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Abstract
lLongitudinal $\mathrm{v}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}^{1}$ are vortical structures with axis aligned approximately along the direction
of the mean flow. $\mathrm{R}\mathrm{e}\mathrm{y}$ are common both in turbulent shear flows and as part of the developing
disturbances in unstable laminar shear flows. Here, we consider physical mechanisms for the
creation of periodic arrays of longitudinal vortices in unstable, nearly-parallel, shear flows.

1. Mode-interaction scenarios
In linear stability theory, the Squire transformation nonnally ensures that the linearly most

unstable disturbance in a parallel laminar shear flow is two-dimensional, with no dependence on
the spanwise coordinate. Thus, in Cartesian coordinates $(x, y, z)$ , when a primary shear flow $u_{\mathrm{o}}=$

$[U(z), 0,0]$ becomes unstable, as the Reynolds number $R$ is increased beyond some critical value,
two-dimensional Tollmien-Schlichting waves develop. These have the form

$u_{\mathit{1}}={\rm Re}\{\epsilon A[\phi’, 0,- i\alpha\phi]\exp[i(\alpha \mathrm{x}-‘ u)]\}$ ,

where $\epsilon$ is a small parameter, $\phi=\mathrm{A}^{z}$), $\alpha$ is the wavenumber and $\omega$ the ffequency of the wave. In
linear theory, the complex amplitude ffinction $A$ is constant; but this varies slowiy in $\mathrm{b}\mathrm{m}\mathrm{e}$ or space
when nonlinear effects are admitted. One or other, or both, of $\alpha,$ $\omega$ may be complex, depending
on the problem studied: their values are connected by an eigenvalue relationship $F(a, \omega, R)=0$ ,
resulting from the fourth-order Orr-Sommerfeld equation for $\mu z$) and appropriate boundary
conditions. Their imaginary parts are usually numerically small. Real $\alpha$ and a positive imaginary
part for $\omega$ corresponds to temporal growth; while real $\omega$ and a negative imaginary part for $\alpha$

corresponds to spatial (downstream) growth. For a comprehensive account of linear hydrodynamic
stability theory, see Drazin&Reid [1].

However, when an unstable two-dimensional Tollmien-Schlichting wave reaches finite
amplitude, it promotes the growth of $\ddot{\mathrm{m}}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ iffinitesimal three-dimensional waves which would
otherwise be linearly damped. This is known as secondary or paramemc instability. In boundary
layers and non-symmetric chamel flows, the first such instability to arise is that of a symmetric
pair of subharmonic modes
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$u^{+_{2}}={\rm Re}\{\epsilon B\mathrm{J}u_{+}, v_{+}, w_{+}]\exp[i(a\ovalbox{\tt\small REJECT}+\beta y-\omega_{\mathit{2}}t)]\}$ ,

$u_{2}^{-}={\rm Re}\{\epsilon B_{-}[u_{-}, v_{-}, w_{-}]\exp[i(\alpha_{\mathit{2}}x-\beta \mathrm{y}-\omega_{\mathit{2}}t)]\}$ ,

with linear ffequency $\omega_{\mathit{2}}$ and $x$-wavenumber $\alpha_{\mathit{2}}$ having real parts close to half those of the two-

dimensional wave. The value of $\beta$ must be such that this subharmonic resonance condition is

nearly satisfied. The three participating modes interact nonlinearly, and equations goveming the

evolution of $A(t),$ $B_{+}(t),$ $B_{-}(t)$ may be foun$d$ . hhese contain quadratic interaction terms,

characteristic of three-wave resonance: see, for example, Craik [2], Bayly, Orszag&Herbert [3],

Kachanov [4]. $\mathrm{A}1$ first, the amplitudes $B_{+}$ and $B_{-}$ grow exponentially if $A$ is constant, but the

interaction later becomes more complex; and, eventually, other modes also grow to prominence

and transition to turbulence takes place.
Before then, longitudinal vortices are generated by the quadratic interaction of modes $u^{+_{2}}$

and $u_{2}^{-}$ : their periodic structure, coming fro$m$ the difference of the above exponents, is like $\sin \mathit{2}\beta y$

and $\cos 2\beta y$ and their amplitude is of order $O(\epsilon^{2}|B|^{2})$ . $\mathrm{R}\mathrm{i}\mathrm{s}$ final part of the mechanism was first

suggested by Benney&Lin [5], who exanined the we&nonlinear interaction of two constant-

amplitude oblique waves; and there have been several more recent studies. I shall designate this

mechanism as $||ScenarioA^{\mathrm{t}1}$ .
An alternative mechanism, which I shall call $||ScenarioB^{\dagger}’$ , involves cubic, rather than

quadratic, wave interactions, and so usually requires a larger two-dimensional mode to trigger the

secondary instability. The characteristic form of the secondary modes is then
$u^{+_{2}}={\rm Re}\{\epsilon B_{+}[u_{+}, v_{+}, w_{+}]\exp[i(a\ovalbox{\tt\small REJECT}+\beta \mathrm{y}-\omega_{\mathit{2}}t)]\}$ ,

$u_{2}^{-}={\rm Re}\{\epsilon B_{-}[u_{-}, v_{-}, w_{-}]\exp[i(\alpha_{\mathit{2}}x-\beta \mathrm{y}-\omega_{\mathit{2}}t)]\}$ ,

where $a_{\mathit{2}}$ and $\omega_{\mathit{2}}$ are close to $\alpha$ and $\omega$ respectively, rather than their half as in Scenario $A$ : but

exact equality camot be attained (except for $\beta=0$) and the preferred $\beta$ -value is less certain. The

generation of longitudinal vortices by the quadratic interaction of these modes $u^{+_{2}}$ and $u_{2}^{-}$

proceeds as before, giving a spanwise periodicity in $\sin 2\beta y$ and $\cos \mathit{2}\beta y$ . But, additionally,

quadratic interaction of $u_{l}$ with $u^{+_{2}}$ and with $u_{2}^{-}$ now drives longitudinal-vortex components

with spanwise periodicity $s\mathrm{i}\mathrm{n}\beta y$ and $\cos\beta y$ . The latter has an additional slow perio$d\mathrm{i}\mathrm{c}$ dependence

on $x$ and $t$, in $\exp\{i[(\alpha_{\mathit{2}}-\alpha)x-(\omega_{\mathit{2}}-\omega)t]\}$ , and amplitude of order $O(\epsilon^{2}\mu||B|)$ .
Both Scenario $A$ and Scenario $B$ have been realised in experiments and in theoretical and

numerical studies for the Blasius boundary layer: see [2], [3], [4]. But, for plane Poiseuille flow,

the flow symmetry prohibits $\mathrm{s}\mathrm{i}\ovalbox{\tt\small REJECT} \mathrm{i}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{t}$ quadratic interactions an$d$ Scenario $A$ is then unhkely to

occur.
There is a third possible scenario, $|(SoenarioC^{\mathrm{t}\mathrm{t}}$ , in which longitudinal vortices are directly

driven unstable by the two-dimensional wave. Thi$s$ requires cubic-order interactions, and may be

envisage$d$ as follows. In addition to the two-dimensional mode $u_{\mathit{1}}$ , let there be $\mathrm{m}$ infinitesimal

longitudinal-vortex mode of form
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$u_{v}={\rm Re}\{\delta C[u, v, w]\exp(i\beta \mathrm{y}- a)\}$

with spanwise wavenumber $\beta$ and small linear damping rate $\sigma$ Here, $\delta$ is an independent small
parameter. Quadratic interaction of $u_{\mathit{1}}$ and $u_{v}$ gives forced $\mathrm{O}(\epsilon\delta \mathrm{M}|\mathrm{q})$ terms with exponentials of
$f\mathrm{o}rm\exp[i(\alpha x+\beta y -‘ M)- ot]$ and $\mathrm{e}\mathrm{x}p[i(\alpha x-\beta y- aX)- ot]$ . These, in turn, interact quadratically
with $u_{\mathit{1}}$ to provide nonlinear terms of order $\mathrm{o}(\epsilon^{2}\delta|A|^{2}|C|)$ with exponentials of form $\exp(i\beta y - ot)$

an$de\mathrm{x}\mathrm{p}(- i\beta y- ot)$ which can act to reinforce $u_{v}$ . Note that the mechmism is linear in $\delta C$, and $\mathrm{w}\mathrm{n}\mathrm{l}$

involve a possible $\mathrm{O}(\epsilon^{2}|A|^{2})\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}$ amplification rate which must be large enough to overcome
the linear damping rate $\sigma$

It is likely that this Scenario $C$ will operate, along with ScenariosA and $B$ , in Blasius and
other shear flows, but it has received comparatively little attention to date. It certainlly operates
effectively in weak shear flows in the presence of sufficiently large-amplitude two-dimensional
waves. $\mathrm{D}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\overline{\mathrm{i}}\mathrm{n}\mathrm{g}$ on the nature of the dominant wave field, the phenomenon of Langmuir
$\dot{\alpha}rculaaons$ in lakes and seas may be caused by Scenario $C$ or by direct forcing by oblique-wave
components, as in Scenario $A$ and $B$ : see Craik [6], Craik &Leibovich [7], Leibovich [8]. A
photograph of Lanpuir circulations is shown in [2, p.121]. Physical explanations for such
growth of longitudinal vorticity are given in the next section.

All three scenarios are depicted schematically in Figure 1, which shows typical
wavenumber interaction diagrams for the panicipating modes.

(a) (b) (c)

Figure 1: Wave-vector interaction diagrams for (a) Scenario A (b) Scenario $\mathrm{B}$ , (c)&enario C.
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2. Physical mechanisms
The creation of longitudinal vortices is now considered from a physical point of vi $e\mathrm{w}$ . In

each of the above three scenarios, nonlinear interactions take place among the various participating
Fourier modes.

(i) Eulerian view
Such weak interactions may be interpreted in term$\mathrm{s}$ of the so-called perturbation $||Reynolds$

$stresses^{||}$ which appear in the Eulerian formulation of the equations of fluid motion. Denoting each

velocity component in Cartesian tensor form as $u_{\mathrm{i}}(\mathrm{i}=1,2,3)$ , the nonlinear convective terms of the
momentum equation may be expressed as gradients of the Reynol $d\mathrm{s}$ stresses $\tau_{1\mathrm{j}}^{\mathrm{t}}$ , defined as $\tau_{\mathrm{i}\mathrm{j}}\equiv$

$u_{\mathrm{i}}u_{\mathrm{j}}$ . (We take the constant density to be unity without lo $s\mathrm{s}$ of generality.) Thus, the momentum

equation in the $\mathrm{i}$-direction contains the term$\mathrm{s}\tau_{\mathrm{i}\mathrm{k},\mathrm{k}}$ with summation over $\mathrm{k}=1,2,3$ : see, for

example, [9]. Clearly, longitudinal vortices are likely to result when Reynolds-stress terms of

appropriate periodicity are present.
Equivalently, the Reynolds stress gradients may instead be viewed as a $|\dagger_{\mathcal{V}ortexforce^{11}}$

which has the form $u\mathrm{x}\omega$, the vector product of the velocity an$d$ vorticity. In the vorticity equation,
the corresponding terms appear concisely as the curl of this $||\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{c}\mathrm{e}^{1\uparrow}$, or torque, $V\mathrm{x}(u\mathrm{x}\omega)$ .
Longitudinal vorticity must result when the $x$ -component of this torque has terms of appropriate
spanwise-perio$d\mathrm{i}\mathrm{c}$ form: cf [8].

However, a strictly Eulerian viewpoint somewhat conceals the dynamics an$d$ kinematics of

vorticity; for, in non-viscous flows, the well-known Helmholtz vorticity theorems tell us that

vortex lines coincide with nuterial fluid parades. They therefore move with the Lagrangian

velocity, or the velocity of fluid particles, rather than the Eulerian velocity, which is the velocity

measured at fixed points in coordinate space. In time-dependent flows, and so in our $||\mathrm{w}\mathrm{a}\mathrm{v}\mathrm{y}^{\mathrm{t}\mathrm{t}}$

flows, these velocities are not the same.

(ii) Mixed $Eulerian- Lagran\dot{g}an$ view for weak shearflows
When the mean flow is weak, as in the Langmuir circulation problem mentioned above, a

particularly simple physical interpretation exists in terms of the kinematics of vortex lines. $\mathrm{R}\mathrm{i}\mathrm{s}$

derives from a mixed Eulerian an$d$ Lagrangian formulation, developed in great generality by

Andrews&McIntyre $[10,11]$ as their Generalised $Lagran\dot{g}an$ Mean (or $\{|GLM^{\mathrm{t}}$ ) equaaons, and

later appli$e\mathrm{d}$ to Langmuir circulations in [7] an$d[12]$ .
For simplicity, consider inviscid fluid of infinite depth $0<z<\infty$ with undisturbed free

surface at $z=0$ . The free surface supports irrotational gravity waves of linearised form
$u_{\mathit{1}}=[d\psi\ , 0, d\phi\partial z]$ , $\phi={\rm Re}\{\epsilon Ae^{-a\mathrm{z}}\exp[i(\alpha \mathrm{x}-‘\alpha)]\}$ ,

where $\phi$ is the velocity potential, the wavenumber $a$ is real, and $a\mathrm{X}\alpha$) satisfies the linear dispersion

relation $aP=\alpha g$ where $g$ is gravitational acceleration. Suppose, also, that there is a weak $O(\epsilon^{2})$
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Eulerian mean shear flow $u_{0}=\epsilon^{2}[U(z), 0,0]$ . At $O(\epsilon^{2})$ , there is a small second-harmonic wave
contribution in $e\mathrm{x}p[2i(\alpha \mathrm{x} - M)]$ , but no wave-induced alteration to the mean flow. (However,
when viscosity is t&en into account, additional mean-flow terms $do$ arise: see for example Craik
[13]$)$ . It might be thought, therefore, that individual fluid particle velocities consist only of the $o(\epsilon)$

circular orbital motion of the irrotational waves, plus the $O(\epsilon^{2})$ mean flow $u_{0}(z)$ evaluated at the
average depth of the particle. But this is not the case. In addition, there is an $O(\epsilon^{2})$ contribution
from the $[]|Stokesdrifl^{\mathfrak{l}\mathrm{t}}u_{\mathrm{S}}$ which is the difference between the mean IAgrangian velocity and the
mean Eulerian velocity. The latter is

$u_{\mathrm{S}} \equiv\epsilon^{2}\{\mathrm{u}^{\mathrm{s}_{\mathrm{i}}}\}\equiv\epsilon^{2}<u^{\mathrm{w}_{\mathrm{i},\mathrm{k}}}\int u^{\mathrm{w}_{\mathrm{k}}}dt>$ ,

where the angled brackets denote time-average over the period of the waves, and the linear wave
velocity field is $\mathrm{r}\mathrm{e}$-expressed in tensor form as $u_{\mathit{1}}\equiv\epsilon\{u^{\mathrm{w}_{\mathrm{i}}}\}$ . In deep water, this Stokes drift is

$u_{\mathrm{S}}=\epsilon^{2}\lfloor 4|^{2}[(\alpha^{3}/\omega)\exp(- 2\alpha z), 0,0]$ .
The above definition of $u_{\mathrm{S}}$ is applicable to any specified $O(\epsilon)$ wave field $\epsilon u^{\mathrm{w}_{\mathrm{i}}}$ , with suitable

averaging. A pair of obliquely-propagating gravi$t\mathrm{y}$ waves with $r$espective potentials
$\emptyset+={\rm Re}\{\epsilon Ae^{-\gamma z}\exp[i(\alpha\kappa+\beta y-\omega t)]\}$ , $\phi_{-}=\mathrm{R}e\{\epsilon Ae^{-\gamma z}\exp[i(ax-\beta y-‘\alpha)]\}$,

where $\gamma\equiv(\alpha^{2}+\beta^{2})^{1/2}$ , has the wave velocity field $u_{\mathit{1}}\equiv\epsilon\{u^{\mathrm{w}_{\mathrm{i}}}\}=[d\psi\ , \theta\psi\partial y, \theta\emptyset\partial z]$ with
$\phi=\phi_{+}+\phi_{-}$. Its corresponding Stokes drift has both mean and spanwise-perio$d\mathrm{i}\mathrm{c}$ components:

$u_{\mathrm{S}}=\epsilon^{2}\lfloor 4|^{2}[u^{\mathrm{s}}, 0,0]$ , $u^{\mathrm{s}}\equiv(\alpha/\omega)\exp(- 2\alpha z)\{\alpha^{2}+\beta^{2}+\alpha^{2}\cos(2\beta y)]$ .
It turns out that the mean vorticity vector $<\omega>$ $\equiv\epsilon^{2}\mathrm{m}$ , averaged over the wave period,

satisfies the equation
$\partial a_{\lambda)}/\theta\tau=(\omega_{)}\cdot\nabla)(u_{0}+u_{\mathrm{S}})-(u_{0}+u_{\mathrm{S}}).\nabla a_{\mathrm{b}}$ ,

where $\tau$ is a slow timescale, defined by $t\equiv\epsilon^{2}\tau$, and a weak viscous diffusion term may also be
introduced if required $(\mathrm{s}e\mathrm{e}[7])$ . It is obvious fro$m$ this $e$quation that the $m$ean vortex lines are
advected, stretched an$d$ tilted by the Lagrangian particle velocity $u_{0}+u_{\mathrm{S}}$ as stated above. The role
of the Stokes drift in the kinematics of mean vorticity is thereby made apparent.

The development of longitudinal vortices is seen as a simple kinematic effect, in the case of
the oblique wave pair just described. Consider a set of vortex lines associated with the mean
Eulerian flow $u_{0}$ initially with no longitudinal vortices present: these lines are directed along the y-
axis. But they are carried by the average Lagrangian velocity, which has a spanwise-periodic
component deriving from the Stokes drift, as $\mathrm{s}$tated above. Accordingly, they are soon distorted
an$d$ a spanwise-periodic $x$ -component of vorticity appears, as required. Thi$s$ is just the kinematic
interpretation of the final stage of ScenariosA and $B$ described above.

With a purely two-dimensional wave field, $\dot{\mathrm{t}}\mathrm{h}\mathrm{e}$ process is a littl$e$ more subtle; this
corresponds to our Scenario $C$. First, envisage that there are very weak pre-existing longitudinal
vortices. Since these distort the Eulerian velocity field $u_{0}$ , they are necessarily three-dimensional,
with spanwise-periodic velocity co$m$ponents in all three directions. Accordingly, the $m$ean vortex
lines which initially lay along the $y$-direction have spanwise-periodic components in both the x-
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and z- directions. But the $z$-vorticity is tilted by the $z$-dependent Stokes drift, so creating new x-

vorticity and $\mathrm{i}\mathrm{n}t\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\theta \mathrm{i}\mathrm{n}\mathrm{g}$ the original longitudinal vortices. $\mathfrak{M}\mathrm{i}\mathrm{s}$ strengthens exponentially on the

timescale $\tau$ But, if there were no $z$-vorticity, there would be no intensification of the x-vorticity.

Thi$s$ intensification takes place enarely because of the Stokes drift: the Eulerian velocity is

ineffective because of cancellation of the stretching and tilting due to the two spanwise-periodic

terms in $u_{0}$ . In other words, for the mechanism to operate, it needs both an Eulerian shear and a z-

dependent Stokes drift.
A fuller description of this mechanism, and the supporting analysis, is given in [12].

There, it is shown that the inviscid vorticity equation yields
$d^{2}w/dz^{2}+4\beta^{2}[(u_{\mathrm{s}}u_{0}||/d)-1]w=0$, $(^{*})$

where $w$ is the vertical velocity component of the longitudinal vortices, and $u_{\mathrm{s}}^{\uparrow},$ $u_{0^{1}}$ are

respectively the $z$-derivatives of the Stokes drift and the pri$m$ary Eulerian mean shear flow. The

quantity $\sigma$ is an eigenvalue, corresponding to the required exponential growth rate. With $s$uitable

boundary conditions applied $at$ the free surface $z=0$ and at $z=-\infty$ (or at a horizontal bottom $z=$

-h), the most unstable eigenvalue may be found by stan$d$ard me$t\mathrm{h}\mathrm{o}d\mathrm{s}$.
There is a striking similarity between $\mathrm{t}\mathrm{h}\overline{\mathrm{l}}\mathrm{s}\mathrm{e}\overline{\mathrm{l}}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{a}\overline{\mathrm{l}}\mathrm{u}\mathrm{e}\mathrm{p}r\mathrm{o}\mathrm{b}\overline{\mathrm{l}}\mathrm{e}\mathrm{m}$ , and $\mathfrak{r}\dot{\mathrm{n}}a\mathrm{t}$ for inviscid

Rayleigh-B\’enard convection in horizontal layers of fluid heated from below. In the latter,

buoyancy takes the place of $u_{\mathrm{s}}^{1}u_{0^{\mathrm{t}}}$ . An even stronger comection exists between our problem an$d$

that for inviscid Taylor-G\"ortler instability of flow $u_{0}(z)$ over a concave wall. There, the

corresponding equation is
$d^{2}w/dz^{2}+4\beta^{2}[(\mathit{2}Ku_{0}u_{0^{\mathrm{t}}}/d) - 1]w=0$ ,

where $K$ denotes the wall curvature (see [12, p.50]). It is natural to seek some connection between
$\mathit{2}Ku_{0}$ and the Stokes drift gradient $u_{\mathrm{s}}^{\mathrm{t}}$ . In fact, if we evaluate the average quantity $<2Ku>$ where

$K$ is the streamline curvature of our wavy flow and $u$ is the total Eulerim $x$ -velocity, it turns out

that the leading-order contribution, at $O(\epsilon^{2})$ , is precisely equal to $u_{\mathrm{s}}^{\uparrow}$ , the $z$-derivative of the Stokes

drift! $\mathrm{R}\mathrm{i}\mathrm{s}$ allows yet another, rather unexpected, physical interpretation of the instability

mechanism: it may be viewed as a sort of averaged Taylor-G\"ortler instability, driven by the mean
$\uparrow\dagger ce\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{f}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{l}$ force\dagger l within the wavy flow.

(ii) Mixed $Eulerian- Lagran\dot{p}an$ view for stronger shearflows
The above interpretation in term$\mathrm{s}$ of Stokes drifl is inadequate for $O(1)$ shear flows md

$O(\epsilon)$ waves, such as $\mathrm{T}\mathrm{o}\mathrm{U}\mathrm{m}\mathrm{i}e\mathrm{n}$-Schlichting waves in a Blasius boundary layer; but it remains

sufficient for $O(\epsilon)$ waves in $O(\epsilon)$ mean flows after some $r$escaling $(\mathrm{s}e\mathrm{e}[12])$. Extension to $O(1)$

shear flows was also considered in [12], using the GLM equations. It is inappropriate to repeat the

details here. It is enough to remark that, in place of Stokes drift, $\mathrm{A}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{e}\mathrm{w}\mathrm{s}\ \mathrm{M}\mathrm{c}\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{y}\mathrm{r}e^{\mathrm{t}}s$ concept of
$\dagger\dagger pseudomomentum^{\mathrm{t}\dagger}$ appears: this is an $O(\epsilon^{2})$ enti$t\mathrm{y}$, which is known explicitly in terms of the

specified $O(\epsilon)$ wave field. For weak mean flows, this is identical with the Stokes drift, but the two
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quantities differ for $\mathrm{s}\mathrm{t}r$ong mean shear. The longitudinal-vortex instability in presence of two-
dimensional waves in strong shear is found to be governed by a more complicated eigenvalue
problem than that described above. An equation somewhat resembling $(^{*})$ is obtain$e\mathrm{d}$; but $u_{\mathrm{s}^{\dagger}}$ is
replaced by the corresponding $z$-gradient of pseudomomentum, and there is an additional term on
the right-hand side whi$c\mathrm{h}$ describes the influence of spanwise-periodic modifications of the
pseudomomentum caused by the presence of the longitudinal vortices. To evaluate this term it is
necessary first to solve another, inhomogeneous, equation which governs the modification of the
waves, at order $O(\epsilon\delta)$ , due to the presence of the longitudinal vortices.

To illustrate this process, Craik [12] obtained analytic solutions in cases where the vort$e\mathrm{x}$

spacing is small compared with the wavelength. For simplicity, he exanined non-viscous uniform
shear flows between two sinusoi $d\mathrm{a}1^{\dagger 1}\mathrm{w}a\mathrm{v}\mathrm{y}$ walls\dagger ’ with differing amplitudes. He established that
the expected instability exists whenever the $z$-dependent wave amplilude decreases in the direcaon
of increasing speed of the primary shear flow. Also, instability persists when the amplitude
increases in $th\mathrm{i}s$ direction, provided the waves are sufficiently long compared with the channel
wi$dth$.

No further developments of this line of enquiry took place for more than a $d\mathrm{e}c\mathrm{a}d\mathrm{e}$, until
$\mathrm{W}.\mathrm{C}$.R. Phillips and $\mathrm{c}\mathrm{o}$ -workers [14], [15], [16] undertook several extensions of the analysis of
[12]. Employing the GLM fonnulation Med wi$th$ numerical computations, $\mathrm{m}d$ incorporating
weak viscous effects, they have siyificantly increased our knowledge of wave-induced
longitudinal-vortex instabilities. Since space does not permit $\mathrm{m}$ account of their recent work, the
reader is referred to their papers cited here, and $\mathrm{o}\mathrm{t}h$ers forthcoming.

It is worth adding a comment regarding the relative merits of a purely Eulerian approach
and the GLM approach just discussed. It is certainly the case that, following intensive study over
several decades, the Eulerim approach has reached a high degree of sophistication: incorporated
into numerical $c\mathrm{o}$des, it is now capable of great precision. in contrast, the GLM formulation $h$as
received scant attention, and it suffer$s$ from the great disadvantage of $\mathrm{u}\mathrm{n}f\mathrm{a}\iota\dot{m}\mathrm{l}\mathrm{i}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{y}$ : the various
concept$s$, such as pseudomomentum, pseudoenergy md so on at first seem strange, an$d\mathrm{m}$

apparently unnecessary complication.
However, once one is familiar with these concepts, the GLM approach offers a useful

altemative method of analysis that is sometimes more direct that the purely Eulerian one. For
instance, the present $\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{r}^{1}\mathrm{s}$ first calculations of Langmuir circulations were performed with a
Eulerian fonnulation which, though (eventually!) yielding correct results, completely obscured the
simple physical understanding of these results in terms of the Stokes dri$ft$ . An$d$, when the analysis
was repeated using the GLM formulation, the same results were obtained after far less algebraic
complexity. However, the GLM method has some drawbacks. The most importmt of these
concerns \dagger \dagger critical layerst\dagger wher$e$ the wave velocity an$d$ Eulerian mean flow $v$elocity almost
coincide: for, ther$\mathrm{e}$, the usual GLM averaging procedures $do$ no$t$ apply. When critical layers are
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absent or unimportant, an$d$ viscous effects are quite weak, the GLM method has much to

commend it.
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