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HIGH ENERGY RESOLVENT ESTIMATES FOR
ACOUSTIC PROPAGATORS IN A STRATIFIED MEDIA

MITSUTERU KADOWAKI B9 W o R

§1 Introduction.
Let n = 2 and z = (y,2) € R*! x R. In this report we study the following

operator :
(11) Lo = —G,o(z)zA,
where
C+ (Z 2 h)
ap(z) = cn (0<z<h)
c- (220),

and c+, ¢y, and h are positive constants and

n—1
0? 02
A= ; 3y2 t oz

We consider only the case ¢, < min(c4,c—) because we can find the guided
waves (cf. Wilcox [9] or Weder [6]). It seems that there are no works dealing with
high energy resolvent estimates for acoustic propagators in stratified media. Here
we shall prove high energy resolvent estimates for the case ¢, < cy =c—..

Kikuchi-Tamura [3] and Kadowaki [2] have proved low energy resolvent estimates
for the case ¢, < min(cy,c.) and ¢y 75 c_ and the case ¢, < ¢4 = c_ respectively.
Both works were used Mourre’s commutator method (cf. Mourre[4]). But the
conjugate operator in Kadowaki [2] is different from Kikuchi-Tamura [3]. Kikuchi-
Tamura [3] took the generator of dailation in R3 as the conjugate operator. They
dealt with only media of R3 but their result can be extended for media of R™(n 2 3)
(cf. Kadowaki [2]). Kadowaki [2] has constructed the conjugate operator by using
the generator of dailation in R™ and R™™!(n 2 3) togerther with the generalized
Fourier transform of a related operator (cf. Weder [6]). The generator of dailation
in R*! has been used to estimate the guided wave (see §2). In this report, we also
use Mourre’s method. Our conjugate operator is similar to Kadowaki [2]( see §2 ).

Let Ho = L2(R™; a5 2(z)dz) be Hilbert space with inner products

< U,V >o= / i w(z)v(z)ag?(2)dz.
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In particular L2(R7) is the usual L? space defined on R? with inner products

< Uy >r2(Rn)= /R u(z)v(z)dz

T

and the corresponding norms | - |2(rn).-

L is admits a unique self-adjoint realizations in Hg . Then Ly is a non-negative
operator ( zero is not an eigenvalue ) and the D(Lo) is given by H2(R?), H*(R?)
being Sobolev space of order s over Ry. We also denoted by R(z; Lo) the resolvent
(Lo — 2)7! of L for Imz # 0.

A is considered as an operator from L?(R7) into itself, then its norm is denoted
by the notation || A||.

We remark that Weder [6] has showed the absence of eigenvalues and the llmltmg
absorption principle for Lg. Our result is :

Theoreml.1. Let o > 1/2. Assume that cp, < ¢y = c_. Then, we have
1Xa RO+ ik; Lo) Xall = O(A™2) (A — o0),

uniformly in k > 0, where X, = (1 + |z|?)~*/2.
We define the self-adjoint operator Lo()\) on L?(R?),

{ Lo(\) = =4 = XNag*(2) — ¢5?)
D(Lo(\)) = H*(R3).

This operator has been introduced by Weder [7]. Theorem 1.1 is obtained as an
immediate consequence of the following proposition

Proposition 1.2. Assume that cp, < ¢y = c_. Then we have
11 XaGra(@ N Xal = OOE) (A 00),
uniformly in k > 0, where
CGL(0;N) = (Lo(A) — Aci? —ikag?(2)) !

for k>0

In §§2,3 we shall give the proof of above proposition.

We give a comment for the assumption of Theorem 1.1. This follows from our
method. Applying Mourre’s method to the original operator, Ly, we do not get the
Mourre’s estimates on the neighborhood of threshods of Lg (cf. Wilcox [9] or Weder
[6]). The conjugate operator for Ly is contructed by using generator of dailation
in R™ and exterior domains of ball in R"~! together with the generalized Fourier
transform for Ly (cf. Kadowaki [1]). While, since Lo()\) dose not have threshods
on [0,00) (see Weder [7]) , we can obtain Mourre’s estimates. But, to prove only
Lemma 3.6 in §3, we need the assumption ¢, < ¢y = c—. In brief we deal with only
cp<cy Sc_. :
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As an application of our theorem, we can consider scattering problem for wave
equations with disspative terms in stratified media. This is due to Mochizuki [4]. He
has proved existence of scattering states for wave equations with disspative terms
in the case ¢p, = ¢y = c = 1. His idea is due to Kato’s smooth pertabation theory
together with low and high energy resolvent estimates for Laplacian in R™(n # 2).
To consider scattering problem for stratified media, we need low energy estimates
which is requred in Mochizuki [4]. Kikuchi-Tamura [3] and Kadowaki [2] have
proved low energy etimates in perturbed stratified media. But the 3-demensional
case in Kadowaki [3] and Kikuchi-Tamura [2] do not satisfy Mochizuki’s condition
(for detail see Mochizuki [4]). For Kikuchi-Tamura’s result, we can remake it to
satisfy Mochizuki’s condition (see Kadowaki [3]). We will give low energy etimates
for stratified media of R™(n = 2) elsewhere and consider scattering problem.

§2 Conjugate operator and Mourre’s estimates.
In this section we conctruct the conjugate operators and show Mourre’s estimates
(2.1). First we define conjugate operator, D()), as follows :

D(X) =Fo(A)*(=Dp)Fo(A) + Fi(\)* (= Dn-1) F1(Y)
Q(N)
+ 37 G () (—=Dn-1)G5 (),
j=1

where k = (k, ko) € R ! x R, Fy(A), Fi(\) and G;()) are partially isometric
operators for Lo(\) (see Appendix ) and

1 1 — -

We consider the commutator i[Lo(\), D(X)] as a form on H2(RT?) N D(D(X)) as
follows :

< [Lo(A), D(M)]u, u >r2(ry)
= i(< D(A)u, Lo(A\)u >r2mp) — < Lo(Nu, D(/\)u >12(Rn))
for u € H2(R™) N D(D())). Then Lemma A of the Appendix implies that
< i[Lo(A), D)y, u >r2(ry)
= i{< |k[?Fo(\)u, DpFo(Mu >2mp) — < DnFo(N)u, [kI? Fo(A)u >r2(rp)
+ < 2R (AN, Dpo1 Fy (W) >120,) — < Dp—1F1(A)u, [P FL(A)u >12(a0)

Q)
(< [kPG(A\)u, D1 G(A n-
+;( k"G (N)u 1G5( )u>L2(R7; 1y

Thus we have by integral by parts

< 7’[LO(>‘)7 D()‘)]ua u >Lz(Rg;)

Q)
=< 2(Fp(\)*[kI2Fo(A) + F (V' RPFL(N) + Y G () kPG5 (A\)w, u > r2(my)

j=1
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for u € H2(R?) N D(D(A)). Thus the form i[Lo(A), D(A)] can be extended to a
bounded operator from H!(R?) to H~!(R?) which is denoted by i[Lo(\), D())]°.
Let A > 1, take fr(r) € C(R),0 < fr < 1 such that fy has support in ((c;% —
c=2/2)A, 2c;2A) and fn =1 on [(c3% — cZ?/4)\, 3c72)/2]. Noting that

PALoN))ilLo(A), DIV]° f2(Lo(N)
= 2(Fo(N)*[k? fa(k? + a- ()2 Fo(A) + Fr(\)* [k fr(k1* — k8 + g (A)*F1(N)

QM) o
+ 37 GO R AA(RE = wi(N)2G5 ().
j=1

Then there exists a positive constant C which is independent of A such that
(2.1) AA(Lo(N))ilLo(X), DOV fr(Lo(V) Z CAfA(Lo(N))?

in the form sense.

§3 Proof of Proposition 1.2.

Proposition 1.2 follows from lemmas in this section. But we omit the proof of
lemmas and give only a comment of the proof.

We can prove the following lemmas in the same way as in the proof of Lemma

2.5 of Weder [7].

- Lemma 3.1. Let f € C§°(R). Then

(1) f(Lo(X)) sends D(D(X)) into D(D(X)).

(i)[f (Lg()\)) D())] defined as operator on D(D()\)) is extended to a bounded oper-
ator on L2(RT) which is denoted by [f(Lo(N)), D(N)]°.

It follows from (2.1) that My(\) is non-negative and hence we define an operator,
Gal€ N), on L2(RE) by
(3.1) Gr(& ) = (Lo(A) — Ac3? — ikag?(2) — ieMp(N)) ™t
for £ > 0 and € > 0. Using (2.1), we can prove the following lemma (for detail, see
that of Lemma 5.3 of Kikuchi-Tamura [3]).

Lemma 3.2. For e >0, as A — oo, one has
1G.(6 V]| = e 20(A D), (A > o)

uniformly in k > 0.

We write )

Fro(&X) = A2 Zo(6, )G (A" 265 ) Za (e, A),
where Zg(e, \) = (A2 4+ |D(N)|)~*(A\2 + ¢/ D(A)[)*~L.
This is due to Yafaev [8]. But we do not use the scaling argument for A (cf.
(3.1)).
Let gx(p) = 1 — fia(p). We write in brief fx and gy for fr(Lo(A)) and gx(Lo(A))
respectively.
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Noting that
Gr(e; A)D(D(X)) € D(D(N)) N H*(R™)

(cf. Kadowaki [2]), we decompose (d/de)Fy(e;A) as a form on L2(RT)
8
(32) (d/de)Fiu(e; ) =) Yi(e ),
j=1

where

Y =iZ4(e, NGu(A 26 NgalLo(N), DOV /AG (A5 ;M) Za(e, M),
Y2 = iZa(6, \Gr(A 26 M)galLo(N), D(NI°gAGk(A 26, 0) Za(e, ),
Y2 = iZa(e, NGx(A 2 & M) falLo(N), DIVI°grGe(A %6 \) Zale, V),
YA = —iZ. (6, V{D(N)Gu(A 76 ) + Go(A"26; A)D(A) } Za(e, A)
Y5 = kZa(e, NGr(A"26 Nao(2) "2, DIN)]Gr(A" 26 A) Za(e, V),
Y8 = €Za(e, NGe(A"Ee; N)[Mo(X), DOVIG(A "2, ) Za (e, ),

Y7 = A"%{%Za(e, AN }IGe(A" 2 N) Zale, V),

Y8 = A" Z4 (e, )\)GH(A-%E; )\)—(%Za(e, A).

We need the following lemmas (Lemma 3.3~Lemma 3.5) to estimate each term of
the right side of (3.2).

Note that there is cg,co > 0 suth that (Lo(A) + coA) ™! exists.
Lemma 3.3. As A — oo, one has :
. 1 -
(i) [9:Go(A e )] = ONY),
(i4) [I(Lo(N) + o) 2 frGr(A 26 X) Za(e, M| = €7 V/2||Fi||/20(1),
(i) || (Lo(A) + coM)2grGr(A"2 6, 1) Za(e, V)| = O(A7Y),
(iv) [|Fa(e; M)l = e TO(A™),
uniformly in k> 0.
For a proof of Lemma 3.5 (i), see that of Lemma 5.4 of Kikuchi- Tamura [3].

Also, for a proof of (ii) and (iii), see that of Lemma 5.5 of Kikuchi-Tamura [3]. (ii)
and (iil) imply (iv). '

Lemma 3.4. Assume that ¢, < cy = c_. Then [ag?(2), D()\)] defined as a form
on D(D())) is estended to a bounded operator from H*(RT?) to H~1(R?) which is
denoted by lag?(2), D(N)]°. Moreover we have

ilag*(2), DIV

= (57 = D((n — Dxo<z<h(2) = Oro Fo(N)X0<z<h(2)) ko Fo(N)
= (ko Fo(A))* Oko Fo(A) Xo<z<n(2) + Fo(A) Fo(X))

and

I(Zo(A) + coX) ™ 2i[ag?(2), DI (Lo(N) + 003)”1/2“ =0(\"%) (A o0).



proof. Noting that the reprensention of Fy(}A), we show this lemma by straighfor-
ward calculation (cf. Kadowaki [2]).

Using Lemma 3.1 and the representation of ¢[Lo()), D(A)]° we show the follwing
lemma.

Lemma 3.5. As A\ — 0o, one has :
[[Mo(X), DVl = O(N).

Using Lemma 3.2 ~ 3.5, we can evaluate the norm of Y7,1 < j < 8 (see K1kuch1-
Tamura [3]). Thus we obtain the following differential mequa.hty

(3.3) I(d/de)Frule; M| S COT1 ™! 4+ X756 3 || |12 + || F])
It follows from Lemma 3.3(iv) and (3.3) that |
(34) A2 + DO T*Cu(0; ) (A% + DA™ = O0(A"37%), (A - ),

uniformly in k > 0.
Noting Lemma 3.1 we rewrite D(\) /1 X7 as

(3.5)

lfAXl)
- %(fAFo(A)*koakoFo()\)Xl + %fAFo()\)*Fo(A)Xl)
+ [D(N), A°X:.

1 n—
;(f,\Vy'yXl +

We can show that

(3.6) IO, HA°l = 0(1), (A — o0),

(for proof, see that of Lemma 5.6 of Kikuchi-Tamura [3]).
By straighforward calculation we can show next lemma.

Lemma 3.6. As A\ — oo, one has :
1A Fo(A)*kodko Fo(M) X1 ]| = O(A?)
It follows from (3.5), (3.6) and Lemma 3.8 that
IDVAHXL] = 0AE) (A — o0).
Thus we obtain by interpolation
(3) 1A% + DOV frXall = OAE) (A — o).

Note that
lrG(O; M) =011 (A — ).

(3.4) and (3.7) imply that
[ XaGr(0; )Xol = O(X"2) (= o0).

Now the proof of Pr0p081t10n 1.2 is complete
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Appendix. .

In this Appendix we state the generalizied Fourier transform of Lo(\) established
by Weder (cf. Weder [6]).

For A >> 1 large enough, we consider the following operator :

d? -2 -2
h(Y) = 3 — Mag*(2) - 7,

D(h(N) = H*(R.).

This is the self-adjoint operator in L?(R.,).

h(A) has finite number Q(X) € N, of eigenvalues, —w?(A),0 < wi(A) < gr(A) =
Mcp? = ¢7%),1 £ j £ Q(N), of multiplicity one. There exist Fo(A), Fi()) and
G;(A)(j =1,2,3---Q())) which are partially isometric operators from
L%(R7) onto L2(R7), L?(£)g) and L2(RZ_—1) respectively, where Qg = {k € R™;0 <

ko < v/a-(\) = 1/A(c3% — ¢Z?)}. Defining the operator F()) as
F(A\u = (Fo(Nu, Fr(\u, G1(Nu, Ga(Nu, Ga(Nu -+ - Goayu(N)
for u € L?(R?), we have
Lemma A. F()) is unitary operator from L2(RZ) onto
o Q)
H = L*(Ry) P L (%) D LRy ™)
j=1
and for every u E D(Lo(\)) = H3(R?)
F(A\)Lo(Nu = (([EI* + g-(A) Fo(Vu, ([B]* — k3 + - () Fr (M),
(k> = w2 (N))G1 (N, ([k? = w3 (V) G2V, -,
(|7€_|2 - wé(A)()‘))GQ(A)()\)U)'

For the proof, see Weder [6].
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