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GENERALIZED WHITTAKER MODELS AND n-HOMOLOGY
FOR SOME SMALL IRREDUCIBLE REPRESENTATIONS
- OF SIMPLE LIE GROUPS

HIROSHI YAMASHITA (Ii'F 1#)

1. INTRODUCTION

Let G be a connected simple linear Lie group, and let K be a maximal compact subgroup
of G. We denote by Gc¢, K¢ (resp. g,€) the complexifications of G, K (resp. go,¥)
respectively. Let g = €+ p be a complexified Cartan decomposition of g, and let 6 denote
the corresponding Cartan involution of g. Conventionally, the complexification in g of
any real vector subspace o of go will be denoted by s by dropping the subscript 0. We
write U(m) (resp. S(v)) for the universal enveloping algebra of a Lie algebra m (resp. the
symmetric algebra of a vector space v).

We assume the Harish-Chandra rank condition rank G = rank K, which is necessary
and sufficient for G to have the irreducible unitary representations of discrete series. Then,
the Borel-de Siebenthal Theorem says that

Theorem 1.1 (cf. Rubenthaler [21, Th.3.1], Knapp [15, Th.6.96]). The Lie algebra g ad-
mits a 0-stable gradation

(1.1) g=9(-2)0g(-1)®g(0)®g(1) ®9(2)
with the following properties (a)—(c).

(a) t= €Bj:e'uen g(]) and p= 63jlﬂdd g(])’ -

(b) q:= ®;>08(j) is a mazimal parabolic subalgebra of g, and one has g(j) = g(~7),
where = denotes the compler conjugation of g with respect to the real form go.

(c) The subspaces g(+2) vanish if and only if the Lie algebra € is not semisimple but
reductive. This occurs ezactly when the symmetric space K\G is Hermitian. In this case,
the triangular decomposition g = p_ @ €@ p, with py := g(£1) and € = g(0) comes from
the unique (up to sign) G-invariant complex structure on K\G in the canonical way.

The purpose of this paper is to describe the generalized Whittaker models and the Oth n-
homology spaces for Harish-Chandra modules of some small irreducible G-representations
which are closely related to the above gradation (1.1) of g. To be more specific, we are
concerned with the irreducible highest weight (g, K)-modules L(7) with extreme K-types
7, when G is of Hermitian type (Case H). Such an L(7) is, by construction, the unique
simple quotient of a generalized Verma module induced from q = £+p,. Also, when G is
of quaternionic type (Case Q), the Borel-de Siebenthal discrete series (g, K')-modules X 5
are studied. Here the Harish-Chandra parameter A of X, lies in the open Weyl chamber
defined by a Borel subalgebra contained in g.

Now let us explain the results of this paper in more detail.
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Case H. Assume that G is of Hermitian type. Let {O,, | m = 0,1,...,7} be the
totality of nilpotent Kc-orbits in p; = g(1) arranged as dimQy = 0 < dimOQ; < --- <
dim O, = dimp,. Following the recipe by Kawanaka [14] (see also [30, II]), we can
construct a generalized Gelfand-Graev representation I';,, = Ind,f'zm) (mm) (GGGR for short;
see Definition 5.3) attached to the nilpotent G-orbit O, in gy corresponding to each K-
orbit O,, through the Kostant-Sekiguchi bijection.

Our aim in Case H is to study the generalized Whittaker models, i.e., the (g, K)-
embeddings of highest weight modules L(7) into these GGGRs I',. This is a continuation
of our earlier work [31] on Whittaker models for holomorphic discrete series.

If G is one of the classical groups Sp(2n,R), U(p, ¢) and O*(2p), the theory of reductive
dual pair gives explicit realizations of unitarizable highest weight modules L(r) ([13], [6]).
It is not difficult to describe the generalized Whittaker models for such L(7)’s by using
the Segel-Shale-Weil representation. For this, see [24] and [34].

Our emphasis in this article is placed on an intrinsic understanding of the embeddings
L(t) < Ty, for arbitrary L(7). To specify the embeddings, we use the invariant differential
operator D« on K\G of gradient type associated to the K-representation 7* dual to 7
(Definition 3.3). This operator D, is due to Enright, Davidson and Stanke ([2],[3],[4]), and
its K-finite kernel realizes the dual lowest weight module L(7)*. By virtue of the kernel
theorem given as Corollary 2.6, we find that the space Y (7, m) of 7,,-covariant solutions
F of differential equation D,.F' = 0 is isomorphic to the space of (g, K')-homomorphisms
in question (see (5.16)), where 7y, is the character of nilpotent Lie subalgebra n(m) of g
that defines our GGGR TI'y,. _

The space Y (7, m) can be intrinsically analyzed by using the unbounded realization of
K\G via a Cayley transform on G, and also by using some remarkable results of Enright
and Joseph [5], Jakobsen [17] and Vogan [26]. As a result, we get the following conclusions
(A) and (B) (see Theorem 5.6-5.8).

(A) L(r) embeds into the GGGR Iy, with nonzero and finite multiplicity if and only if
the corresponding Oy, is the unique open Kc-orbit Opry in the associated variety V(L(T))
of L(7). In this case, the space Y(r) := Y(r,m(t)) consists only of elementary functions
on the unbounded domain S (C p_) which realizes K\G.

(B) If L(r) is unitarizable, we can specify the space Y(7) in terms of the principal sym-
bol at the origin Ke of the differential operator D,.. This reveals a natural action on Y(r)
of the isotropy subgroup K(X(m(r))) of Kc at a point X(m(r)) € Opyry. Furthermore,
we find that the dimension of Y(7), that is, the multiplicity of embeddings L(t) < Loy,
coincides with the multiplicity of S(p_)-module L(1) at the defining ideal of V(L(T)).

The last statement in (B) clarifies the relationship between the generalized Whittaker
models and the multiplicity in the associated cycle :AC(L(r)) of unitarizable L(7). For
the classical groups, the latter AC(L(7)) and the Bernstein degree have been described
by Nishiyama, Ochiai and Taniguchi [20] through detailed study of K-types of L(7).

Case Q. Next, let G a connected simple linear Lie group of quaternionic type, which is
not of type type AIII (purely from technical reason). Assume for simplicity that G admits
the simply connected complexification G¢. Let G = K A,N be an Iwasawa decomposition
of G, and let Py = MyA,N be a Langlands decomposition of the identity component Py
of a minimal parabolic subgroup of G. We write n for the complexified Lie algebra of N.

We describe the Oth n-homology space Hy(n,A) = X, /nX,, or equivalently the em-
beddings into the principal series, of the Borel-de Siebenthal discrete series X 5, by using
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the Schmid differential operator whose kernel realizes the maximal globalization of dual
(g, K)-module X3 (see also the related works [32] and [35]).

With the Zuckerman translation principle in mind, we can concentrate on the quater-
nionic discrete series X4, (Definition 6.1) with lowest K-type arising from an irre-
ducible representation of a simple factor of K of type A;. Then, MyAy-module structure
of Hy(n,cd + p) is explicitly determined in Theorem 6.3. We find in particular that the
space Hy(n,cd + p) has exactly two exponents if the real rank of G is at least two.

The organization of this paper is as follows.

Section 2 gives general theory on the embeddings of irreducible (g, K)-modules into in-
duced G-representations. The kernel theorem (Corollary 2.6) is our main tool for studying
generalized Whittaker models and n-homology spaces.

Sections 3-5 deal with the groups G of Hermitian type. We introduce in Section 3 the
differential operator D,- on K\G of gradient type associated to 7*, after [4]. In addition,
the solutions F' of D+ F = 0 of exponential type are specified in Proposition 3.7. Section
4 is devoted to to characterizing the associated variety and multiplicity of irreducible
highest weight module L(7) by means of the principal symbol of D,« (Theorem 4.9).
In Section 5 we give our main results in Case H (Theorems 5.6-5.8) that describe the
generalized Whittaker models for highest weight modules L(r).

Last in Section 6, we specify the Oth n-homology spaces of the Borel-de Siebenthal
discrete series (g, K)-modules X, when G is of quaternionic type (Case Q).

The detail of this article with complete proofs will appear elsewhere.

ACKNOWLEDGEMENTS. The author would like to express his gratitude to Hubert
Rubenthaler for kind discussions on the work [21] during his stay in Strasbourg in March
1998. He is grateful to all his colleagues at IRMA, I’Université Louis Pasteur, for their
hospitality.

2. EMBEDDINGS OF HARISH-CHANDRA MODULES

This section prepares some generalities about the embeddings of irreducible Harish-
Chandra modules into C*-induced representations of a semisimple Lie group, by devel-
oping our earlier observation [32, I, §2] for the discrete series in full generality. The results
stated in this section seem to be more or less folklore for the experts, or they are con-
sequences of some known facts on the maximal globalization of Harish-Chandra modules
(cf. [23], [12]). We will use the kernel theorem (Corollary 2.6) in the succeeding sections
to specify the generalized Whittaker models and n-homology spaces.

2.1. A duality of Peter-Weyl type. Throughout this -section, let G be any connected
semisimple Lie group with finite center, and let K be a maximal compact subgroup of G.
We employ the notation at the beginning of Introduction.

A U(g)-module X is called a (g, K)-module if the subalgebra U(£) acts on X locally
finitely, and if the ¥-action gives rise to a representation of K on X through exponen-
tial map. By a Harish-Chandra module is meant a (g, K)-module of finite length as a
U(g)-module. By basic results of Harish-Chandra (see e.g., [28, Chap.3]), any admissi-
ble (i.e., K-multiplicity finite) representation of G on a Hilbert space H yields, through
differentiation, a (g, K)-module structure on the subspace H g of all K-finite vectors in
H. The continuous G-module H is irreducible if and only if the corresponding H g is
irreducible as a (g, K)-module. Each irreducible (g, K)-module X can be extended to an
irreducible Hilbert G-module H with K-finite part Hx = X. Notice that the (g, K)-
module corresponding to the irreducible G-module H* contragredient to H is isomorphic
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to the K-finite part of the full dual space X' = Home(X,C). We denote this irreducible
(g, K)-module by X*, and call it the dual Harish-Chandra module of X.

We study in this paper the embeddings of irreducible (g, K)-modules X into certain
smoothly induced Fréchet G-modules F. Such an F has a compatible g and K module
structure through differentiation, and its K-finite part Fg is a (g, K)-module. We note
that the image of X by any g and K homomorphism into F is necessarily contained in
Fg, ie., Homg g (X, F) = Homy g (X, Fg). :

The group G acts on the space C*°(G) of all smooth functions on G by left translation
and by right translation as follows:

21)  ¢"f(@) = f(g7"2), ¢%f(z):=f(zg) (9€G,z€q,feC®Q).

These two actions L and R commute with each other. Through differentiation one gets
two U(g)-representations on C*(@) denoted again by L and R respectively. Let CR (@)
be the space of functions f € C*(G) which are left K -finite and also right K-finite. Then
C%(G) becomes a (g, K)-module through L or R. '

The following lemma is well-known. It gives a duality of Peter-Weyl type for irreducible
Harish-Chandra modules of noncompact semisimple Lie groups.

Lemma 2.1. Let X be an irreducible (g, K)-module, and let f be in C2(G). Then the
(9, K)-module U(g)"f generated by f through L is isomorphic to X if and only if the
corresponding U(g)®f through R is isomorphic to X*.

We give a proof below, introducing some important notion used in this paper.

Proof of Lemma 2.1. Let us prove the if part only since the converse can be proved in the
same way. So, assume that U(g)®f ~ X* as (g, K)-modules.

Take a finite-dimensional K-module (7,V;) which is isomorphic to U(E)Xf. Let i :
V; = U(t)*f be a K-isomorphism. We define a V;*-valued smooth function F on G by

(2.2) (F(g),v) =i(v)(9) (veV:, g€G),

where ( -, - ) denotes the natural dual pairing on V;* x V;. Then it is immediate to verify
that F lies in the following space:

(2.3) CR(G) = {8:G 5V, | dlkg) = r*(k)2(9) (g € G, k € K)}.

Here (7%, V") denotes the representation of K contragredient to 7. The space C%(G) has
G- and U(g)-module structures through right translation R. The function F is in the
K-finite part, say C%(G)k, of C2(G) since U(€)Lf C C2(G). By definition we see

(2.4) f(g) = (F(g),572(f)).

Now the assignment DEF +— DRf = (DRF(.),i~'(f)) (D € U(g)) gives a (g, K)-
homomorphism from U(g)®F onto U(g)®f ~ X*. We see that this homomorphism is
injective. Thus we have found a (g, K')-module embedding, say Ay, from X* into C%(G)k
whose image equals U(g)®F. ‘

Let (m, H) be an irreducible admissible G-representation with Harish-Chandra module
X, and (n*, H*) be the representation of G contragredient to 7. We have H} = X* as
remarked before. By virtue of the Frobenius reciprocity for smoothly induced represen-
tation Ind%(7*) of G acting on C%(G), one obtains a linear isomorphism

(2.5) Homg(X*, V') ~ Hom, x(X*, C%(G)k),
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which is given as follows. Take a K-homomorphism 7' : X* — V*. Then we can define
A(p) € C2(Q) for every ¢ € X* by

(2.6) A@)(9) =T(m"(9)¢) (9€G).

Here T denotes the unique continuous extension of T : X* — V* to H*. Then, the
assignment T — A gives (2.5).

We now consider our specified embedding Ay : X* ~ U(g)RF — CX(@)k. Let Ty
denote the element of Homg (X*, V;¥) corresponding to Ag by (2.6). Set ¢q := Ag'(F) €
X* and g := i 1(f) o Tp € X = ((H*)*)k, where

2.7) o : H* 25 v 20 ¢

with i71(f) € V, = Homc(V;*,C). In view of (2.4) and (2.6) we find

(2.8) £(9) = (7 (9) 0, Yo) <1 = (po, 7(9) ") rrxrr (9 € G)
Finally, (2.8) implies that the map
(2.9) X 3 Dy = D*f = {po,(9) ' Do) € U(g)"f (D € Ul(g))
gives a (g, K)-isomorphism, i.e., X ~ U(g)Lf as desired. O

2.2. Maximal globarization. Let X be an irreducible (g, K')-module. We fix once and
for all an irreducible finite-dimensional representation (7,V;) of K which occurs in X,
and fix an embedding i, : V; — X as K-modules. Then the adjoint operator ¢} of i, gives
a surjective K-homomorphism from X* to V*. We denote by A, the (g, K)-embedding
from X* into C%(G) (see (2.3)) corresponding to % through (2.5) and (2.6).

Equip C%(G) with a Fréchet space topology of compact uniform convergence of func-

tions on G and each of their derivatives. The following proposition characterizes the
closure A«(X*)™ of A (X™) in CZ(G).

Theorem 2.2 (cf. [23], [12]). Under the above notation, A,«(X*)™ is a G-submodule of

%(G), and one gets an isomorphism of G-modules

(2.10) Hom, (X, C®(G)) 2 W F € A (X*)”
through
(2.11) (F(9),0) =(Woir)w)(g) (9€G, veV).

Here C*(Q) is viewed as a smooth G-module by left translation L, and the right action
R on C®(G) naturally gives a G-module structure on Homg g (X, C*(G)).

We can prove this theorem by using Lemma 2.1.

It follows essentially from [23, page 316] that the G-module A..(X*)™ gives a maz-
imal globalization of the Harish-Chandra module X*. Namely, if a complete, locally
convex Hausdorff topological vector space F' admits a continuous G-action with under-
lying Harish-Chandra module X*, then the identity map on X* extends uniquely to a
continuous embedding F — A,«(X*)™ as G-modules.
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2.3. Kernel theorem. To study the embeddings of X into various induced G-modules,
it is useful to characterize the G-module A+ (X ™)~ as the full kernel space of a continuous
G-homomorphism D defined on C2(G) in the following way.

Theorem 2.3. Keep the notation in 2.2. If D is any continuous G-homomorphism from
the C2(G) to a smooth Fréchet G-module M such that

(2.12) A (X*) ={F € CR(Q) | F is right K-finite and DF = 0},

then the full kernel space KerD of D in C2(G) coincides with the G-module A (X*)™,
the closure of A+ (X*) in C2(G). Hence one finds from Theorem 2.2

(2.13) Homg x (X, C®(G)) ~KerD = A(X*)" as G-modules.

Example 2.4. We mention that an operator D satisfying the requirement in Theorem 2.3
has been constructed when X* is the (g, K')-modules associated with: (a) discrete series
([22], [11]) more generally Zuckerman cohomologically induced module ([29], [1]), with
parameter “far from the walls”, or (b) highest weight module ([2], [4]; see also Definition

3.3). In each of these cases, D is given as a G-invariant differential operator of gradient
type on C22(G), where 7* is the unique extreme K-type of X*.

We conclude this section by giving an application of Theorem 2.3. For this we need

Definition 2.5. Let n be a complex Lie subalgebra of g, and (7, E) be a representation
of n on a Fréchet space E such that the linear endomorphism n(Z) is continuous on E
for every Z € n. Then the space

(2.14) C¥(Gin) :={f: G E | Z* = —n(2)f (Zen)},

endowed with the natural Fréchet space topology, has a structure of smooth G-module
by L. We write I';, for the resulting G-representation on C*(G;n), and call it the repre-
sentation of G induced from n in C*-context. '

Let the notation and assumption be as in Theorem 2.3 and in Definition 2.5. We write
C22(G;n) for the space of C®-functions on G with values in V* ® E such that

ZRF = —(idy: ® n(Z))F (Z €n) and
K'F = (r* (k") ®idg)F (k € K),

where idy denotes the identity map on a set V. We define a linear map

(2.15)

(2.16) D, : CX(G;n) — Homc(E', M)
through D by
(2.17) (DyF)(Q) =D(F(:),()) (FeCX(G;n), ¢ € E).

Here E' denotes the space of continuous linear functionals on E equipped with dual U(n)-
action, and (-, -) the canonical dual pairing on (V;* ® E) x E' with values in V*. If nis a
one-dimensional n-representation, the above D, is naturally identified with the restriction
of D to the subspace CX(G;n) of C2(G).

By using (2.13), we can deduce the following

Corollary 2.6 (Kernel Theorem). Under the above notation, assume that the represen-
tation (n, E) of n is weakly cyclic in the following sense: there exzists a {; € E' such
that U(n)(y is dense in E' with respect to the weak *-topology. Then the embeddings of
irreducible (g, K)-module X into induced module C*(G;n) are characterized as

(2.18) Homy (X ,C*(G;n)) ~ Ker D, as vector spaces.
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Here the isomorphism is given as in (2.11).

Remark 2.7. The above kernel thoerem has been proved in our earlier work [32, I, Th.2.4]
in case that X is the (g, K)-module of discrete series and that D is a differential operator
of gradient type (Schmid operator).

3. DIFFERENTIAL OPERATORS, AND LOWEST OR HIGHEST WEIGHT MODULES

Until the end of Section 5, let G be a connected, simple linear Lie group such that
K\G is a Hermitian symmetric space. We consider the irreducible highest weight (g, K)-
modules L(7) with extreme K-types 7. In this section we describe, following [4], the
differential operators D,« of gradient type on K\G whose K-finite kernels realize the
dual lowest weight (g, K)-modules L(7)* (Theorem 3.5). This combined with Theorem
2.3 enables us to specify the maximal globalization of L(7)* as the full (not necessarily
K-finite) kernel space of D,. (Proposition 3.6).

3.1. Simple Lie group of Hermitian type. We begin with summarizing some basic
facts on fine structure for simple Lie groups of Hermitian type, following the notation in
[31, Part I, §5] and [9, 3.3]. Fix a complexification G¢ of G, and the analytic subgroup K¢
of G¢ with Lie algebra & = £, ®gC. Then there exists a unique (up to sign) central element
Zy of ¥ such that ad Z; restricted to po gives an Ad(K)-invariant complex structure on
po. One gets a triangular decomposition (cf. Theorem 1.1) of g as follows:

g=p_DEtDp, such that

(3.) £.p2] Cper [perb] C 8 [papa] = [p-,p-] = {0},

where p. denotes the eigenspace of ad Zy on g with eigenvalue 4+/—1 respectively.

Let ty be a compact Cartan subalgebra of go contained in . We write A for the root
system of g with respect to t, and for each v € A the corresponding root subspace of g
will be denoted by g(t;-y). We can choose root vectors X, € g(t;y) (v € A) such that

(3'2) Xy = Xy v “1(X’7 + X—'y) € ¥ + vV —1po, [X~,, X—'y] = H,,

where H, is the element of v/—1t; corresponding the coroot vV := 2v/(y,~) through the
identification t* = t by the Killing form B of g. Let A, (resp. A,) denote the subset of
all compact (resp. noncompact) roots in A.

Take a positive system A* of A compatible with the decomposition (3.1), and fix a
lexicographic order on /—1t}; which yields A*. Using this order we define a fundamental
sequence (71,72, - - - ,7) of strongly orthogonal (i.e., 7, £v; ¢ AU {0} for i # j) noncom-
pact positive roots in such a way that -y, is the maximal element of A*, which is strongly
orthogonal to Yx41,- .. ,7. Then r equals the real rank of G.

Now, put t~ := ) i, CH,, C t, and denote by v~ € (t7)* the restriction to t~ of a
linear form v € t*. For integers k,l with 1 <! < k < r, we define subsets Py, Py, Py of
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A} and subsets Cyi, Cy, Co of A} respectively by

+ -
(33) Py = {"}’ € A;t v = (%—’ﬁ) } ,

(34)  Cu:= {fyeAg“ ¥ = (7’“2’7’)-},

(3.5) Py, = {'y € Aty (ﬂ)_}, Cy = {’y €AY

I

- _ (YENT
) 7 “(2) }
(36) P0:={71’72:~--,'71'}7 ,C(]II{’YGA;*_l’)/‘-—-O}.

By Harish-Chandra the subsets A} and A} are decomposed as

Art:(U Pk)UPO U( U Pu),

(3 7) 1<k<r 1<I<kLr
At=G (U U U cw)
1<k<r 1<i<k<Lr

where the unions are disjoint. We denote by ¢ = Ad(c) a Cayley transform on g defined
by the element: '

(3.8) ¢ = exp (% . i (X, — X_.,k)) € Gc.

k=1

3.2. Generalized Verma module and its maximal submodule. Let (7,V;) be any
irreducible finite-dimensional representation of K with A}-highest weight A = (7). We
consider the generalized Verma U(g)-module induced from 7:

(3.9) M(r) := U(9) ®u(e+py) Vr-

Then M(r) has a structure of (g, K)-module. Let N(7) be the unique maximal proper
(g, K)-submodule of M (7). Then the quotient L(7) := M(r)/N(r) gives an irreducible
(g, K)-module with A*-highest weight .

We now summarize for later use some basic facts on the structure of N(7).

One finds from the decomposition (3.1) that M(7) = U(p_)V; is canonically isomorphic
to the tensor product S(p-) @ V; = S(p-) ®¢ V; as a K-module, where S(p_) (=~ U(p_))
denotes the symmetric algebra of p_ looked upon as a K-module by the adjoint action.
This isomorphism yields a natural gradation of the K-module M(7):

(3.10) M(r) =@ M;(r) with M;(r) =S (p_)V; = S (p_) ® V.

J=0
Here we write S7(p..) for the K-submodule of S(p_) consisting of all homogeneous ele-
ments of S(p_) of degree j. Note that the submodule N(7) is graded:
o0
(3.11) ~ N(r) =@ Nj(r) with Ny(r):=N(r)nMy(r).
rt

Since M(r) = S(p-)V; is finitely generated over the Noetherian ring S(p_), so is
the submodule N(7), too. This implies that, if N(7) # {0}, there exist finitely many
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irreducible K-submodules Wy,..., W, of N(7) such that

q - . .
(3.12) N(r)=)_S(p_ )W, with W, C S™(p-)V; =S*(p-)®V,
u=1
for some positive integers 4, (u=1,...,q) arranged as
(3.13) i(7) := 1y = min{j| N;(r) # {0}}.

We call i(7) the level of reduction of M (7).

An irreducible (g, K)-module X is called unitarizable if X is isomorphic to the Harish-
Chandra module H g of an irreducible unitary representation of G on a Hilbert space H.
For unitarizable L(7)’s, Enright and Joseph [5] gives a simple description of the maximal
submodule N(7) as follows. Assume that L(7) is unitarizable and that N(7) # {0}.
Then the level i(7) of reduction of M(7) is an integer such that 1 < i(7) < r. Let Qi)

be the irreducible K-submodule of S¥7)(p_) with lowest weight —v, — ... — Vr—i(r)+1-
Then the tensor product Qi) ® V; has a unique irreducible K-submodule W, called the
PRV-component, with extreme weight A — 7, — ... = ¥_j(r)+1. Noting that

(3.14) Qi) ® V; € S (p_) ® V; = Myr)(7),

we regard W as a K-submodule of M;(,(7).

Theorem 3.1 ([5, 5.2, 6.5 and 8.3], see also [3, 3.1]). The mazimal submodule N(7) of
M(1) is a highest weight (g, K')-module generated over S(p-) by the PRV-component W;.

3.3. A realization of lowest weight module L(7)*. For each irreducible representa-
tion (7,V;) of K, let L(r)* be the irreducible lowest weight (g, K)-module which is dual
to L(7). This subsection gives a realization of L(7)* as the K-finite kernel of a certain
G-invariant differential operator of gradient type defined on the symmetric space K\G.
Now, let O.+(G) denote the space of functions F' in CX(G) (see (2.3)) satisfying

(3.15) XlF=0 forall X €p,.

Then we see that O,+(G) is a closed G-submodule of CX(G) through right translation
R, and that it is canonically isomorphic to the space of anti-holomorphic sections of the
G-homogeneous vector bundle on K\G associated to the K-module V*.

It is useful to employ another realization of the G-module O,+(G) as a space of holo-
morphic V*-valued functions on a bounded domain B of p_. To be more precise, let
Py := expp+ be the connected Lie subgroups of G¢ with Lie algebras p., respectively.
Note that the exponential map gives holomorphic diffeomorphisms from py onto Pi.
Consider an open dense subset P, KcP- of G¢, which is holomorphically diffeomorphic
to the direct product P, x K¢ x P_ through multiplication. For each z € P, K¢P_, let
p.(z), ke(z), and p_(z) denote respectively the elements of P, K¢, and P_ such that
r = py(z)kc(x)p-(z). Set &(z) = log p_(x) € p—. It then follows that G C Py KcP-
and that the assignment z — £(z) (z € G) naturally induces an anti-holomorphic diffeo-
morphism, say £, from the symmetric space K \G onto a bounded domain

(3.16) B:={¢z) ep- |z € G}
of p_, where £(Kz) := £(z). (See for example [15, 7.129].)

Let O(B, V") be the space of all V*-valued holomorphic functions on B. We see easily
that the above £ gives a linear isomorphism © from O,«(G) onto O(B, V*) by

(3.17) (OF)({(Kz)) := m*(kc(2)) ' F(z) (z€G)
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for F € O,«(G). Then O(B,V;*) has a G-module structure inherited from (R, 0.+ (@)
through ©:

(3.18) (g- () = m*(kc(expé(z) 9)) f(E(zg)) (z € G)

for g € G and f € O(B, V). By differentiating the G-action (3.18) one obtains a g-module
O(B, V). Note that f € O(B,V;) is K-finite if and only if f is a polynomial. Hence
the K-finite part O,+(G)k of O,+(G) is isomorphic, through ©, to the space P(p_, V) =
S(p+) ® V;* of V;*-valued polynomial functions on p_. Here we identify the symmetric
algebra S(p.) of p, with the ring of polynomial functions on p_ through Blp, xp_-

We now define a bilinear form ( -, - ), on 0,+(G) x (U(g) ®c V;) by
(3.19) ~ (F,D®u), :=(D"F(e),v) = ("D)*F(e),v)

for F € O,+(G),D € U(g), and v € V;. Here ( -, - ) denotes the dual pairing on V*xV,,
and D —7TD the principal anti-automorphism of U (g), respectively. Then it is a routine
task to verify that ( -, - ), naturally gives rise to a (g, K)-invariant bilinear form on
O,+(G) x M(r), which we denote again by ( -, - ),. Note that

(3.20) (F,D®v), =(("D- f)(0),v) with f:=OF € O(B,V;),

where D € U(p_) = S(p_), v € V;, and TD- f is defined through the directional derivative
action. This implies the following

Lemma 3.2 (cf. [3, §2]). (1) The (g, K)-invariant pairing { -, - ), is nondegenerate on
OT* (G)K X M(T) .

(2) Let R(t*) be the orthogonal of the mazimal submodule N (1) in O (Q)x ~ P(p—, V)
with respect to ( -, - )r. Then R(7*) is the unique, nonzero irreducible (g, K)-submodule
of Or+(G)k, and it is isomorphic to the lowest weight module L(7)* dual to L(r) =
M(7)/N(7). The (g, K)-isomorphism A.. from L(t)* onto R(r*) is given by
(3.21) (Are(p), w)r = (i, w+ N(m) iy =i (w € M(r))
for ¢ € L(7)*.

We are going to introduce a differential operator of gradient type whose K-finite kernel
equals the (g, K)-module R(7*) = A+ (L()*). For this, we take a basis Xi,... , X, of the
C-vector space p,. such that B(X;, Xi) = d;, (Kronecker’s §), where X; € p_ denotes the
complex conjugate of an X; € p, with respect to go. Set
(3.22) X=X X eU(py) and X =X, X €U(p.)

for every multi-index o = (ox,. .., 0;) of nonnegative integers oy, ... ,a,. We denote by
la| := a1 + -+ + o the length of a. For each positive integer n we define the gradients
V"™ and V" of order n on C%(G) as follows.

(3.23) V'F(z):= > X" ® (X*)F(z),
jaj=n
(3.24) V'F(z):= ) X*® (X*)F(x),
|a|=n ;
for z € G and F € CX(G). It is then easy to see that V*F and V' F are independent
of the choice of a basis X1,...,X;, and that the operators V* and V" give continuous

G-homomorphisms ,
(3.25) V" CR(G) = CRa) (@), V' C2(G) = C21ny(G).
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Here 7*(+n) denotes the K-representation on the tensor product S™(p4)®V,* respectively.

Let W, (u = 1,...,q) be, as in (3.12), the irreducible K-submodules of S*(p_)V, C
N(7) which generate N(7) over S(p-) when N(7) # {0}. For each u, the adjoint operator
P, of the embedding

(3.26) Wy < S (p )V, = S™(p_) @ V;
gives a surjective K-homomorphism:
(3.27) P, :S™(py) @V = (S™(p_) @ V;)* — W2

Definition 3.3. Under the above notation, let D,» be a continuous G-homomorphism
from CX(G) to C5°(G) defined by

(3.28) D, F(z) := V'F(z) ® (@1, P.(V" F(z)))
for z € G and F € C2(G). Here we write for g = g(7*) the representation of K on
(3.29) (h-® V) @ (B2 W3),

and D,. should be understood as D« = V! if N(1) = {0}, or if M(r) = L(r). We call
D, the differential operator of gradient type associated to 7*.

Remark 3.4. A function F € C%2(G) lies in the G-submodule O+ (G) defined by (3.15)

if and only if V!F = 0. Hence we have Ker D,» C O,+(G) for every 7*, and the equality
holds if and only if N(r) = {0}.

The following theorem is equivalent to [4, Prop.7.6] due to Davidson and Stanke.

Theorem 3.5. The image R(1*) of the (g, K)-embedding A, from L(7)* into O,-(G)k
defined in Lemma 3.2 coincides with the K -finite kernel of the differential operator D«
of gradient type:

(3.30) R(t*) = {F € CR(G) | F is right K-finite and D,-F = 0}.

3.4. Maximal globalization of L(7)*. The above theorem together with Theorem 2.3
implies that the full kernel space Ker D,+ gives a maximal globarization of L(7)*.

Proposition 3.6. (1) The closure R(7*)” of R(m*) = A.(L(7)*) in CX(G) coincides
with Ker D,.. It coincides also with the orthogonal, say R'(m*), of N(7) in the whole (not
necessarily K -finite) space O,+(G) with respect to the paring { +, - ), in (3.19).

(2) One has an isomorphism of G-modules

(3.31) Homy x(L(7), C*(G)) ~ Ker D+ (= R(7*)” = R'(t*))
by the correspondence given in Theorem 2.2. '

We end this section by specifying for later use the solutions F' € O,+(G) of exponential
type of the differential equation D~ F = 0.

For each X € p, and each v* € V, let fx,» = exp X ® v* denote the V*-valued
holomorphic function on p_ defined by

(3.32) fxp(2) =expB(X,2)-v* (z€p.).
We set Fix v := O fx,~ € O,~(G). Then the function Fx , is described as
(3.33) Fx . (z) = exp B(X,{(z)) - 7*(ke(2))v*  (z € G)

by the definition of © (see (3.17)).
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Proposition 3.7. The function Fx, satisfies the differential equation D« F = 0 if and
only if

(3.34) P(X™®v*)=0 foru=1,...,q.

Here P, is a K-homomorphism defined in (3.26) and in (3.27).

4. ASSOCIATED VARIETY AND MULTIPLICITY OF HIGHEST WEIGHT MODULES

The purpose of this section is to understand the associated variety and multiplicity for
each L(7) by means of the principal symbol of the differential operator D, of gradient
type. The harvest of our discussion is summarized as Theorem 4.9.

4.1. Associated variety V(L(r)). We keep the notation in 3.1. For every integer m
such that 0 < m < r = R-rank G, we set

(4.1) Op = Ad(Kc)X(m) with X(m Z X, (see (3.2)) .

k=r—m+1
Here X (0) should be understood as 0. The following proposition is well-known.
Proposition 4.1. The subspace p splits into a disjoint union of r + 1 number of K¢-

orbits Op, (0 < m < 1) py = [Hycrner Om, and the closure Oy, of orbit Op, is equal to
Uk<m Ok for every m. T

Let L(7) = M(7)/N(7) be, as in 3.2, the irreducible highest weight (g, K)-module with
extreme K-type (7,V;). Consider the annihilator ideal

(4.2) Anng yL(7) :={D € S(p-) | Dw=0 forallwe L(1)}.

of L(t) in S(p_) =U(p-).

Definition 4.2. The algebraic variety

43)  V(L(r):={Xep, | D(X)=0 forall D€ Anngy_,L(r)} C p,

defined by the ideal Anng,_)L(7) is called the associated variety of the (g, K)-module
L(r). Here S(p-) is identified with the ring of polynomial functions on p,.

Since the ideal Anng,_)L(7) is stable under Ad(Kc), so is the variety V(L(7)). In view
of Proposition 4.1, there exists a unique integer m = m(7) (0 < m < r) such as

(4.4) V(L(r)) = O with O, = Ad(K¢)X (m).

In particular, the variety V(L(7)) is irreducible. L
Now let I, be the prime ideal of S(p-) which defines the irreducible variety O,, (m =
0,...,7). It holds that I, = {0} since O, = p,. If m < r, one knows that

(4'5) In = S(p—)Qm-i—I

by [5, 8.1] and [18, Prop.2.3], where Qp,+1 denotes as in (3.14) the irreducible K-submodule
of S™+(p_) C S(p_) with lowest weight — 7 — ... — Yrem.

By Hilbert’s Nullstellensatz , Ip,(-) coincides with the radical of the annihilator ideal
Anng,_)L(7) for every 7. This allows us to deduce the following

Lemma 4.3. The annihilator in S(p_) of the quotient (S(y_-), K)-module L(7) /I L()
is equal to L.
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For each X € p,, let m(X) be the maximal ideal of S(p_) which defines the variety
{X} of one element X:

(4.6) m(X):= Y (Y - B(X,Y))S(p-).

Yep-
The isotropy subgroup K¢(X) of K¢ at X acts naturally on the quotient space
(4.7) W(X, 1) := L(1)/m(X)L(r).

We note that dim W(X, T) < oo.
By applying a result of Vogan [26, Cor.2.10 and Def.2.12] in view of Lemma 4.3, we
immediately deduce

Proposition 4.4. Assume that X € Op;). Then the dimension of Kc(X)-module
W(X,T) coincides with the multiplicity mult;  (L(T)/In)L(T)) of the S(p_)-module
L(7)/Imr)L(7) at the unique minimal associated prime Iy(y. So in particular, one has

W(X, 1) # {0}.

See [26, §2] for the definition of the multiplicities of finitely generated modules over a
commutative Noetherian ring (in connection with Harish-Chandra modules).

As for the unitarizable highest weight modules, the following remarkable result of Joseph
gives a clearer understanding of the above proposition.

Theorem 4.5 ([18, Lem.2.4 and Th.5.16]). Suppose that L(r) is unitarizable. Then, the
annihilator Anng,_yw in S(p-) of any nonzero vector w € L(7) coincides with the prime
ideal I (7). Especially, one has Anngp ) L(T) = Ingr).

Corollary 4.6 (to Prop.4.4 and Th.4.5). One has mult;m(T)V(L(T)) =dimW(X,7) (X €
Om(r)) for every irreducible unitarizable highest weight module L(r).

Remark 4.7. For classical groups Sp(2n,R), U(p,¢) and O*(2p), Nishiyama, Ochiai and
Taniguchi (20, Th.7.18 and Th.9.1] have described the associated cycle mult;, (L(7)) -

[Om(r)] and the Bernstein degree of unitarizable highest weight module L(7) by using the
theory of reductive dual pairs (G,G’) with compact G'. They treat the case where the
dual pair (G, G") is in the stable range, and the multiplicity mult;  (L(r)) is specified as
the dimension of corresponding irreducible G’-module, through detailed study of K-types
of L(r). On the other hand, the above corollary allows us to give another simple proof of
this description of the multiplicity by investigating the K¢ (X)-module W(X, 7) (see [34]
and also [24]), where the dual pairs (G, G') need not be in the stable range .

4.2. Principal symbol ¢ and variety V(L(r)). Let D,. = V' & (@!_, P, o*V“i") be,
as in Definition 3.3, the differential operator of gradient type whose kernel realizes the
maximal globarization of dual lowest weight module L(7)* (see Proposition 3.6). We put

q
(4.8) o(X,v") =) PuX"®v") e W' =@l W;
u=1

for X € py and v* € V*, where P, : S*(p;) ® V;} — W is the K-homomorphism in
(3.27). We call o the principal symbol of D;- at the origin. Here o should be understood
as o(X,v*) = 0 for all X € p; and v* € V*, when D,. = V', ie.,, N(7) = {0}.

We want to describe the associated variety V(L(7)) by means of . To do this, fix any
X € p, for a while. Then the map v* — o(X, v*) gives a K¢(X)-homomorphism o(X, -)
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from V* to W*. Hence Kero(X, -) is a K¢(X)-submodule of V*. By Proposition 3.7 we
can describe Kero(X, ) as .

(4.9) Kero(X, ) ={v* €V | D;«Fx,» = 0},

where Fx o, € C®(G) is the function of exponential type defined by (3.33).
The following lemma relates the above kernel with the K¢ (X)-module W(X, 1) in (4.7).

Lemma 4.8. For each X € p,, the natural map

(4.10) - Vi M(r) = L(t) = M(7)/N (1) = W(X,7) = L(7)/m(X)L(7)
from V, onto W(X,T) induces a Kc(X)-isomorphism
(4.11) W(X,7)* ~Kero(X, ) C V*

through the contravariant functor Home( -, C).

Now, we can give the following characterization of the associated variety V(L(7)) of
L(r) and the multiplicity mult;  (L(7)/In(-)L(7)) in terms of the symbol o.

Theorem 4.9. Let L(7) be any irreducible highest weight (g, K)-module with extreme K -
type 7, and let o : py X V¥ — W™ be the principal symbol of the differential operator D«
of gradient type associated to 7. Then it holds that

(4.12) V(L(r)) ={X € ps | Kero(X, -) # {0}}.

Moreover, if X is an element of the unique open Kc-orbit Opry of V(L(7)), the dimension
of vector space Ker o (X, -) coincides with the multiplicity of S(p_)-module L(7)/ L) L(T)
at the prime ideal I ;) of S(p-).

Remark 4.10. We can give the same kind of characterization of the associated variety

and the multiplicity also for irreducible (g, K')-modules of discrete series, by using some
results in [33].

5. GENERALIZED WHITTAKER MODELS FOR HIGHEST WEIGHT MODULES

In this section we describe the generalized Whittaker models for irreducible highest
weight modules L(7). The main results are summarized as Theorems 5.6-5.8.

5.1. Generalized Gelfand-Graev representations. We begin with introducing in this
subsection the generalized Gelfand-Graev representations of G attached to the Cayley
transforms of nilpotent K¢-orbits O, = Ad(K¢)X(m) in p,.

For this, we consider the sl,-triple in g:

(5.1) X(m) = Z X,,, H(m Z H,, Y(m):= z X_,

k=r—m+1 k=r—m+1 k=r—m-+1
with commutation relation

(5.2)  [H(m),X(m)] =2X(m), [H(m),Y(m)]=-2Y(m), [X(m),Y(m)]=H(m).
Let ¢ = Ad(c) (cf. (3.8)) be the Cayley transform on g. We put

X/(m) s = —v T (X (m) = YL (H(m)  X(m) + Y (m),
(63 H(m):=c(Hm) = X(m)+Y(m)
Y'(m) - = V=1 (Y () = ~ YL (B (m) + X (m) — Y (m)).

2
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Then (X'(m), H'(m),Y'(m)) forms an sly-triple in go. Set O, := Ad(G)X'(m). Note
that the nilpotent G-orbit O/, in go corresponds to the K¢-orbit Op, in p, C p through
the Kostant-Sekiguchi correspondence (cf. [9, Th.3.1]). .

Lemma 5.1 ([9, Lemma 3.2]). (1) The Lie algebra g decomposes into a direct sum of the
j-eigensubspaces g;(m) for ad H'(m) as

(5:4) g = g-2(m) @ g-1(m) @ go(m) @ g1(m) @ g2(m).
(2) Let A(m,j) ( j =0,%£1,%2) be the subsets of the root system A of (g,t) defined by
(55) A(m7 2) = {7r—m+1’ e 171‘} U( U Pkl)’
r—m<I<k
(5.6) Am):=( |J @ucw)|J(lJ @ucw),
I<r-m<k r—m<k
A+(m70) = COU{'YI,--- 777'—m}U( U Ckl)
(5.7) : r—m<i<k
Ut U ®uucw) U @uc),
I<k<r-—m k<r—m

(5.8)  A(m,0) := At(m,0) U (—=At(m,0)), A(m,—j):=-A0m,j) (G =1,2).

Then each subspace c(g;(m)) = Ad(c)g;(m) is described in terms of root subspaces as

. _ ) ®reamna(t) if j #0,
59 claitm) = {*é (697;A(m,0)9(t§ v) #3i=0.

Now we set
(5.10) A~ (m) = (A(m,-2) U A(m,-1)) N A,,
and let p_(m) and n(m) be nilpotent, abelian Lie subalgebras of g defined respectively by
(5.11) p-(m):= @ e(t7) and n(m):=c(p_(m)).

1€A™ (m)
If K\G is of tube type, n(m) is the complexification of a real Lie subalgebra n(m), of go.

Lemma 5.2. (1) One has the equality p_(m) = [¢,Y (m)]. Namely, p_(m) is canonically
isomorphic to the tangent space of the Kc-orbit O}, := Ad(K¢)Y (m) at the point Y (m).
(2) Let v(m) be the subspace of g1(m) such that

(612)  o(m) = (@rezmo(7) with Em):=( |J P U o).

I<r—-m<k k>r—m

Then it holds that
1
(5.13) n(m) = v(m) ® g2(m) and dimov(m) = 5 dim g;(m).

Let 7., be the one-dimensional representation (i.e., character) of abelian Lie subalgebra
n(m) = v(m) @ g2(m) defined by
(5.14) mm(U) := v—1B(U,6X'(m)) = —v—1B(U,Y'(m)) for U € n(m).

Here 0 denotes the complexified Cartan involution of g. Just as in Definition 2.5, we get
a C*-induced representation I'y, := I, of G acting on C°(G;ny,) by left translation L.
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Definition 5.3. We call (T, C°(G; 1)) the generalized Gelfand-Graev representation
(GGGR  for short) attached to the nilpotent G-orbit O], = Ad(G)X'(m) in go.

Remark 5.4. The GGGRs attached to nilpotent orbits have been constructed in full gen-
erality by Kawanaka [14] for reductive algebraic groups. See also [30] and [31].

5.2. Generalized Whittaker models. For any irreducible finite-dimensional K-module
(1,Vz), let L(r) = M(7)/N(7) (see 3.2) be the irreducible highest weight (g, K)-module
with extreme K-type 7. Consider the GGGRs (I'y,, C®(G;nn)) (m = 0,...,r) induced
from the characters 7, : n(m) — C. We say that L(7) has a generalized Whittaker model
of type 7y, if L(7) is isomorphic to a (g, K)-submodule of C®(G; ).

We are going to describe the generalized Whittaker models for L(7) by specifying the
vector space Homg x(L(7), C®(G;Mm)). Let Do : CX(G) — C°(G) be, as in Definition
3.3, the G-invariant differential operator of gradient type associated to 7*. Set

(5.15) Y(r,m) :={F € C2(G) | Dy+F =0 and URF = —,,(U)F (U € n(m))}.
Then the kernel theorem (Corollary 2.6) gives a linear isomorphism
(5.16) Homyg x (L(7), C%(G; 1hm)) == Y (7, m).

Now our aim is to describe the space Y(7,m) for each 7 and m. For this purpose, we
use the following unbounded realization of Hermitian symmetric space K\G.

Proposition 5.5 (cf. {15, page 455, [10]). Retain the notation in the beginning of 3.3,
and let P, KcP_ be the open dense subset of G¢ with Py = expp+. Then,

(1) one has Ge C PLKcP-, where c is the Cayley element of Gec.

(2) Set &(zx) := logp_(zc) € p- (x € @), where zc = p,(xc)kc(zc)py(zc) with
kc(ze) € K¢ and pi(zc) € Py. The map z — &' (z) (z € G) sets up an anti-holomorphic
diffeomorphism from K\G onto an unbounded domain S := {&'(z) | z € G} of p_.

Now we state the principal results of this section. Let Oy, be, as in (4.4), the unique
open Kc-orbit in the associated variety V(L(7)) of L(7). Among the generalized Whit-
taker models for L(7), those of type 7m(y) are most important, and we can specify the
corresponding linear space Y(7) := Y(7, m(7)) as follows.

Theorem 5.6. (1) Y(7) is a nonzero, finite-dimensional vector space.
(2) For any F € Y(r), there exists a unique polynomial function ¢ on p_ with values
in V> such that

(5.17) F(z) = exp B(X (m()), £ (z))7" (kc(zc))p(€(z)) (= € G).

(3) Let o : py x V¥ — W* be the principal symbol of the differential operator D« of
gradient type, defined by (4.8). Consider the functions Fx(m(r)) .~ € CX(G) of ezponential
type in Proposition 3.7. Then the assignment

(5.18) v* = P Fxmm)er = Fxmme (€)  (v* € Kero(X(m(7)), -))
yields an injective linear map
(5.19) xr : Kero(X(m(r)), -+ ) — V(7).

Second, we can show the surjectivity of x, for relevant L(7)’s.

Theorem 5.7. Assume that L(t) is unitarizable. Then the linear embedding x, in (5.19)
s surjective. Hence one gets

(5.20) Homg g (L(7), C*(G;Mm)) ~ V(1) =~ Kero(X (m(7)), - )
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as vector spaces. Moreover, the dimension of these spaces equals the multiplicity
(5.21) multy ,(L(7)) = dim(L(7)/m(X (m(r)))L(T)) (see Corollary 4.6)
of the S(p_)-module L(7) at the unique associated prime I,y C S(p-).

Third, Theorem 5.6 for m = m(r) allows us to deduce the following

Theorem 5.8. The linear space Y(7,m) vanishes (resp. is infinite-dimensional) if m >
m(r) (resp. m < m(7)).

Remark 5.9. Theorem 5.7 recovers our earlier result [31, Part II] on the generalized Whit-
taker models for holomorphic discrete series L(7) = M(7) = U(g) ®u(e4p,) Vo

(5.22) Homg x (M (1), C®(G;np)) = V7.

Remark 5.10. The vanishing of Y(7,m) (m > m(r)) in Theorem 5.8 follows also from a
general result of Matumoto [19, Th.1].

6. n-HOMOLOGY OF BOREL-DE SIEBENTHAL DISCRETE SERIES

This section describes the n-homology spaces for the Borel-de Siebenthal discrete series
representations of simple Lie groups of quaternionic type (Theorem 6.3).

6.1. Simple Lie groups of quaternionic type. First, let us identify the groups of
quaternionic type which we concern in this section. Let G, K, G¢, K¢ and gg, €, g, € be
the Lie groups and the corresponding Lie algebras as in Introduction, respectively. We
assume that

(6.1) rankG =rank K and ¢ is semisimple.

Take a Cartan subalgebra ty of go contained in €. We write A as in 3.1 for the root
system of (g, t). Then the Borel-de Siebenthal theorem (Theorem 1.1) implies that there
exist a simple system Il of A and a noncompact root a; € Il which yield the gradation
(1.1) by putting

(6.2) 8():= P st
vyeAU{0}
ma1(7)=j
Here, we set g(t;0) := t, and mq, () denotes the coefficient of o; in the expression

Y = Y aen Mal(7)a of v as a linear combination of simple roots. Note that the Dynkin
diagram of ¢ is obtained from the extended Dynkin diagram of g, by excluding the vertex
corresponding to ;. .

Let A* be the positive system of A defined by I, and let § € A be the highest root.
We assume further that

(6.3) d is not orthogonal to a4, i.e., (§, ;) # 0.

Then the Dynkin diagram of € splits into two components IT\{c; } and {—d}. Accordingly,
the Lie algebra € decomposes into a direct sum of two ideals as

(64) 7 = El 37 €2 with El = [9(0),9(0)] and Eg >~ 5[2(«:),
where £, is generated by the highest and lowest root spaces g(t; 0) and g(t; —6).

In what follows, we deal with the groups G satisfying the above assumptions (6.1) and
(6.3). Up to isomorphism, the corresponding Lie algebras go are enumerated as

(6.5) BDI(p > 3,q = 4), CII(p > 1,¢ = 1), EII, EVI, EIX, FI, G,
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under Cartan’s notation. Here we write BDI(p, ¢) and CII(p, ¢) for so(p,q) and sp(p, q)
respectively. The list (6.5) exhausts all the real simple Lie algebras of quaternionic type,
except the Lie algebras su(p, 2) of Hermitian type (see [8, Table 4.7]).

6.2. Borel-de Siebenthal discrete series. We assume that G has the simply connected
complexification G¢. For any regular integral linear form A on t, let X 5 be the irreducible
(g, K)-module of discrete series with Harish-Chandra parameter A.

Definition 6.1. (1) The discrete series X is called of Borel-de Siebenthal if the param-
eter A is A*-dominant. (2) X, is called quaternionic if A = ¢§ + p for some nonnegative
integer ¢, where p denotes half the sum of all positive roots.

Note that the quaternionic discrete series forms a subfamily of the Borel-de Siebenthal
discrete series. The following fact on the quaternionic discrete series is fundamental.

Proposition 6.2 ([8, Prop.5.7]). Let X ., be a quaternionic discrete series.

(1) The Blattner parameter A of X 54, s equal to (d/2)6, where d := 2¢c+dim g(1) is a
positive even integer. Therefore, the corresponding lowest K -representation 15 of X cd+p
is equivalent to the exterior tensor product of the trivial ¥ -module with an irreducible
representation 14 of & ~ sl(C) of dimension d + 1, i.e., T\ =~ idy, ®7y.

(2) The (g, K)-module X 51, is self-contragredient.

(3) The Gelfand-Kirillov dimension and the Bernstein degree of X5, are given re-
spectively by dimg(1) +1 and by dimg(l).

6.3. n-homology. Take a maximal family of strongly orthogonal noncompact positive
roots yi,...,7 arranged as v; = a; < ... < 9. One finds from the list (6.5) that
r = R-rank G is at most 4. We choose root vectors X,, € g(t;yx) (1 <k <r) as in (3.2).
Set :

r
(6.6) tpo:= > RH, with Hyi=X,, +X_,.
k=1 '
Then we see that a, ¢ is a maximal abelian subspace of pp with orthogonal basis H, ... , H,.

Let ¥ be the restricted root system of go with respect to a,o. We introduce a positive
system U+ of ¥ through the lexicographic order defined by the basis Hi,... , H, of p,0-
Let ny denote the maximal nilpotent Lie subalgebra of gy which is the sum of root sub-
spaces for all positive restricted roots, and NN the corresponding analytic subgroup of G.
Then one gets an Iwasawa decomposition G = KA,N of G with A, = expa,o. Set
M := Z(app). We write My for the identity component of M.

Now let

(67) Hg(n, A) = XA/nXA

be the Oth n-homology space of Borel-de Siebenthal discrete series (g, K)-module X ,.
Then the group M A, acts on Hy(n, A) naturally. We want to clarify the MyAy-module
structure of Hy(n, A). For this, it is enough to describe the n-homology of the quaternionic
discrete series X .54, by virtue of the Zuckerman translation principle. We can achieve
this as follows.

Theorem 6.3. Let X5+, be the quaternionic discrete series (g, K)-module with Blatiner
parameter A = (d/2)d. Define two linear forms p, ' on ay4 by

©8)  wH)=2+3, u(H) = (6,03 (>2),
(6.9) p(H)=d+2, p(H;) =0 (i>2),
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where o) = 20;/(c;, ;) denotes the coroot of o;. Then the 0th n-homology space of
X cs4p 18 described as

o®exp u' ( g0 =~ sp(p, 1))
. H ) ~ X
(6.10) o(n, cd + p) { ida,®{[2] - exp p ® exp '} (otherwise)

as MyAp,-modules. Here, (2] - exp pu = exp p @ exp p (two copies), idy, is the trivial
representation of My, and o = 7\|My, the restriction of T\ to My, is an irreducible
representation of My for go ~ sp(p, 1).

To prove this theorem, we use the differential operator D of gradient type (Schmid
operator; see [32] for the definition) on CX(G) (cf. (2.3)) whose kernel realizes the
maximal globalization of X7;,, = X4, for sufficiently large c. To be a little more
precise, [32, I, Prop.3.2] together with Corollary 2.6 gives the isomorphisms

(6.11) Hy(n,¢d + p)* ~ Homg g (X 545, C®(G;idn)) ~ Ker Dygy,

of M Ay,-modules. Then the space Ker Dy, , the totality of right N-fixed solutions F' of
the differential equation DF = 0, can be specified by explicit but rather long calculation.

Remark 6.4. For simple Lie groups of real rank one, the Oth n-homology spaces for ar-
bitrary discrete series have been described by Silva and also by Collingwood. Also for
higher rank groups, the work [16] of Knapp and Wallach specifies a certain number of
irreducible M A,-submodules of the n-homology spaces of discrete series. For example,
one can find out the submodule idp, ® [2] - exp g of Hy(n, cd + p) from their result.
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