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Exponential decay of a difference between a global solution to
a reaction-diffusion system and its spatial average
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§1. Introduction.

This report is based on Hoshino [9].

We are concerned with asymptotic behavior of a unique nonnegative global solution (u,v)(t,z) to the
following system of reaction-diffusion equations with homogeneous Neumann boundary conditions:

up = diAu + f(u)v®, in (0,00) x ,
1.1
{ vy = dagAv — f(u)o™, in (0, 00) x £, (L0
% = %1;— =0, on (0, c0) x 09, | (1.2)
(‘U,, v)(O, ZE) = (UQ,UQ)(IE), : in . (13)

Here Q is a bounded domain in RY (N > 1) with smooth boundary 09, and 8/8v stands for the outward
normal derivative to 9§). We assume

Assumption 1. (i) d; and dp are positive constants.

(ii) wo and wvo are bounded, ug > 0, vo > 0 and Ty > 0, Tp > 0, where W = IQl"lf w(z)dr, and [§}] is the
7
volume of €.

(iii) f is smooth in w > 0 and f(u) > 0if © > 0. Moreover, either
. 1 .
ulergou log(1+ f(u)) =0

(cf. [6]) or

. 8d,dy
u) <e*™ with d dy and supve(z) < ————z
f( ) — 1 # 2 mgg 0( ) aN(d1 - d2)2

(cf. [2]) holds.
Assumption 2. n > 1.

Assumption 1 with n > 1 assures the existence of a unique nonnegative global solution (u,v)(t,z) to
(1.1) — (1.3). In fact, we have Alikakos [1], Masuda [11], Haraux and Kirane [5], Haraux and Youkana [6],
Hollis, Martin and Pierre [7], Pao [12], Barabanova [2], Hoshino [8], and so on. Especially in [8], under
Assumptions 1 and 2, Hoshino has shown a uniform convergence property of (u,v)(t,z) to (uo, 0) with a
polynomial rate, that is to say,

1w = too, ¥)(B)]loo < Kt~/ as t - 00,

where
Uso = Ug + Do
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and has also proved that
' [(w— T, v —0)(t)]joo < KtHe %M (14)

as t — co. Here, wW(t) = Q™' [ w(t,z)dz, p = (V2 — )n/(2(n — 1)) > 0, X is the smallest positive
éigenva.lue of —A with homogeneous Neumann boundary condition on 82, and
do = min{d,, ds}.
Here and hereafter, we make use of the notations
ol = llwlLe@y, w1, w2)llp = (lwill} + lweiZ)*2.

For the details of the previous results, see Theorem 1 in Section 2.
In this report, we will obtain a sharper decay rate of the difference between (u,v)(t,z) and (%, 7)(t) than
(1.4). In fact, we can show

(u,9)(t,2) = (T, 7)(t) + O(e" %) (1.5)
uniformly in z € 2 as t — oo, and furthermore in the case d; > d or d; < dy,
ult,z) = A(t) + Ot~ te~% M), (1.6)
or ) ‘
U(t, iL') — ﬁ(t) + O(t_ mm{n,2n—2}/(n-—1)e—do/\t) (17)

uniformly in x € ) as t — oo, respectively. For the details of our results, see Theorems 2 — 4 in Section 2
below.

Our results are related to those obtained by Conway, Hoff and Smoller [3] or Hale [4]. However, if we
restrict ourselves to the case where we have a balance law in a reaction-diffusion system under homogeneous
Neumann boundary conditions, then in comparison with previous results we confirm that we can improve
the description of the approximation of (u,v)(¢,z) by (@, 7)(t) in the sense that we can sharpen the estimate
of [|(u — T, v —7)(t)[lco such as (1.5), (1.6) and (1.7). Actually, we have

[lu(t,m)dm+[20(t,w)dx:Luo(x)deero(m)dg;, £>0

in our system (1.1) — (1.3).
Our idea for the analysis to get the results is that we make use of (¢,)(t, ) which is defined by

u(t, ) — oo = (U(t) = o) (1+ 4(t, 7)) = =V ()(1 + ¢(t, 7)), (1.8)
o(t,z) = V(£) (14 9(t, 7)), '
where (U, V)(t) is a unique global solution to
U= fuyve, ,
t >0, (1.9)
Vi = -fuyvn,
(U, V)(0) = (o, Do) (1.10)
with n > 1, where ’ = d/dt. Obviously, V(t) verifies
V' = —fluew — V)V™, t>0
and we see that there is a positive constant Cp such that
ColA+t) VY <y, —U®R) = V(t) < Co(1 + 1)~ YD (1.11)

for t > 0.
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§2. Results.
First, let us recall some preliminary results on our system (1.1) — (1.3).

Theorem 1. (i) Under Assumptions 1 and 2, (1.1) — (1.3) has a unique global solution (u,v)(t, ). It holds
true that _
0 < v(t,x) < ||vol oo t>0, z€Q,

and there exists a constant M > 0 such that

0<u(t,z) < M, t>0, zecf
(ii) There are positive constants T and K such that

{ 1w = ooy v)(B)lc0 < K (141 =T)~/ D),

t>T
(-, v —T)(t)]|oo < K1+t —T)Ke ®A, -

?

where Ueo = To+To, do = min{dy, dp}, and X is the smallest positive eigenvalue of —A with the homogeneous
Neumann boundary condition on 0S).

(iil) Let (U, V)(t) be the solution to (1.9), (1.10). Then, (U, V)(t) plays a role of an asymptotic solution to
(1.1) —(1.3) and
(u,0)(t,7) = (U, V)(t) + O™~/ D)

uniformly in x € Q ast — oo.
(iv) Moreover, (G, v)(t) epprozimates (u,v)(t,x) as follows:

(u, v)(t, x) = (T, T)(t) + O(the %)
uniformly in x € Q as t — co, where p = (V2 —-1)n/(2(n - 1)) > 0.

Next, we state our main results, that is to say, we can sharpen the approximation of the global solution
(u,v)(t, z) to (1.1) — (1.3) by its spatial average (T, 7)(t) than (iv) of Theorem 1.

Theorem 2. The following asymptotic approzimation of (u,v)(t,x) by its spatial average holds true:
(w,0)(t,2) = (@ D)(t) + O(e™ ™)
uniformly in x € ( as t — 00.

In the case di # d2, we can obtain stronger asymptotic relations.

Theorem 3. When d; > ds,
u(t, z) = a(t) + Ot~ te~%)

uniformly in x € Q as t — 0.
Theorem 4. When di < da,
o(t, z) = B(t) + Ot~ ™inin2n=2H/(n-1)g=dodt)

uniformly in z € Q as t — co.

§3. Deformation of the problem.
Substituting (1.8) into (1.1) — (1.3), easy calculations give

{ ¢ = 1A — V" {— (oo = V)P =V fultio = V) + nf(uoo — V)¢ +h},

in (0,00) x €, (3.1)
’wt = dzAiﬂ - Vn-1 {"Vfu(uoo - V)¢ + (’fb - 1)f(uoo - VW + h}’
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0 %% _

5 = 5 =0 on (0,c0) x 9, (3.2)
#(0,2) = gofe) = ~22E T,
vo(x) "0’50 i, (33)

¥(0,z) = to(z) =
where f, = df /du, and h = h(@, 1) satisfies
oo = VY14 )+ Fos = VL B+ ) = oo = V)& =V fultton — V)4 (s V) + .
Note that we also have
St = VYA + ) + Jttoo = V(L + B+ ) = —V fuutoo = V)64 (= 1) fuon = V)b + b

at the same time and that h = O(|¢|® + |¥[?) as (¢, %) — (0, 0).
We will investigate the decay rate of (¢, ¢)(t,z) in order that we show Theorems 2 — 4 (cf. [10]). We use
the following projection operators.

H

‘Deﬁnition 3.1. Pw=w=|Q* L w(z)dr,  Pyw=w— Pow.
The following lemma is important for us.
Lemma 3.1. There exists a nondecreasing function L(r) on [0,00) such that if
KO=1( s 169k,
then for. every p € [1, 00],
Ih &)l < K@@, 9)OI3p

I(PsR) Bl < K@) (&%) (0ol (VY 2p, 4, Pi)(®)llp,
IP+R)D)lp < KON, %) B)lloo | (P#, Pp) (£)]lp-

When C is a constant, we will identify CK (¢) with K (t) in the following sections.
Finally, we give the equations and the boundary and initial conditions which (¢+,v%%)(t, z) satisfies:

65 = diAGt — VY~ fluoo — V)T =V fultioo — V)T + nf(ues — V)Yt + A},
, in  (0,00)x,
{ P = APt — V-V fuluco — V)t + (n = 1) fue — V)yt + ht},
(3.4)
%qﬁ;_ = (9_;/)’_; =0, | on (0,00) x 99, (3.5)
(¢%,9)(0,2) = (do, v0)(x), in Q. (3.6)

Note that Pogo = Potho = 0, in other words, (Pi¢o)(z) = ¢o(z), (P+%0)(Z) = ¥o(z). Here and hereafter,
we use the notation
wt = Pyw

for simplicity.

§4. The case of small initial perturbation.

We will restrict ourselves to the case where ||(¢o, 10)||oo is small and we will obtain the following theorem
in terms of (¢, ¥)(t, z) instead of Theorem 2. We can reduce the case where the size of ||(¢o, %0)||co is large
to the small case by virtue of Theorem 1 (ii) (see [8]).
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Theorem 4.1. There exists a constant & > 0 such that if ||(¢o, ¥o)|lco < o, then

18, ¥ )lloo < Cll(do, o) [looV (1) Te™ %N

fort > 0, where C is a positive constant.
We introduce some quantities as follows:
Definition 4.1. For 1 < p < oo,

Iy = |[(¢0, Yo)llps

Mp(t) = sup tV(T)‘("‘”!I(dJ, OlCa]™
M (t) = sup V(r)~ = D|(Pog, Pow)(T)|,
o<t
Mgy (®) = sup tV<~r)ed°”||(V1/2¢+,¢+)(T)np,
My (t) = OiggtV(T)ed"”ll(ab*,¢+)(T)l|p,

where V(t) is the solution for (1.9) and (1.10) satisfying (1.11), do = min{d;,d>}, and X is the smallest
positive eigenvalue of —A with the homogeneous Neumann boundary conditions on 6€).

According to the following scheme, we can show Theorem 4.1.
1. MY (t) < K(t)Moo(t)?.

2. My (t) < Cloo + K(t) Moo () M5y (t) for p € [1,2].

3. M () < Cloo + K(t)Moo()M, 1 (2).

4. My (1) < Cloo + K(t) Moo (t)My (t) for p € [1,2].

5. MZ(t) < Cloo + K(t) Moo (t) M (2). '

In the Steps 2 and 4, we investigate L?()-energy of (¢*,47)(¢, z) with use of (3.4) — (3.6). On the
other hand, in Steps 3 and 5 we treat (3.7) and (3.8) by means of LP(2) — LI(2) estimate of an analytic
semigroup {e *4};>0, where A means —A with the homogeneous Neumann boundary condition on 9.

The following Theorem 4.2 (resp. 4.3) corresponds to Theorem 3 (resp. 4) in the case I, is small.

Theorem 4.2. Suppose that di > da. If ||{do,%0)|lco < b0, then

V(e |¢% ()0 < Cll(d0, Yo)llooV (£)"

for t > 0, where C' is a positive constant.

VO [6* D)oo < Cl(0, YooV () 22

Theorem 4.3. Suppose that dy < dy. If ||(¢o, Y0)|lcc < b0, then

fort > 0, where C is a positive constant.

For the details of the proofs of our results in this report, refer to [9].
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