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WAVE FRONT SETS OF SOLUTIONS TO ELASTIC WAVE
PROPAGATION PROBLEMS IN STRATIFIED MEDIA

SENJO SHIMIZU  (JEK B

Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561

1. Introduction

We consider elastic wave propagation problems in plane-stratified media R3 with
the planer interface z3 = 0. This problem is formulated as an elastic mixed or
initial-interfece problem in a stratified media.

An elastic equation has two speeds. Pressure or Primary wave (for simplicity
called P wave) and Share or Secondary wave (S wave). P wave is a longitudinal
wave and S wave is a transversal wave. In general the speed of P wave is grater
than that of S wave. In planestratified media problem, a lower half-space R3
called Medium I'has P; and S waves and an upper half-space Ri called Medium
IT'has P, and Sy waves. The speed of P; (resp. P,) wave is grater than that of S
(resp. S, ) wave. So the order relation of the speeds of P, P, 51, and S, waves
are six cases. Here we assume P, Sy, P;, S; waves in order of speed since it is the
most complex case. '

We put unit impulse Dirac’s delta in the lower half-space Medium I. Then P
incident wave which speed is faster than S; incident wave bumps against the in-
terface and causes P, and S; reflected waves in Medium I and P, and S5 refracted
waves in Medium II as in Figure 1.
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Figure 1 Reflected waves and refracted waves

Moreover when time goes on, lateral waves in other words glancing waves or
total reflected (or refracted) waves arise. In Figure 2, dotted arrows show Ps-P;
and P%-5; lateral waves in Medium I, and P»-S5 lateral wave in Medium II for
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Py incident wave. P,-P; lateral wave means that the wave originally should have
been P, reflected wave tends to total reflection, then becomes source and causes Py
reflected wave.
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Figure 2 Lateral waves

We have 11th kind of lateral waves in all. It is a characteristic of our elastic
wave propagation problems in stratified media. If half-space problem which has
two speeds, there exist only one kind of lateral wave. If plane-stratified media
problem that each medium has one speed, there exist only one kind of lateral wave.
Thus this elastic wave propagation problems in plane-stratified media has many
lateral waves.

In this paper we prove the above physical situation mathematically by using a
expression of an inner estimate of singularities. The main technical tool of our
analysis is a localization method.

We gave an inner estimate of the location of singularities of the reflected and re-
fracted Riemann functions by making use of the localization method [7,8]. This
method is first studied by M. F. Atiyah, R. Bott, and L. Garding [1] and L.
Hormander [2] for initial value problem, then studied by M. Matsumura [5], M.
Tsuji [9], and S. Wakabayashi [10,11] for half-space mixed problem.

In this paper, we give an outer estimate of wave front sets of the incident,
reflected and refracted Riemann functions by making use of the localization method.
Atiyah-Bott-Garding [1] studied the outer estimate of wave front sets of solutions to
initial value problem. Wakabayashi studied for half-space mixed problem [12], and
for more general case [13]. We analysis an outer estimate of wave front sets of the
Riemann functions to the elastic mixed problem based on Wakabayashi’s theorem
[12, Theorem 4.2]. Combining the inner estimate and the outer estimate, we obtain
the exact wave front sets of the elastic mixed problem in stratified media.

I would like to express my gratitude to Professor Seiichiro Wakabayashi for his
invaluable suggestions.

2. Formulation of Problems
We consider elastic wave propagation problems in the following plane-stratified

media R? with the planar interface z3 = 0:

()\17 L1, P]) fOI‘ r3 < 0,
(/\27 H2, :02) for T3 > 0.

(Mz3), ulzs), p(zs)) = {

Here the constants A1, A2, p1, po are called the Lamé constants and the constants



p1, p2 are densities. We shall denote the lower half-space R3 by Medium I and the
upper half-space Rﬁ’r by Medium II, respectively, as in Figure 3.
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Figure 3  Stratified media
We assume that

(1.1) XN+ >0, >0, p;>0, i=12

(1.1) is the natural assumption in practical situation. From the roots of the charac-
teristic equations of P!(D) and P! (D) which are defined below 3 x 3 matrix valued
hyperbolic partial differential operators in Medium I and Medium II, respectively,
we obtain two speeds correspond to Pressure or Primary wave (for simplicity called
P wave) and Share or Secondary wave (S wave) on each medium. P wave is a lon-
gitudinal wave and S wave is a transversal wave. c¢,, denotes the speed of P wave
in Medium I and ¢, denotes the speed of S wave in Medium I. ¢,, and ¢, denote
the speed of P and S wave in Medium II, respectively. They are given by

N\ 4 20 .
cgi — M7 Ci- — f_&l7 i=1,2.

Pi Pi
By assumption (1.1), the speed of P wave is greater than that of S wave in each
medium. On account of this, these are six cases of the order relation of the speeds
of {¢p,,Cs15Cpy, Csy }. Here we assume that

Csy < Cp < Csy < Cp2>

since if we put an unit impulse Dirac’s delta in Medium I, it is the case that the
most number of lateral waves are appeared. The other cases can be treated in a
similar manner (cf. [6, Section 3]).

Let x = (zo, 21,22, 73) = (2/, z3) = (z0,2") = (zg,2", z3) in R*. The variable
zo will play a role of time, and z' = (zy, z, z3) will play that of space. £ is a real
dual variable of = and is equa’l to (EOa 517 527 63) = (5,7 53) = (EO: 5”) = (603 6,”763) in
R{. We use the differential symbol D; = i719/9z; (j = 0,1,2,3), where i = /—1.
We shall denote by R” the half-space {z = (21, - ,z,) € R"| z,, < 0} and by
R” the half-space {r = (z1, -+ ,z,) € R"| z,, > 0}, and also use the notation |z|
= 1/3;%_{_,7;%

Let u(z) = *(u1(z), ua(z),uz(xr)) € R? be the displacement vector at time z
and position z”. The propagation problems of elastic waves in the stratified media
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is formulated as mixed (initial-interface value) problem:

( PI(D)u(z) = f(z), x0>0,z" = (z1,22,23) €RZ,

P (D)u(z) = f(z), zo>0,2" = (z1,72,23) € RY,

{ u(@)]ga=—0 = w(T)|az=40, o >0, " € R?,

B! (D)u(2)|s3=—0 = B (D)u(z)|as=+0, 0 >0, 2" € R,
| Dfu(@)lap=0 = g(z"), k=01, 2" R’

Here

A
1+ Vo (Vg - ) + E_I.Am,,u7

PH{DYu = —D%Eu +
(D) 0 o p

is a 3 x 3 matrix valued second order hyperbolic differential operator with constant
coefficients where F is a 3 x 3 identity matrix,

(BI (D)U)k = iAl(vw” ’ u)6k3 + 2H1€k3(u)7 k=1,2,3,
are the k-th component of symmetric stress tensors of B!(D)u where
Ekg(’u,) = 2/2 (Dguk -+ Dk’u,?,) , k=1,23,

are strain tensors. The PT(D)u and B! (D)u are defined by replacing A1, p1, o1
by Az, p2, p2, respectively.

If we put unit impulse Dirac’s delta §(z — y) with zo > yo and y3 < 0, that
is, put it in Medium I, then the Riemann function of this elastic mixed problem is
given by the following:

El(z —y) — Fl(z,y)  for z3 <0,
G(;L’ ) y) = II

F(z,y) for z3>0.
We call E! (z—v), F!(z,y), and F/I(z,y) the incident, reflected, and refracted Rie-
mann functions, respectively, because these are corresponding to incident, reflected,
and refracted waves, respectively. E(z) is the fundamental solution in Medium I
describing an incident wave defined by

El(z) = (2m)™* / e Etmple 4 in)~lde,  ne —yd —T(det P1,9),

4
RE

where 7o is a positive real number, ¥ and I'(det P/, 9) are defined Definition 1.4
below, and PT(¢ +in)~! is a 3 x 3 inverse matrix. Taking partial Fourier-Laplace
transform with respect to x’ for the mixed problem, we obtain a interface value
problem for ordinary differential equation with parameters. Then taking partial
inverse Fourier-Laplace transform for the solution, we obtain explicit expressions
of reflected and refracted Riemann functions F/(z,y) and FI(z,y).

We define a wave front set W F(u) and a analytic wave front set WFj4(u) (cf.

(3], [4], [11]).
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Definition 1.1. Let u(z) € D'(X). Then the wave front set W F(u) is defined as
the complement in X x (R™\ {0}) of the collection of the points (z°,£0) such that
there exist a conic neighborhood A of % in R™ \ {0} and ¢ € C$°(X) such that

#(x%) # 0 and
|Flou](€) < Cn(1+1¢))™ when £e€Aand N=0,1,2,---.

Here F denotes the Fourier transform.
For the definition of a analytic wave front set W F4(u), we prepare that there

exist a bounded sequence {¢x} in C§° such that ¢y = 1 on a fixed neighborhood
of 9’ in X, independent of N, and

|D%n| < C'(CN)""| for |of < N.

Definition 1.2. Let u(z) € 7'(X). Then the analytic wave front set W Fy(u)
is defined as the complement in X x (R™ \ {0}) of the collction of the points

(z°,£°) such that for some sequence {¢y} of the above type there exists a conic
neighborhood A of £° in R™ \ {0} with

[Flonul (@) < CCN)NV(1+[)™ when £€A, N=0,1,2,.-.

By Definition 1.1 and Definition 1.2, we obtain
WF(u) C W Fa(u),

and WF(u) and W Fy(u) are closed subsets of X x (R™\ {0}).
We define a localization of polynomials according to Atiyah-Bott-Garding (cf.

[1]):
Definition 1.8. Let P({) be a polynomial of degree m > 0 and develop
v™P(v~1€ +n) in ascending power of v: ‘

v P (V“lé’ -+ 7}) =P P (n) + O(wPt) as v-—0,

where F¢ () is the first coefficient that does not vanish identically in 7. The poly-
nomial P¢(n) is the localization of P at £, the number p is the multiplicity of ¢
relative to P. '

Moreover we introduce the following:

Definition 1.4. I' = I'(P,9) is the component of Ry \ {n € R}, P(n) =0} which
contains ¢ = (1,0,---,0) € R™. Moreover I' =I"(P,d) = {z € R*|z-n>0, n e
I'} is the dual cone of I" and is called the propagation cone.

3. Results

We obtain the exact wave front sets of the elastic mixed problem in stratified
media by combining an inner estimate and an outer estimate. First we mention
about the results of the incident Riemann function, namely fundamental solution
of Medium I E'(z). This proposition is a version of the theorem proved by Atiyah-
Bott-Garding [1, Theorem 4.10] adopted the present context.
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Proposition. For £° € R\ {0} satisfying (det le)(éo) =0 (j € {;m,s1}), that is,

2 1
(det Py, )(€°) = &8 — 5, [€" [ =0,

or
2 7,
(det P2)(E) =&0" =2, 1€ P =0
then we have e
lim ve~ =% EI(ZE) == EJI‘EO (), jJ€ {p1,51},

V—00

in the distribution sense with respect to x € R*, where

I _ —4 R (&+1n) (COfP )fu (5 +Z77)
Elo(z) = (27) /R et letin = PI)Eo(£+WI)d

for n € —9 —T'(det le,ﬂ) and j € {p1,51}

with a positive real s large enough. Moreover we have
WE(E!(z)) = U (supp Ezl,léo () Usupp Eglgo (a:)) x {€°},
£0#0

and
supp E;EO (x) = (I‘jgo)' = {a: eR*:z.9>0forany ne e
= D@t (). 0) . 9= (10,0.0), j€{pusi)

In general, suppEfgo (z) C (Tjeo) (j = {p1,51}), more precisely ch[supp Ej'rgo (xz—
y)] = ( ]Eo)', where ch denotes convex hull. However in our problem we obtain
suppEle (z) = (Tjgo)'-

Secondly we mention about main result. Since we take a partial Founer—Laplace

transform with respect to z’ of §(z — y) regarding y' as a parameter, y appears
only in the form z’ —y'. So we put

F(x,y3) = F*(z,0,y3), v={I,II}.

The following Main Theorem shows the exact wave front sets of FI(z,y3) and
F I (xayS)'

Main Theorem. For &% € R} \ {0} satisfying (detP])(€°) =0 (5 € {p1,51}) we
have the following:
(1) For the reflected Riemann function FI(z,ys3), we have

3.1 lim pe~iwle’ € raar (€)—us8) Bl (o , U3 o (7, Y3),
35 k

— (. F) = {1, 1), (1, 1), (51, 1), (51,51}
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and if €' are zeros of 71 (¢'), that is, £*' satzsfy 1€ = €8/ e (m € {p1, po, s2}),
then we have

(3.2)

lim Vge—iu{:z:’.EO’—HI:sT):(60’)_y3§g}ﬁ’1(x y3) — VZFEOk(m yB)} JSOkm(x yS)

v—00

(7, k,m) = {(p1, p1, 2), (P, 1, 52), (P1, 51, P2), (1, 51, 82), (51, P1, P2),
(s1,p1,82), (51,51, p2), (51, 51, 82), (51,51, 1)}

in the distribution sense with respect to (z,y3) € R* x R_.
Moreover we have

F(FI(;‘C/,:UB,y:_;)) = WFA(FI(LUI,xg,y:;)) = U

£0#£0
U (supp Ffeor (@', 03, 3) x {(€”, 77 (%), ~€))
(7:k)={(p1,p1),(p1,81),
i (sl,p1)7(31’51)}
U U (592 Feopn (', 72, 18) x {(€”, 7€), ~€D)})|

(4,ksm)=
{(pl »P1 ,P2),(P1 »P1 )32)7(171 »81 7p2)7
(pl 381 a32),(31 sP1 >P2)’(31 yp1-732)a
(31 381 ap2)a(51 381 ,52)’(31 »S1 1p1)}

and

I
supstgk(:L y) = ( Jfo)k = {(m,yg) eR* xR_:
(a:' + zagrade T, (50')) -1 —yzna > 0 for any 7 € I‘jéo},
(j7 k) = {(phpl)’ (pla 81)7 (slapl)7 (517 51)}

for & satisfying Fleoy (z,ys) # 0,

I
Supngokm(may) (TjEOm)k = {(I7 y3) ER‘—I— XR_:

(z' + zagradery ({0/)) 7 —y3nz >0 for any 7 € Fjeom}, )
(j? k7 m) - {(p17p17p2)7 (p17p1: 82)7 (p17517p2)3 (plv 51, 32), (Slvplvpz)v
(31,p1,32),(31,51,]72),(31,81,52),(31,81,p1)}

for &0 satisfying IE’J-Ig%m(x, y3) # 0. i
(2) For the refracted Riemann function F'I(z,y3), we have

V=00

(3.3) lim I/e_i”{‘”"50’+$ST§(€°')—935Q}F11(:C,y3) J&Ok(ﬂf Y3),
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(j7 k') = {(pl,pZ)a @15 32)7 (31,])2), (517 52)}

and if €9 are zeros of T((') (m € {p2}), then we have

(3.4)
lim {v%e""”{“’fo sy (€D ves) P (3, 4y3) — w3 iy (z, ys)} Flfogm (@, y3),

V00

(.73 k7 m) = {(ph 327p2)’ (317 327p2)}

in the distribution sense with respect to (z,y3) € R X R_.
Moreover we have

WF(F”(J:',xg,yg,)) = WFA(ﬁII($’,$3,y3)) = U
£90

U (supp Fhy (a3, 0) x (€ 7if (67),~€D)3 )
(j7k):{(p1 ,P?),(pl 732)v
(s1,p2),(s1,82)}

U U (suppFéokm(:c’,arg,ys) X {(50,,7‘;(50,); "‘fg)})]

(j7k7m):{(p1 382 )pZ)v(sl 152,172)}

and
supp Pl (z,93) = (Tjeo)y = {(w y3) ERY x R_:
(:z:' —I—xggra,dgflj (501)) 1 —ysn3 >0 forany 7€ I‘jgo},
(jv k) = {(plap2)) (pla 52)7 (Slyp2)7 (817 52)}

for €0 satisfying F Sor(,y3) #0,

supp Fléo o (2, y3) = (Tjeom ) = {(m y3) e RE x R_:

(' +$3gradgfr;(€0/)) -1 —yzn3 >0 forany 7€ Fjgom},

(j’ k, ’I’)’L) = {(pb 52,]72), (317 827]32)}

for €0 satisfying F Egkm(:ls y3) # 0.

Here Fleop(z,y3), Fleopn (@, 93), Flh(z,y3), and Fjk,,. (x,y3) are localizations
in the sense of (8.1), (3 2), (3.3), and (3,4), respectively, and more precise expres-
sions are given in ([7],[8]). Moreover

Tjeo = T((det P))eo(n),¥), 9 =(1,0,0,0), j€{p1,s1},

(det P/)eo (1), 9) N { (E‘O*ﬁo & — 58772,?9’> X Rn} ,



79, = (1707 0)7 .7 € {plasl}v m e {pQ}y

" :

? if 620 - ]go,ulz Z 07
C

D1

_ [60”’ Iz

71 (€') = sgn(F6o) 2

and 7E(E') is taken a branch of A /'5592" — €9 [? such that £Im7;5 (¢') > 0 4f fg -
P1 1

|§0’.”!2 <0. 7E(¢), TE(E), and 7E (E’) are defined as the same as 75 (¢') substi-
tuting cp, for cs,, cp,, and c,,, respectively.
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