
グラフの Tutte多項式計算システム
$=$

A System for Computing the Tutte Polynomial of a Graph

今井浩 関根京子
Hiroshi IMAI Kyoko SEKINE

東京大学大学院理学系研究科
〒 113-0033東京都文京区本郷 7-3-1

imai@is.s.u-tokyo.ac.jp

Abstract: The invariant polynomials of discrete systems such as graphs, matroids, hyper-
plane arrangements, and simplicial complexes, have been theoretically investigated actively
in recent years. These invariants include the Tutte polynomial of a graph and a matroid,
the chromatic polynomial of a graph, the network reliability of a network, the Jones polyno-
mial of a link, the percolation function of a grid, etc. The computational complexity issues
of computing these invariants have been studied and most of them are shown to be #P-
complete. But, these complexity results do not imply that we cannot solve a given instance
of moderate size. To meet large demand of computing these invariants in practice, there
have been proposed a framework of computing the invariants by using the binary decision
diagrams (BDD for short). This provides mildly exponential algorithms which are useful
to solve moderate-size practical problems. This paper surveys the BDD-based approach to
computing the invariants, and describe computational resutls of the sy.stem which has been
developed for practical use.

Keywords: Tutte polynomial, graph, matroid, BDD, $\#\mathrm{P}$-complete, mildly exponential al-
gorithm

1 Introduction

This paper concerns computing the invariant
polynomial of discrete systems, specifically the
Tutte polynomials of graphs and matroids and
their variants. The theory $\dot{\mathrm{o}}\mathrm{f}$ these invariant poly-
nomials was originated around the b’eginning of
this century, and it has been extended to vari-
ous fields connected with discrete systems $[3, 26]$.
$\mathrm{C}\mathrm{o}\mathrm{m}$putationa

$’$

l aspects of these invariant polyno-
mials have been. a hot topic in these ten years,
because its computation is very useful in a vari-
ety of fields [26]. This computation problem is
$\#\mathrm{P}$-complete in general. Recently, the binary de-
cision diagram, BDD, has been used to solve this
combinatorial problem efficiently [17]. This paper
first describes the theory of these invariant poly-
nomials briefly, and surveys the comput.

\cdota.t.ional
approach in detail.

The Tutte $\mathrm{p}\mathrm{o}.$l.yno.mial $0,\mathrm{f}$

:
a graph is one of fun-

damental invariants in graph theory, which was
proposed by Tutte [23]. As for invariant poly-
nomials of a graph, the chromatic polynomial,
which denotes the number of vertex colorings such
that no two adjacent vertices have the same color,
seems more popular. This might be because the
well-known 4-color theorem of a planar graph. In
fact, the chromatic polynomial was originally con-
sidered to tackle this problem around 1912 (see
$[25, 26])$.

The Tutte polynomial can be naturally defined
for matroids. The Tutte polynomial $T(M;x, y)$

of a matroid M is a two-variable polynomial of x

and y . This polynomial has many combinatorial
meanings. For example, the following invariant
polynomial- of discrete systems are $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}..\mathrm{i}.\mathrm{a}.1$ cases
of the Tutte polynomial.

\bullet the chromatic poly.n.omial and flow polyno-
$..\mathrm{m}\mathrm{i}\mathrm{a}.1\backslash .$

.
of a graph

,. . ι

数理解析研究所講究録
1120巻 1999年 120-129 120

\bullet the network reliability of a network

\bullet the partition function of an Ising model and
a Q-state Potts model

\bullet the Jones polynomial of an alternating link

\bullet the $\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}^{\backslash }$ enumerator of a linear code over
$GF(q)$

\bullet the shelling polynomial and the characteristic
polynomial of a matroid complex

Also, values of the Tutte polynomial $T(M;x, y)$ of
a matroid M with two variables x and y at some
typical points (x, y) have the following meanings.

\bullet $T(M;1,1)$ is the number of bases of M (span-
ning trees in the case of a graph)

\bullet $T(M;2,1)$ counts the number of independent
sets of M (forests in the case of a graph)

\bullet $T(M;1,2)$ counts the number of spanning
sets

\bullet $T(M;2,\mathrm{o})$ is the number of cells of a cen-
tral arrangement of a linear matroid on $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{I}\mathrm{s}$

and is the number of acyclic orientations of
a graph

For more details, see $[3, 26]$.
The problem of computing the Tutte polyno-

mial, $T(G;x,y)$, of a graph G is $\#\mathrm{P}$-complete in
general, except in some special cases such as the
number $T(G;1,1)$ of spanning trees. For exam-
ple, when $x=2$ and $y=1$, it gives the num-
ber of forests, and this computation becomes #P-
hard. That is, in most cases, it is in a complex-
ity class at least as intractable as NP and there-
fore seems unlikely to have a polynomial time
solution. Recently, Alon, Frieze and Welsh [1]
developed fully polynomial time randomized ap-
proximation schemes for approximating the value
of the Tutte polynomial for any dense graph G ,
whenever $x,y\geq 1$. This result was extended to a
general graph by Karger [10]. Hence this is espe-
cially useful for calculating the approximate val-
ues of the Tutte polynomials which have special
meanings such as the number of forests.

On the other hand, the exact computation of
the Tutte polynomial still remains a challenging
problem. Although exponential time would be
inevitable for the exact computation in view of the

$\#\mathrm{P}$-completeness, reducing the exponent would
enable us to solve moderate-size problems. Mildly
exponential algorithms are practically important.

There has been proposed a BDD-based ap-
proach to tackle these hard problem. The binary
decision diagram, BDD for short, has been used
in VLSI CAD for manipulating Boolean functions
in an efficient way [2]. A general package of BDD
has been developed. It is powerful enough com-
pared with other methods of handling Boolean
functions, but such a general approach has ap-
parent limitation to the ntte polynomial com-
putation. Sekine and Imai [17] propose a top-
down construction algorithm of the BDD repre-
senting all spanning trees of a graph, and then
Imai, Iwata, Sekine and Yoshida [9] the BDD of
bases of a binary and ternary matroid. This ap-
proach can be generalized to solve related prob-
lems, such as computing the Jones polynomial of
a link, and the number of ideals of a partially or-
dered set. Such a relation between the BDD and
the Tutte polynomial computation has been rec-
ognized in a series of papers [6, 17, 20, 21], from
which interesting insights can be obtained from
both sides.

The paper proceeds as follows. The section 2
introduces the Tutte polynomial of a matroid, and
mentions a fundamental result for computing the
Tutte polynomial of a graph. Then the section 3
describes the BDD-based paradigm for this com-
putation for graphs. The time and space complex-
ities of the algorithms are analyzed for complete
graphs and planar graphs. As a specific example
how the computation of some special case of the
Tutte polynomial is interesting, the network reli-
ability computation is discussed in the section 4,
together with computational results of the real
system of comuting the Tutte polynomial.

2 Tutte Polynomial: Definitions
and Naive Algorithm

The Tutte polynomial is defined for a general ma-
troid M , but wee will be mainly concerned with a
linear matroid M on a finite set E . For matroids,
see [3, 13, 25]. The most typical linear matroid is
that over the reals. Given a set E of m vectors
$a_{1},$ $a_{2},$ $\ldots,$ a_{m} in R^{n} , linear independence among
these vectors induces a linear matroid $M(E)$ of

121

vectors in E . The rank function $\rho:2^{E}arrow \mathrm{Z}$ of
$M(E)$ is defined by

$\rho(S)=\dim(\{a_{i}|a_{i}\in S\})$ $(S\subseteq E)$.

where the righthand is the dimension of a space
spanned by $a_{i}(a_{i}\in S)$. The linear matroid
$M(E)$ of vectors $a_{i}\in E$ can be regarded as that of
the arrangement of hyperplanes $h_{i}=\{x|a_{i}\cdot x=$

$0\}$ $(i=1, \ldots , m)$ in the dual R^{n} .
The Tutte polynomial $T(M;x, y)$ of matroid M

on E is a two-variable polynomial of x and y . By
the rank function ρ , it is defined by

$T(M;x, y)=S \subseteq\sum(_{X}-1)\rho(E)-\rho(A)(y-1)^{1}Es|-\rho(S)$
.

The original definition of the Tutte polynomial
by Tutte is expressed as the summation over all
bases of a matroid. To describe this, we need
more definitions. Let B be a base of matroid M .
For $e\in E-B$, a minimal dependent set of $B\cup$

$\{e\}$, including e , is uniquely determined, which is
called the fundamental circuit of e with respect to
B . For $e\in B,$ {$d\in E|(B-\{e\})\cup\{e’\}$ is a base}
is called the fundamental cutset of e with respect
to B . Given an ordering $e_{1},$ $e_{2},$ $\ldots.e_{m}$ of elements
of $E,$ $e_{i}\in E-B$ is called externally active if its
fundamental circuit with respect to B consists of
e_{j} with $j\leq\dot{i}$. $e_{i}\in B$ is called internally active if
its fundamental cutset with respect to B consists
of e_{j} with $j\leq i$. Then, for B , the external activity
$r(B)$ is the number of external active elements,
and the internal activity $s(B)$ is the number of
internal active elements. Then, for this ordering,
the ntte polynomial is given by

$\tau(M;x, y)=:\mathrm{a}S\sum_{B\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{f}M}x^{r})(B)_{y^{S}}(B$
.

The Tutte polynomial of matroid M has many
meanings. For example, $T(M;1,1)$ is the number
of bases of M , since it counts the number of sub-
sets S with $|S|=\rho(S)=\rho(E)$. $T(M;2,1)$ the
number of independent sets of M , and $T(M;1,2)$

the number of spanning sets of M (see [3, 26]).
With the arrangement of hyperplanes such that
all the hyperplanes pass the origin, a linear ma-
troid M over the reals is associated in a straight-
forward way. An arrangement is central if their
hyperplanes have non-empty common intersec-
tion, and our arrangement is central. In this case,

$T(M;2,0)$ gives the number of regions of this cen-
tral arrangement.

When the ntte [23] introduced the Tutte poly-
nomial, he also showed it has the recursive for-
mula. This formula holds for matroids, but from
here in this section we describe the case of a graph
to state a specific complexity of some fundamen-
tal algorithm.

Theorem 1 For $e\in E$, the Tutte polynomial
$T(G;x, y)$ is expanded as follows:

$\{$

$xT(G/e;x, y)$ e : coloop
$yT(G\backslash e;X, y)$ $e:l_{oO}p$

$T(G\backslash e;x, y)+T(G/e;x, y)$ otherwise

Here, for an edge e in E , we denote by $G\backslash e$ the
graph obtained by deleting e from G , and by G/e

the graph obtained by contracting e from G . A
loop is an edge connecting the same vertex, and
a coloop is an edge whose removal decreases the
rank of the graph by 1. If G is a connected graph
a coloop is an edge of G whose removal discon-
nects G . By definition, the Tutte polynomial of
a loop is y and that of a coloop is x . The Tutte
polynomial of a graph with no edge is 1. Note
that the deletion, contraction, loop, and coloop
are all defined for matroids.

By applying the above formula recursively for
an edge chosen by any order we can also compute
the Tutte polynomial. This computation process
corresponds to top-down fashion for an expansion
tree (Fig. 1). The root corresponds to the graph
G , and each parent has at most two children. For
each path from the root to a leaf in the expan-
sion tree, when a coloop is contracted or a loop is
deleted, x or y is multiplied, respectively. Then
the sum of the leaves is the Tutte polynomial of
a given graph G .

Here, for each path from the root to a leaf in
the expansion tree, a set of contracted edges cor-
responds to a spanning tree of G one-to-one. For
example, the most left path in Fig. 1 corresponds
to the spanning tree $\{e_{1}, e_{2}, e_{3}\}$. Then the num-
ber of leaves equals the number of spanning trees.
The depth of the expansion tree is $|E|$, Since the
depth of the expansion tree is $|E|$, by using this
expansion tree in a clever way we obtain the fol-
lowing bound. For more details of existing ap-
proaches, see [16].

122

level
0

1

2

3

4

5

$y^{3}!$

.
$y^{2}.\cdot$

.
$xy|$

$y^{2}|$

:
$xy|y:$. $x|$ $x^{2}|$ $y^{2}:.x.y:y:$. $x|$ $x^{2}|$ $x.y$

: $x^{2}|$ $x^{3}|$

6

Figure 1: Expansion tree for complete graph K_{4}

Theorem 2 $Us\dot{i}ng$ the $recurS\dot{i}ve$ formula, the
Tutte polynomial of a graph $G=(V, E)$ can be
computed in $O(|E|\tau(c;1,1))$ time.

3 Tutte Polynomial: BDD-based
Algorithms

In this section, a BDD-based algorithm for com-
puting the Tutte polynomial of a graph, which
does not take time proportional to the number of
spanning trees.

For a given graph G , order the edges
$e_{1},$ $e_{2},$ $\ldots,$ $e_{m}(m=|E|)$. Suppose we apply the
recursive formula in the order of $e_{1},$ $e_{2},$ $\ldots,$ e_{m} in
a top-down fashion as in the expansion tree de-
scribed in the previous section. A graph obtained
from G by deletions $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ contractions of edges
is called a minor of G . Nodes in the i-th level in
the expansion tree correspond to minors of G with
the edge set $\{e_{i+1}, e_{i+}2, \ldots, e_{m}\}$ (the O-th level is
the root). Since the ntte polynomial is an in-
variant for isomorphic graphs, we may represent
isomorphic minors among them by one of these
members. However, for given two graphs, there

is no efficient algorithm to decide whether they
are isomorphic or not and finding all isomorphic
minors may be difficult.

The isomorphism between two graphs whose
edges have an identity map can be determined
in linear time. For this reason, we may restrict
ourselves just to finding isomorphic minors whose
corresponding edges have the same order in the
original graph G . By merging the isomorphic mi-
nors with the same edge ordering, the expansion
tree becomes an acyclic graph (an edge is directed
from a parent to a child). See an example of the
complete graph K_{4} in Fig.2. This acyclic graph
has a single source (the original graph G) and the
m-th level may be regarded as a single sink.

Rigorously, the acyclic graph representing the
computation process can be constructed as the
following algorithm, where S_{i} is t.he set of minors
in the i-th level.
So $:=\{G\}$;
for $i:=1$ to m do

begin
$S_{i}:=\emptyset$;
for each minor \overline{G} in S_{i-1} do

’

123

$vsvv_{1}2$

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}/\mathrm{t}$

$.\sim_{\mathrm{c}_{\mathrm{c}}}\sim$ delete
$.\sim$.

end
end

end;

Via the above computation process, the Tutte
polynomial can be computed as follows. The
next algorithm shows the Tutte polynomial can
be computed by top-down fashion and need not
by bottom-up fashion. Here a two-variable poly-
nomial $t(v;x, y)$ is associated with each minor v

in the computation process.

$(y+2)(\mathrm{o}_{3}+x+2y)v_{2}vv4v2v_{3}\Leftrightarrow^{v}4u_{6}\mathrm{L}\mathfrak{Z}_{2}vv4(x+2v_{3}\Delta)v_{4}$ $\mathit{1}_{6}^{v_{2}}5vsv4$....
$.\backslash .$. $|$

$\frac{\backslash \backslash \backslash \backslash \sim\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash }{}$

$(2x+2+3y+y)2$
$v_{3}v_{4}\mathrm{Q}$

$(x^{2}+3x+2+2y)$
$\underline{v_{3}}v_{4}$

$\backslash \backslash \mathrm{c}\mathrm{c}$ /
$x^{3}+3x^{2}+2X+4xy+2y+3y^{2}+y^{3}$

Figure 2: Computation process of $T(K_{4;y}x,)$

begin
if e_{i} is a loop in \overline{G} then

child$(\overline{G}):=\{\overline{G}\backslash ei\}$

else if e_{i} is a coloop in \overline{G} then
child $(\overline{c}):=\{\overline{c}/e_{i}\}$

else (comment: e_{i} is neither a loop nor
a coloop) child $(\underline{\overline{c}}):=\{\overline{G}\backslash e_{i},\underline{\overline{c}}/e_{i}\}$;
for each minor $G_{e_{i}}$ in child (G) do

begin
check if there is an isomorphic graph
with the same edge ordering in Si;
if there is such an isomorphic graph
\hat{G} in S_{i} then construct an edge from
the node representing \overline{G} to the node
representing $\hat{G};-$

otherwise, add $G_{e_{i}}$ to S_{i} and con-
struct an edge from the node repre-
senting \overline{G} to the node of $\overline{G}_{e_{i}}$;

$t(\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{C}\mathrm{e};x, y):=1$;
for $i:=1$ to m do

begin
for all nodes u in S_{i} do $t(u;x, y):=0$;
for each node v in S_{i-1} do

begin
if v has two children $u,$ w then

begin
$t(u;x, y):=t(u;x, y)+t(v;x, y)$;
$t(w;x, y):=t(w;x, y)+t(v;x, y)$

end
else (comment: v has only one child u)
if e_{i} is a loop then

$t(u;x,y):=t(u;x, y)+yt(v;x, y)$
else (comment: e_{i} is a coloop)

$t(u;x, y):=t(u;x, y)+xt(v;x, y)$;
end

end;
$t(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{k};x,y)$ is $T(G;x, y)$.

3.1 Decision of Isomorphic Minors

The size of the computation process is defined
as the number of minors which occur in comput-
ing the Tutte polynomial by the algorithm. The
width is defined as the maximum among the num-
bers of minors of the computation process at each
level. The depth of the computation process is the
number of edges. Hence the width of the compu-
tation process is relevant.

Suppose that $E_{i}=\{e_{1}, e_{2}, \ldots, e_{i}\},$ and $\overline{E_{i}}=$

$\{e_{i+}1, e_{i+2}, \ldots , e_{m}\}$. Then the minors of G in the
i-th level have the edge set $\overline{E_{i}}$. For $\dot{i}=1-,$ \ldots , m ,
define the \dot{i}-th level elimination front V_{i} to be a
vertex subset consisting of vertices v such that v

is incident to some edges in E_{i} and some edges in
$\overline{E_{i}}$. By the edges contracted in this $\underline{\mathrm{p}}\mathrm{r}\mathrm{o}\mathrm{C}\mathrm{e}\mathrm{S}\mathrm{S}$, we
can define an equivalence relation on V_{i} such that

124

two vertices are in the same equivalence class if
and only if, in the process of obtaining the minor,
they are unified into one vertex by the contrac-
tions. Then consider a partition of $\overline{V_{i}}$ into the
equivalence classes by this relation. We call this
partition the \dot{i}-th level elimination partition of the
minor. For example, in Fig. 2 the third level elim-
ination front is $\{v_{2}, v_{3}, v_{4}\}$, since all incident edges
of v_{1} are contracted or deleted. When e_{1} and e_{2}

are contracted and e_{3} is deleted, v_{2} and v_{3} are
unified into one vertex. In this case, the elimina-
tion partition of this minor is $\{\{v_{2}, v_{3}\}, \{v_{4}\}\}$. By
using these definitions, we can derive the follow-
ing.

Theorem 3 Let H_{1} and H_{2} be two minors of G

with the same edge set $\overline{E_{i}}$. H_{1} and H_{2} are iso-
morphic with the same edge ordering if and only
if their i-th level elimination partitions are iden-
tical.

This theorem can be used not only to check
the isomorphism more easily but also to analyze
the size of the computation process. Furthermore,
checking whether two partitions are identical can
be done very easily.

The Tutte polynomial is an invariant for 2-
isomorphic graphs which is related to isomor-
phism of matroids. If two graphs G_{1} and G_{2}

are isomorphic then they are also 2-isomorphic,
although we can merge only isomorphic minors
with the same edge ordering by using Theorem 3.

For a given connected graph if the edge order-
ing has a connectedness property, all 2-isomorphic
minors with the same edge ordering are isomor-
phic minors with the same edge ordering. Here,
the edge ordering is assumed to have a connect-
edness property if for $\dot{i}=1,$

\ldots , m , all subgraphs
of G on $\overline{E_{i}}$ are connected.

Theorem 4 Suppose that the edge ordering has
the connectedness property for a given connected
graph G. Let G_{1} and G_{2} be two minors of G on
the same edge set $\overline{E_{i}}$. Then G_{1} and G_{2} are 2-
isomorphic with the same edge ordering. if and
only $\dot{i}fG_{1}$ and G_{2} are isomorphic with the same
edge ordering.

For proofs of these theorems, see [19].

Table 1: The size of $\mathrm{c}\mathrm{o}\mathrm{m}.\mathrm{p}..\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ process of K_{n}

3.1.1 The Complexity of a Complete
Graph

We consider the size of the computation process
of a complete graph K_{n} of n vertices, since it is
the upper bound for the other simple connected
graphs.

For the complete graph K_{n} of n vertices, order
the vertices from 1 to n . Then, represent each
edge by a tuple (u, v) where u and v are num-
bers attached to their endpoints and $u<v$, and
order edges in the increasing lexicographic order
of (u, v) . This ordering is called a canonical edge
ordering of a complete graph.

Let $L(G_{\dot{i}},)$ be the number of minors in the i-th
level of the computation process for the canoni-
cal edge ordering. Since each parent has at most
two children, $L(G,\dot{i})\leq 2^{i}$. More precisely, for the
complete graph K_{n} , the following theorem holds.
Here the Bell number B_{n} is the number of Parti-
tions of a set of n elements.

Theorem 5 $L(K_{n},\dot{i})=2^{O(i)}$ for $\dot{i}\leq 2n-3$, and
$L(K_{n}, i)\leq B_{j}$ for $2n-3<i$.

Corollary 1 For $n\geq 10$, the width of the com-
putation process of K_{n} for the canonical edge or-
dering is bounded by B_{n-2}

This bound is not so tight. Table 1 gives the
width and the size of the computation process of
K_{n} up to $n=14$. It also shows the width can be
bounded by B_{n-2} for $n\geq 10$ and much smaller
than the number of spanning trees.

125

Theorem 6 For any simple connected graph G

with n vertices, there exists an edge ordering such
that the size of the computation process of G is
less than or equal to the size of the computation
process of the complete graph K_{n} with respect to
the canonical edge ordering.

Note that, in computing the Tutte polynomial
of a graph with n vertices $(n\geq 10)$ via the com-
putation process, the space complexity is also
bounded by the width of the computation process
and hence by B_{n-2} . This is another advantage of
this algorithm.

3.1.2 The Complexity of a Planar Graph

Next, we will see that the proposed algorithm
solves the problem of computing the Tutte poly-
nomial of a planar graph, which itself is still #P-
hard, very efficiently.

First, to examine its efficiency for a planar
graph, we will consider its computational com-
plexity of a lattice graph. The (square) lattice
graph $L_{m,n}$ is a graph which has $m\cross n$ vertices
located at the points (x, y) of the 2-dimensional
grid with edges joining neighbours on the grid.
The lattice graph is extremely important for a
number of problems in statistical physics.

For a $k\cross k$ lattice graph $L_{k,k}$ with $n=k^{2}$ ver-
tices, Theorem 7 shows there is an edge ordering
such that the size of any elimination front (the
maximum number of vertices in any elimination
front) can be bounded by $k=\sqrt{n}$, that is, the
algorithm works very efficiently.

For a $k\cross k$ lattice graph $L_{k,k}$ order the vertices
in a row-major order i.e., from the top row to the
bottom row, and for each row from left to right.
Then, a canonical edge ordering of a lattice graph
is defined by the same way for a complete graph.
In addition, the Catalan number C_{k+1} is defined
to be $\frac{1}{k+1}$.

Theorem 7 (i) $L(L_{k,k},\dot{i})$ $\leq C_{k+1}$. Equality
holds for $\lfloor\frac{k}{2}\rfloor(2k-1)\leq i\leq 2(k^{2}-k)-k$.
(ii) $L(L_{k,k}, 2(k2-k)-j)=Cj+2$ for $0\leq j<k$.

Again, the sizes of the computation process of
$L_{k,k}$ up to $k=12$, i.e., up to 144 vertices and
264 edges, have been computed by the algorithm
proposed here (Table 2). The width is bounded

by C_{k+1} , though the number of spanning trees
becomes huge even for small k .

Next we will see the size of the computation
process of general planar graphs. In general, the
size of the computation process depends on the
ordering of edges. For a planar graph, by using
the planar separator theorem, we can see that an
appropriate edge ordering exists and the Mtte
polynomial can be computed efficiently as follows.

Let G be a planar graph with n vertices. Here,
the planar separator theorem [12] is that the ver-
tices of G can be divided into three sets $A,$ $B,$ C

such that the following conditions hold.

\bullet There is no edge whose one end belongs to A

and the other end belongs to B .
\bullet A and B do not include more than $\frac{2}{3}n$ ver-

tices.
\bullet C does not include more than $2\sqrt{2}\sqrt{n}$ ver-

tices.

The set C is called separtor. Ordering edges
by using the planar separator theorem recursively
and the vertex ordering $A\prec B\prec C$, we obtain
the following.

Lemma 1 For a simple connected planar graph
G of n vertices, there exists an edge ordering such
that any elimination front consists of $O(\sqrt{n})$ ver-
$t\dot{i}ceS_{f}$ and such an edge ordering can be found in
$O(n\log n)$ time.

Lemma 1 can be extended for graphs with good
separators:

Lemma 2 For a class of graphs having a sepa-
rator of $O(n^{\alpha})$ (n : the number of vertices), there
exists an edge ordering such that any elimination
front consists of $O(n^{\alpha})$ vertices, and such an edge
ordering can be found in $O(n\log n)$ time.

Theorem 8 The width of the computation pro-
cess of an n^{α} -separable graph $\mathcal{G}_{\alpha}(0<\alpha<1)$

with n vertices is bounded by $2^{O(\mathrm{g}n)}n^{\alpha}\mathrm{l}\mathrm{o}$.
For planar graphs, we can derive a more tight

bound.

Theorem 9 For a connected, simple planar
graph with $nve\hslash\dot{i}CeS$, there exists an elimination
ordering of edges such that any elimination parti-
tion consists of at most $O(2^{O(\sqrt{n}}))$. Such an elim-
ination ordering can be found in $O(n\log n)$ time.

126

Table 2: The size of comoutation orocess of $k\cross k$ lattice granhs $T_{J\mathrm{L}\mathrm{L}}$

Note that the BDD-based algorithm has high
parallelism as reported in a preliminary report
[15].

4 Network Reliability

To analyze network reliability against probabilis-
tic failures of links and sites, simple theoreti-
cal models have been proposed. The simplest
model is concerned with link failures, and consid-
ers the probability that the network remains con-
nected when each edge e becomes open (fail, dis-
appear) with some probability p_{e} independently
(and hence edge e survives with probability $1-p_{e}$)
[4]. This is called the all-terminal network relia-
bility, and, when each p_{e} is a constant p, it is
called the canonical all-terminal network reliabil-
ity. For example, the all-terminal reliability func-
tion involve information on the number of min-
imum cuts, etc., of networks. In fact, the size
(the number of edges) of minimum cuts as well as
the number of minimum cuts is used as criteria
for network reliability in papers concerned with
graph connectivity, etc., and these are represented
implicitly in our network reliability model.

From the theory of computational complexity,
even in such simple models it is hard to obtain
exact network reliability values. That is, com-
puting the network reliability is a #P-complete
problem $[14, 24]$, and is believed hard to solve
if the problem size is large. Hence, there have
been proposed many approximation algorithms.
Recently, randomized fully polynomial-time ap-
proximation schemes for computing the network
reliability have been developed by Alon, Frieze,

Welsh [1] and Karger [10]. Karger and Tai [11]
report implementations of those algorithms, and
show that the network of moderate size up to 50
to 60 vertices can be analyzed approximately by
their methods. For the whole network reliability
research, see [4, 5, 7, 8, 22].

The BDD-based approach can be applied to
this problem to yield a mildly exponential time al-
gorithm (Sekine, Imai [17, 18]). This outperform
other $\exp_{\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}}\mathrm{i}\mathrm{a}1$-time algorithms based on the
recursive formula. With this approach, networks
of moderate size can be analyzed. Furthermore,
this approach yields a Polynomial-time algorithm
for complete graphs, whose reliability provides a
natural upper bound for simple networks, and
also leads to an effective method for computing
the dominant part of the reliability function when
the failure probability is sufficiently small.

This section reports computational results of
the new approach of analyzing network reliabil-
ity against probabilistic link failures. Computa-
tional results for complete graphs and the case
with small failure $\mathrm{p}\mathrm{r}o$bability are also reported.

4.1 All-Terminal Network Reliability
Let $G=(V, E)$ be a simple connected undirected
graph with vertex set V and edge set E . Consider
a network (graph) $G=(V, E)$. The canonical
$all- te\overline{r}minal$ network reliability $R(G;p)$ is defined
as the probability that G remains connected af-
ter each edge is deleted with the same probability
p. It is known that $R(G;p)$ can be computed by
enumerating the spanning sets of G by using the
concept of external and internal activity. As for
the external activity, its definition is given at the

127

end of this subsection.
Let $p(e)$ be a given deletion probability of an

edge $e\in E$. Then, the all-terminal network relia-
bility is defined as the probability that the graph
remains connected after each edge e is deleted
with the probability $p(e)$. This reliability will be
simply denoted by $R(G)$.

In this general case, the following edge dele-
$\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ formula holds.

Lemma 3 For an edge $e,$ $R(G)$ is expanded as
follows.

$\{$

$(1-p(e))R(G/e)$ e : coloop
$R(G\backslash e)$ e : loop
$p(e)R(c\backslash e)+(1-p(e))R(c/e)$ othemise

This is essentially equivalent to the recursive
formula of the Tutte polynomial. In fact, when
all $p(e)$ are identical, the following holds.

Theorem 10

$R(G;p)=p^{||\rho(E)}E-(1-p)\rho(E)\tau(c;1,1/(1-p))$

It is readily seen that the BDD-based approach
can be applied to the general case such that the
edge deletion probabilities are distinct. For this
network reliability problem, we report computa-
tional results for some typical cases.

4.2 Computational Results
s for test networks, we considered a $k\cross k$ lat-
tice graph (or, grid graph) of $n=k^{2}$ vertices and
$2k(k-1)$ edges. Computations are done by using
SUN workstations. For large-size problems, we
use SUN Ultra 60 with $2\mathrm{G}\mathrm{B}$ memory, where our
programs only use at most around $500\mathrm{M}\mathrm{B}$ mem-
ory. As is seen in Imai, Sekine and Imai [8], we
can solve a graph having some planar proximity
relations of up to 50\sim 60 vertices and 150\sim 180

edges.
We show in Fig. 3 graphs of the reliability poly-

nomials of $L_{k,k}$ for $k=2$ to 10. Note that $L_{10,10}$

has 100 vertices and 180 edges. Its size may not be
large, but it is definitely of moderate size. Since
the algorithm in section 4.1 is a mildly exponen-
tial algorithm and the lattice graph has a nice or-
dering with small elimination front (size at most
$k)$, we can solve such moderate-size problem in
practice.

Figure 3: $R(L_{k,k;p})(k=2, \ldots, 10)$

It is observed that the reliability is monoton-
ically decreasing as k increases for the lattice
graphs.

5 Concluding Remarks

This paper emphasizes computational aspects of
the Tutte polynomial. For the deep theory of the
Tutte polynomial from the viewpoint of discrete
mathematics, see $[3, 26]$. The computational ap-
proach described here has potential to solve com-
putationally hard problems rigorously in practice
when it is of moderate size. There still seem much
more applications of this approach.

Acknowledgment

Part of this work of the authors was supported by
the Grant-in-Aid on Priority Area ‘Algorithm En-
gineering’ of the Ministry of Education, Science,
Sports and Culture of Japan.

References
[1] N. Alon, A. Frieze, and D. Welsh, Polyno-

mial time randomized approximation schemes
for Rtte-Grothendieck invariants: the dense
case, Random Structures Algorithms, vol.6, no.4,
pp.459-478, 1995.

128

[2] R. E. Bryant, Graph based algorithms for
Boolean function manipulation, IEEE Trans. on
Computers, vol.C-35, pp.677-691, 1986.

[3] T. Brylawski and J. Oxley, The Tutte Polynomial
and Its Applications, in Matroid Applications, ed.
N. White, Cambridge University Press, pp.123-
225, 1992.

[4] C. J. Colbourn, The Combinatorics of Network
Reliability, Oxford University Press, 1987.

[5] D. D. Harms, M. Kraetzl, C. J. Colbourn, and J.
S. Devitt, Network Reliability: Experiments with
a Symbolic Algebra Environment, CRC Press,
Inc., 1995.

[6] K. Hayase and H. Imai, OBDDs of a monotone
function and of its prime implicants,” Theory of
Computing Systems, vol.31, pp.579-591, 1998.

[7] H. Imai, Network Reliability Computation and
Related Issues –New Trends in Combinatorial
$\mathrm{E}\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}/\mathrm{c}_{\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}}\mathrm{i}\mathrm{n}\mathrm{g}$ (in Japanese), in Discrete
Structures and Algorithms V, ed. S. Fujishige,
Kindai-Kagaku-sha, pp.1-50, 1998.

[8] H. Imai, K. Sekine and K. Imai, Computational
investigations of all-terminal network reliability
via BDDs. IEICE Rans. Fundamentals, vol.E82-
A, no.5, pp.714-721, 1999.

[9] H. Imai, S. Iwata, K. Sekine and K. Yoshida,
Combinatorial and geometric approaches to
counting problems on linear matroids, graphic
arrangements and partial orders, Lecture Notes
in Computer Science, vol.1090, Springer-Verlag,
1996, pp.68-80.

[10] D. R. Karger, A randomized fully polynomial
time approximation scheme for the all terminal
network reliability problem, Proc. of the 27th
Annual ACM Symp. on Theory of Computing,
pp.11-17, 1995.

[11] D. Karger and R. P. Tai, Implementing a fully
polynomial time approxination scheme for all
terminal network reliability, Proc. of the SIAM-
ACM Symp. on Discrete Algorithms, pp.334-343,
1997.

[12] R. J. Lipton and R. E. Tarjan, A separator theo-
rem for planar graphs, SIAM J. on Appl. Math.,
vol.36, no.2, pp. 177-189, 1979.

[13] J. Oxley, Matroid Theory, Oxford University
Press, Oxford, 1992.

[14] J. S. Provan, The complexity of reliability com-
putations in pianar and acyclic graphs, SIAM J.
Comput., vo1.15, no.3, pp.694-702, 1986.

[15] K. Sadakane, K. Hayase and H. Imai, A parallel
top-down algorithm to construct binary decision
diagrams (in Japanese), IPSJ SIG Notes SIGAL-
48-11, IPSJ, 1995.

[16] K. Sekine, Algorithm for Computing the Tutte
Polynomial and Its Applications, Doctoral The-
sis, Department of Information Science, Univer-
sity of Tokyo, 1997.

[17] K. Sekine and H. Imai, A unified approach via
BDD to the network reliability and path num-
bers, Tech. Rep. 95-09, Department of Informa-
tion Science, University of Tokyo, 1995.

[18] K. Sekine and H. Imai, Counting the number of
paths in a graph via BDDs,” IEICE TRans. Fhn-
damentals, vol.E80-A, no.4, pp.682-688, 1997,

[19] K. Sekine and H. Imai, A mildly exponential al-
gorithm for computing the Tutte polynomial of a
graph, submitted, 1999.

[20] K. Sekine, H. Imai and K. Imai, Computation
of the Jones polynomial (in Japanese), $\mathrm{r}_{\mathrm{b}\mathrm{a}\mathrm{n}\mathrm{s}}$.
JSIAM, vol.8, no.3, pp.341-354, 1998.

[21] K. Sekine, H. Imai, and S. Tani, Computing the
Tutte polynomial of a graph of moderate size,
Lecture Notes in Computer Science, vol.1004,
pp.224-233, 1995.

[22] D. R. Shier, Network Reliability and Algebraic
Structures, Oxford University Press, 1991.

[23] W. T. Tutte, A contribution to the theory of
chromatic polynomials, Canadian J. Math., vol.6,
pp.80-91, 1954.

[24] L. G. Valiant, The complexity of enumeration
and reliability problems, SIAM J. Comput., vol.8,
no.3, pp.410-421, 1979.

[25] D. J. A. Welsh, Matroid Theory, Academic Press,
London, 1976.

[26] D. J. A. Welsh, Complexity: Knots, Colourings
and Counting, Cambridge University Press, 1993.

129

