy—, 1ha )/ Ri>re=<] S Limingyo, ha@)>R) < 1= 15(r).
" hence
1—2p < limsup —— /TZ Lo miny,i—. 1ha@)/RI>re=c]
1‘2/1"1—>00 10g(7"2/7']_) T r
™11
< limsup ! / K (r) dr.
T2/71—00 IOg(TZ/Tl) 1 r
Therefore

1 ™2 12(r)
> limi )74
2p > lim inf Tog(ra/r) /T1 - dr

r2/r1—00

Let n1,n2 be integers satisfying |\|"iro < 71 < [A|"1t1rg, [A|"2rg < rp < [A|P2+1rg
1 2o (p
logl)\] 2 Pty T

Nnz—ni1—oo
1 n2l e APt g
/ —Kr( )dr

= lim inf
na=mi=eo (ng —ny + 1) log|A] . 4= Jizjir,

—_ ey — [Alro 9
= lim inf (n —m —1) &(r) dr
T2 —n1—+00 (nz —ny + 1)1og ’AI o

IAlro o
S / 40 dr.
log [A Jr, r

3.2 Yoccoz inequality

We examine the structure of compdnents of C\ K.
The number of components of C \ K may be infinite. But fortunately we can obtain the following

theorem.

Theorem 3.3. The number of components of C\I? never exceeds max{2p, 1}. Therefore every component

of C\ K is periodic.
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To prove the theorem, we prepare the followings.

Assume © C C is an unbounded domain containing the origin. Let 2, be the component of {t € Q |
|t| < r} which contains the origin. Then define that 76(r) is a line measure of {|t| = r} N .. We can
regard 6(r) as an angle measure of .. Further let

o) {0<r> i el = r}nan, £,

o0 otherwise.

Now, we quote a powerful inequality in [T] which is based on harmonic measure theory. In this paper we

name it Arima-Tsuji ineguality.

Theorem 3.4. [T, Theorem III. 68.]. Let @ C C be an unbounded domain. Let f(t) be holomorphic in
Q and |f(t)] <1 on ON. If there exists to € Q such that |f(to)| > 1, then

log iz [ 2 (O<r<
oglo su t 271'/ ————~ — const. <K<1).
& gt Q|p=7' 1 T0*(r) )

Define D = {t € C| |h2(t)] > R} and D™ = {t € C | |h2(A"t)] > R} = {t € C | A\t € D} for
n=0,1,.... We shall prove that the number of components of D never exceeds 2p.

Lemma 3.5. Every component of D, D™ is not bounded. D, D™ satisfy
D=D°cD'cD*c...- /C\K.
Therefore each component of C\ K is not bounded, too.

Proof. The first assertion is clear because of maximum principle.
Secondly we show that D® C D**!. Let t € D", then |h2(A\"t)] > R. Hence H(A\"t) € V~ because
H(A™) e VUV ™. Then by Lemma 2.2,

HO"4)=FoH\t)e F(V7)CV~,

we obtain |ha(A"1t)] > R, ie. t € D™
Ift e C\R’, H(t) ¢ K*. Hence for some n € N, F? o H(t) € V™ because of Lemma 2.2. Since
F"o H(t) = H(A"t) = (h1(A™t), ha(A"t)), we obtain |he(A"t)| > R, i.e. t € D™. O

Lemma 3.6. Each component of C\ K includes some component of D.

Proof. Assume that some component U of C\ K does not intersect with D. If C \ K is connected, it is
clear that it intersects with D. Hence we assume that the number of the connected components is greater
than 1.

Take ty € U. By the previous lemma, there exists n € N such that A"tp € D. Let D; be the component
of D that contains A"tg. Therefore ho/R < 1 on dD; and |ha(A™tg)/R| > 1. On the other hand, |h2(t)]
is bounded in U, thus |h1(t)| is also bounded in U because H(t) € VUV ™. It implies |2 0 F™ o H(t)| is
bounded in U for fixed n. Then . |

Fn n
loglog sup Zr—?—o—};—H(t) = loglog sup @%—Q
teU,|t)=r | tel,t|=r
> loglog sup Ml
teDy,jtl=rlnr | R
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Apply Arima-Tsuji inequality (Theorem 3.4)

&A™ dr
> —_— .
> 7r/1. —ITES) const. (0<k<1)

6*(r) = 0(r) holds for sufficiently large r since we assumed the number of components of C \ K is greater
than 1

&A™ r dr
> 71'/ —— — const.
1

ré(r)

KA
> 7r/ dr — const.
1 T 27 _

1
=3 log k|A|™r — const. = 00 (r — c0).

It contradicts with the hypothesis that [ma 0 F™ o H(t)| is bounded in U. Therefore U must intersect with
D. O

Proof.of Theorem 3.8. Assume the number of components of C \ K is greater than or equal to n where
n > 1. Note that the number of the components may be infinity. By the assumption, there exist at least
n components of D. Name them D, ..., D,. Since |hz/R|is <1 on O0Djand >1inDjforj=1,...,n
we can appl>yv Arima-Tsuji inequality:

hao(t 5T d
loglog sup 2( )’ > 7r/ *T —const. (0<k<1),
teD;,|tl=r R 1 Toj (r)
‘where 6; is the angle measure of D;. Sum the inequality for j =1,...,n,

const

Z loglog sup

G=1 teDy,lt|=r

ha(t)| L~ [ dr
>
i— "o -

h (t) rr
iR_l 271'/1 (]z:l 0;‘(1")) — const.

Because any compornents of D are not bounded and the number of the components is greater than 1 we
obtain 0 (r) = 6;(r) for sufficiently large r. Further by Schwarz’s inequality

. nloglog sup
teD,|t|=r

z% < (20 (£2) =2+(T).
Therefore we have

nloglog sup

—— —const. = — log kr — const.
teD,|t|=r 2

1 271'7'

ha(t )} 2dr n?

Divide the left and the right sides by logr and let 7 — 0o, we obtain np > n2/2, i.e. n < 2p.
Remember we have assumed n > 2. Therefore n =1 when 1/2< p < 1. |

Corollary 3.7. 0 is accessible from arbitrary component of C\K Moreover the access v can be periodic,
i.e. if q is the period of the component, vy satisfies ¥([0, 1}) C A2 - ([0, 1]).
' Especzally, every saddle point is accessible from C2\ K*.
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Proof. Take arbitrary to € C\ K and fix it. We will show there exists the above « such that (1) = ¢,.
Ifp<1/2, C\ K is connected because of Theorem 3.1. If p = 1/2, Theorem 3.3 implies that all
components of C\I? are periodic of the same period. In any cases, let g be the period. Then to/\? is also
contained in the same component. Therefore there exists a curve ¥ : [0,1] — C\ K such that (1) = ¢,
and ¥(0) = to/A9.
Let us define 7 as follows. The idea is to join all of {;i—y7([0,1])} for n € N. For 0 < ¢ <11,

g(n—1

0 if¢=0,
7(§ — _ g(n—1)p__1
) Ty (}Al 1—%W) for n € N such that 37 < [A?"De < 1.
This + is well-defined and continuous and satisfies ([0, 1]) C A%([0, 1]). . O

Let us prove Yoccoz inequality. By Theorem 3.3 it is clear that all components of C\ K are periodic
and have the same period under t — At.

Definition 3.8. [BxH]. Assume C\ K has ¢ components. Because all components have the same
period, suppose a component move. to p'-th component under t — M, counting counterclockwise, where
0<p' <q. Then letp'/q' =p/q by reduction and let N be the greatest common divider of p’ and ¢'.

Definition 3.9. Let A be a subset of C. When an unbounded component of A contains 0, we call the
component a bridge. If A has a bridge, we say that A is bridged.

Proposition 3.10. The following three conditions are equivalent.

1. K is bridged.
2. The component of K containing 0 is not a point.
8. Some component of K is unbounded.

Proof. 1t is clear that 1. implies 2. and 3. Therefore we will show the reverses.
In 2., let A be the component containing 0. Then

- oo
K> | Jwva.
Jj=0
The right side has a component which is not bounded. It implies 1.
In 3., let A be an unbounded component and assume A does not contain 0. If A is k-periodic, of course

1
A=) w4
j=0

contains 0. Therefore we suppose A is not periodic. It holds that XI;A N %A = () when i # j, because if
they intersect then XI;A u ;\17A becomes a component of K. Let us regard the following:

(2]

c\Uya

=0

If we take R > 0 sufficiently large, the number of components of D becomes > [2p] + 1. It contradicts
with the proof of Theorem 3.3. It reduces to 1. » d
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In [BxH] Buff and Hubbard have proved Yoccoz inequality on W*(a) when K is connected. The
following theorem is slightly improved because it doesn’t need the connectivity. Instead, we need the
notion of bridge.

Theorem 3.11. (Yoccoz inequality). Assume that K is bridged, i.e. the component of K containing
0 is not a point. Then

Relog A S Ng
|log A — 2mip/q|?2 — 2logd

holds, where we choose an appropriate branch of log \.

Remark 3.12. In Theorem 3.1, we have shown a sufficiency criterion that all components of K become
compact. The above theorem improves the criterion slightly. In fact, given d, \. If any p,q, N cannot
satisfy Yoccoz inequality, there exist no bridges, i.e. any components of K are compact.

After the author had proved Theorem 3.3, Shishikura advised me to generalize the method to prove
Yoccoz inequality. Therefore the following proof is similar to the proof of Theorem 3.3 and is independent
of proofs by torus.

Proof. The way to prove is to transform ¢-plane into s-plane by logarithm and apply Arima-Tsuji in-
equality on s-plane. ‘

First we classify components of C \ K. We say two components are equivalent when and only when
they map to each other by some iteration of ¢t — At. We classify the components by the equivalence
relation and let Uy, ..., Un be their representation.

Let Dy,..., Dy be components of D such that D; is a subset of U;. Define t = €°, i.e. s = logt. Let
D;- be images of D;. Since Kis bridged, the transformation is well-defined.

Then

Dj 35+ s+ qlog A — 2mip € D (3.1)

is well-defined for an appropriate branch of logA. In fact, see Figure 1. The left figure is t-plane, the
right s-plane. In the right, D’ and its equivalent branches are illustrated. Suppose A moves to B on
t-plane by multiplying by A?. To move A to B on s-plane, we should add qlog A to s. Moreover, if we
subtract 27ip from s, B moves to B’ and returns to the same component involving A.

Therefore, each Dj is a domain distributing along a line whose direction is log A — 2mip/q, i.e.

Relog A ,
D’ 2
,Res |log A — 2mp/q|‘ 'l SGU ) (32)

is bounded.

On the other hand, since a circle in t-plane centered at 0 is mapped to a 27-length segment parallel to
the imaginary axis in s-plane, the line measure of {Res = const.} N |J; Dj is at most 27/q in average.
Precisely speaking, if we let | be a line measure, for any £ € R

N g-1
| {Res=¢}n{J | log(a™- Uj) | <2m,

Fj=1n=0
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qu'
Pq
2
p a
p

B0
0 A

X 1: t-plane and s-plane.

because any two in {\"U;} never intersect for n =0,...,¢—1, j = 1,..., N. Further we employ (3.1),
we can see that Uj; is invariant under 3 s +— s + glog A — 27ip, so we obtain by integral

£+q Relog A N ¢-1
27r-qRe10g)\2/ U {Res=¢g}n | | loe(\"U;) | d¢
3

) j=1n=0
£+q Relog A N
—qf l ({Res —gnl log(Uj)) de
- JE =1
' €+q Relog A N
Zq/ l {Res=§}ﬂUD§~ 3
£ j=1

Therefore

1 £+qRelog A N o
4
S — = 4 < 2
qRelog)\_/g L] {Res §}ﬂUDJ € < q

j=1

~ Now, we apply Arima-Tsuji inequality to ha(e®)/R and D;

Y T dr

> —_— .

_Zw/l o () .const 0<r<l),
j=1 J

where 6;(r) are the angle measures of D}, respectively. Note that r = |s|. We can have 63 (r) = 0;(r) for
sufficiently large r.

N
| ha(e?)
Z loglog sup 7

s€D} [s|=r

We compute the right side. By Schwarz s inequality, we obtain

v (£92) < (50) (Ba)
= ([ V2 < ([T me) ([ 2

= dr = dr 7N2(kr — 1)?
T —— > 7N? / > =% .
Z /; 76;(r) 1 2r05(r) T [T Y r6;(r)dr

Therefore
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Recall (3.2) and I ({Re s = const.} N UDj) < 2n/q in average. We obtain by regarding the area of UD;,

KT W%“_‘—;i?p—mnr
/ > rh;(r)dr < / ! ({Res =¢n{Y D;.) d€ + const.
1 0
2 Relog) '
= g |logA - 27ip/q|

Hence, the right side of Arima-Tsuji inequality can be estimated as:

k(r + const.).

- const.

Z / dr N2q| logA — 2mip/q| (kr —1)2
6% (r) 2 2Relog A k(r + const.)

On the other hand, let us estimate the left side in the Arima-Tsuji inequality. Note that |t| = |e*| =
Res .
enes,

N hz(es)
Zlog log sup < Nloglog sup |ha(e®)]
= seDjjsl=r | R s€U D} |s|=r
S
= sup NRes—————lOglOg Ihz(e?)]
sel D}, Js|=r log le®|

We put the above inequalities together and obtain

log log |ha(e®)] > N2g|log A — 2mip/q| (kr —1)2

NR - .
seU sl;??lslﬂ ©s log |e2] - 2Relog A K(r + const.) const
Divide the both sides by r and let r — 0o, we have
Relog A > N2g|log\ — 27rz'p/q|K
|log A — 27rip/qlp - 2Relog A
We employ that p = ﬁ% and that « is arbitrary (0 < k < 1), we obtain
Nlogd S N2g|log X — 2mip/q|
|log A — 2wip/q| = 2Relog A )
It reduces to Yoccoz inequality. : O

4 Collision

Suppose a connected closed subset of K™ meets W*(a). Then by iteration the set runs to a along
W?(a) and collides with W*(a). Marks of the set will be left on the unstable manifold. The marks are
subsets of K*. In this section we investigate how the set collides. But the set does not have to intersect
with W*(a) in finite time. We study the situation after infinite time paésed.

4.1 Explanation

Let us describe precisely. Assume zp € W*(a) is accessible from int K+, i.e. there exists a curve
v :[0,1] = K+ such that

¥(0) =20 and %((0,1]) C int K+.
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The zp runs to a along W?(a) by iteration.
~ On the other hand, F can be regularized at a as follows. Refer to [MNTU, Chapter 6] for example.
There exists a local biholomorphic mapping ® such that ®(0) = a and it satisfies

f‘(m, y) =& 1o F o ®(z,y) = (Vz + zya(z,y), \y + zyB(z, y)) (4.1)

in a neighborhood of 0, where A, X’ (0 < |X| < 1 < |A|) are eigenvalues of DF(a ) and o, § are holomorphic
functlons near 0. We may assume Fis holomorphic in a neighborhood of ]D for some ro > 0, where
={z €C| |z| < 7o} .
It is clear that lim, . F™(x,0) = 0 and lim,_,o, F~"(0,y) = 0. Therefore we have ®({(z,0) | z €
Dy, }) € W#(a) and ®({(0,9) | y € Dy, }) C W*(a).
Let us study the behavior of F™(«y). For some ng € N, F™(z) € <I>(]D ). Define L; C ﬁfo (j=0,1,...)
as follows.

Ly = the component of ®}(F™(y) N ‘D(ﬁio)) containing @1 o F™(z),
L;4+1 = a component of f(Lj) N ﬁio intersecting with z-axis (j=0,1,...).

Suppose o > 0 is sufficiently small. By the regular form (4.1), it can be seen that L; approaches y-axis
uniformly when J tends to oco. In fact, choose small € > 0 and ro > 0 so that || + rola(z,y)| <1—¢
holds on ID . Then

Nz + zya(z, y)| < (IN'| + role(z, y)])|z| < (1 —€)lz].

It reduces to the assertion. Furthermore L; stretches, i.e. there is jo for any j > jo, max |ma(L;)| = ro.
It can be shown similarly.
Define L C {0} x Dy, as follows.

zEL<:¢hm1nfd(z Li)=0&=z¢ ﬂ UL

n=0j=n

It is clear that ®(L) C K*. The following holds.

Proposition 4.1. Assume a point zp € W*(a) is accessible from int K*. Then L is a connected subset
of {0} x D,,. Hence K+ = H-1(K") is bridged. Therefore Yoccoz inequality holds there.

Proof. Assume L is disconnected. Because L is a compact set contained in y-axis, the components can
‘be separated by a closed curve I' contained in y-axis. Take z; € L such that z; and 0 are in opposite
sides of I' each other. By definition we can choose a subsequence {L;, } so that

1

d(zl,ij) < Ed(zl,F) (k € N)

By the way, because {L;, } is connected, we have
(B, x m2(T)) N Ly, # 0
for any k € N. Therefore it can be concluded that I' N L # () because L; approaches y-axis uniformly. It
contradicts.
Because ®(L) C K* and ®(L) C W¥(a) we have
H'o®(L)c HY(Kt) =K.

H~'0 ®(L) is a connected set which contains 0 and is not a point. Therefore by Proposition 3.10, K+
is bridged, i.e. some component is not compact. O



55

2: Unstable slice for H(z,y) = (y,y* — 1.37 — 0.36z).

4.2 Example

Example 4.2. In an example of Hénon mapping which Buff and Hubbard have given in [BxH], we show
that there exists a stable manifold W*(a) such that any points on it are not accessible from int K+
though W*(a) is dense in dint K*. Especially a is not accessible from int K. It contrasts sharply with
Corollary 3.7.

The Hénon mapping is:

F(z,y) = (y,9y* — 1.37 — 0.36z).

It has two fixed points, x = y = —0.674 and z = y == 2.034.

When z = y = —0.674, eigenvalues A\, \' of DF are A = —0.980 and X = —0.367. Therefore the point
is a sink. Let U be the basin of the sink. In [BS2] Bedford and Smillie have shown that J* = dU.
Therefore Wé(a) C J* =0U = dint K+.

When z = y = 2.034, A = 3.977, ) £ 0.091. Therefore the point is of saddle type. On the other hand,
the order is: ‘

logd 1
=0.502 > =.
Tog [\ 0.502 > 3

Yoccoz inequality doesn’t decide whether K+ = H=1(K*) is bridged or not.
But Buff and Hubbard say that the K+ is not connected according to computer graphics. As far as
the author watches the picture, it seems not bridged. See figure 2. The right vertex is the origin.

Therefore by Proposition 4.1, every point on W*(a) is not accessible from int K+. Moreover in [BS2)
it has been shown that Ws(a) = J*. '
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