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Abstract

Basis of software development is to guarantee productivity and safety. Programming using
recursion and/or garbage collection (GC) satisfies these basis, with sacrificing execution time.
Recursion removal, which transforms recursive programs into iterative ones, and improvements
toward garbage collection tackle this imbalance of advantages and disadvantages. While garbage
collection has researched intensively with showing their effects, this is not the case for recursion

removal.

This report explains recursion removal brings great refinement toward recursive programs
and also ones running with garbage collection under the current computational environment
with cache. In our experiments, recursion-removed programs run at most 9.1 times faster than
the original at gcc and 5.7 times faster at Common Lisp.

1 Introduction

Good software development requires productiv-
ity and safety, that is, what programmers in-
tend should be easily expressed in programming
languages and programs should run as intended
without errors.

Programming with recursion is said to be
easy: easy to write, easy to verify and easy to
maintain; such recursively written programs un-
fortunately run slowly compared with iterative
ones in current computer environments. Recur-
sion removal, which transforms recursive pro-
grams into iterative ones, has therefore great im-
portance, but its implementation in compilers is
rare except tail recursion removal.

Memory management is necessary for pro-
gram execution. In imperative languages mem-
ory operations like malloc and free are used.
They complicate the large development, because
programmers have to know whole lifetime of

memory areas, otherwise needed data is over-
written or unnecessary data remains unnoticed
forever, which results in quite hard-to-remedy
bugs. Under environments with garbage collec-
tion (GC for abbreviation) operations for acquir-
ing memory area like cons are needed for pro-
grammers, because garbage collector as a sub-
process collects memory areas which are not re-
ferred to any more. Thus GC solves problems
of memory management and makes program-
ming easy, as recursion removal is; thus new
programming languages like Java start to adopt
this technique. As is pointed out frequently,
however, programs using garbage collection run
slowly.

This report, based on [10],‘expla,ins through

“analysing program behaviors and experiments

that recursion removal brings great effects on ex-
ecution time, and additionally time for garbage
collection.  Especially we believe the latter
point, garbage collection, casts new viewpoint
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to compile-time garbage collection.

This reports consists of the following sec-
tions. Section 2 shows recursion removal meth-
ods and expected refinements, which will be ver-
ified by experiments with gcc in the following
Section 3. Here we observe effects of recursion
removal are greatly influenced by cache. Sec-
tion 4 explains improvements toward programs
under garbage collection environments and show
results at Common Lisp. Recursion removal ex-
hibits good improvement both on execution and
GC, but in some cases overheads outweigh it.
Section 5 summarizes related works, and finally
Section 6 concludes.

2 Recursion removal

As [6] explained recursion has an advantage to
make program development easy, but iterative
programs run faster on von Neumann-style com-
puters than recursive ones. This fact drives re-
searches of recursion removal from [3], but its
implementation in compilers are quite rare ex-
cept for tail recursion, which can be easily trans-
lated into iteration.

2.1 Effects expected from recursion

removal

By recursion removal we can improve these three
points.

costs of recursive calls Recursive programs
need recursive calls in their execution.
This requires calling stacks and con-
sumes much time for pushing and popping
them. Iterative programs eliminate recur-
sive calls, and gain faster execution.

locality of space Elimination of recursive
calls has much larger meaning for exe-
cution time in current computer environ-
ments. Today’s processors take advantage
of cache memory. Cache is a quite fast but
small memory area closely located at the
processor. Due to its size, programs have
to be configured to utilize it efficiently. Re-
cursive programs and iterative ones have

great difference here, as the contrast is
exemplified in Figure 1. Recursion fails
to meet this, because recursion requires
stacks and this worsens locality. Itera-
tive programs, in the contrary, only need
some fixed size of memory and refer to the
area continually, and locality of reference
is much higher than recursion.

possibility of inlining One more advantage
of iterative programs are possibility to be
inlined. Un-inlined subroutines are called
separately and take time. Recursive rou-
tines are not possible to be inlined, while
compilers can inline iterative ones. Recur-
sion removal eliminate this calling penal-
ties.

We have also to be aware of overheads intro-
duced by recursion removal. In some transla-
tions, recursion removal newly introduces extra
calculation or data structure, and they some-
times spoil or worsen execution time.

2.2 Methods

We need to fix the aim of our recursion removal.
The definition of recursion removal we give here
is: to translate recursive programs into itera-
tive ones without increasing computational com-
plexity and using stacks. This definition gives
two restrictions. Considering this transforma-
tion aims at speed up of original programs, the
former, complexity, is quite reasonable. The
latter, stack, is also acceptable, considering the
essence of executing recursion is stacks and that
is what we want to eliminate.

Here we give an overview of recursion re-
moval presented in [7]. This method, with basis
on accumulating parameters, aims at linear re-
cursion,.in which at most one recursive call ap-
pears in its definition. The top left program of
Figure 2 is the general form of right linear re-
cursive programs, which has a recursive call on
its right side. Transformation of this target pro-
gram differs from its auxiliary function a. They
utilized the following two properties of auxiliary
functions.
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f(z) = if p(z)

then b(z)
else a(c(z), f(d(z)))
floop’(z) = if p(z)
floop(z) = if p(z) then b(z)
then b(z) - else do
else do vi=c¢z);w = v;u =z
v o= ¢(2); u = x while —p(d(u)) do
while —p(d(u)) do u = d(u)
u = d(u) w = d(w,c(u))
v = h{v,u) od
od a(w, b(d(w)))
return a(v, b(d(u))) return v
od . od

Figure 2: Right linear recursive program f (left top) and its iterative form floop using a cumulative
function (left bottom); another iterative form floop’ using left-pseudo-associativity (right)



(1) cumulative functions We can recursion
remove by finding a cumulative function h(v,u)
of the auxiliary function a. h has to satisfy un-
der the condition —p(u)

a(v, f(u) = a(h(v,u), f(d(u)))

for any expression v. Note that h cannot have
recursive calls to f or any free variables.
h can be easily found when a is associative.

o, fw)) = a(w,a(c(u), F(d(w)))
= a(a(v, o(u)), F(dw))

implies h(v,u) = a(v, c(u)). Consider g(x):

g(z) = if p(z)
then b(zx)
else c¢1(z) + ca(z) x g(d(z))

The auxiliary function of g(z) doesn’t have asso-
ciativity, but its program is recursion-removable
using two cumulative functions h; and hg into
the following form:

gloop(z) =
if p(z) then b(x)
else do
v = cl(x); Vg =
while —p(d(u))
dou := d(u)

vy = hy(v1,v2,u)
V2 = hg(’l)]_,’Ug,U) od

return v + vy X b(d(u))

od

coz); u ==z

with

v1 + ve X c1(u),

Vo X €3 (u)

hl(’U]_,?)Q, u) =

h2(’l]1,?]2,’Lb) =

(2) left-pseudo-associativity While append
is associative, the core operation cons does not
have associativity. This hinders recursion re-
moval by cumulative functions. Here we focus
- on rplacd or rplaca, which replace cdr and car
part of the cons cell pointed by the first argu-
ment with the second, and returns the pointer

to the cons cell. These functions has pseudo-
associativity and we utilize this property for
transformation.

Definition of left-pseudo-associativity is
given as:

Let a(z,y) a function which has
side-effects and returns the pointer
to z. a is left-pseudo-associative if
a’, which is called as a realization
function of a, exists and satisfies the
following two equations:

prog(a’(z,y),z)
prog(d’ (d'(z,y), 2), )

a(z,y) =
a(z,aly,z)) =

where prog(u,v) evaluates u and v,
and returns the value of v.

Finding o’ makes recursion removal possi-
ble from a right linear recursive program f(z)
to floop’(z) in Figure 2. Now we can recur-
sion remove programs with cons(a, b) by regard-
ing it as rplacd(list(a),b). In case a(z,y) =
rplacd(z,y), taking prog(a(z,y),y) as a'(z,y)
satisfies the equations presented previously.

3 Experiments in gcc

First tests of recursion removal were done under
gce on Sun Ultra 5 running SunOS 5.6, which
uses UltraSparclli, a recent cpu with sufficient
primary cache, and on Macintosh Color Classic
II running NetBSD 1.3, where 68030, an older
and slow cpu with few cache, resides. Details
of environments appears at Table 1. Subject
programs are numeric functions ¢ and g, which
calculate [3] for non-negative integer z and vt
for integer x > 2 respectively:

c(x)=ifz=0

then 0

else z—c(z—1)
glz)=if z =2

then 3

else 1+21.g(z—1)

Figure 3 plots results of g’s 1000 calculations
for various arguments. This figure shows
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Figure 3: Results of numeric function g at gce: on UltraSparclli (left) and on 68030 (right)

Table 1: System details

(cache)
machine processor memory  inst./ data/second. 0S language
Sun Ultra dual v ACL4.3.1
Enterprise 2 | UltraSparcl (200MHz) | 256MB 16KB/16KB/ 1MB || Sun0S5.5.1 | GCL2.2
Sun Ultra 5 UltraSparclli(270MHz) 64MB 16KB/16KB/256KB || Sun0S5.6 | gcc2.8.1
PowerMac9600 | PowerPC604 (233MHz) | 160MB 32KB/32KB/512KB || MacOS8.1 | MCL4.2
ColorClassic I | 68030 (33MHz) 20MB  256B/ 256B/ N.A. | NetBSD1.3 | gcc 2.7.2.2

1. UltraSparclli shows much greater im-
provement (at most 9.1 times faster in
the figure) than 68030 (regularly 1.5 times
faster);

2. a break appears around 2,000 in Ultra-

Sparclli’s recursive results.

The second is what Subsection 2.2 explained:
cache miss appears over 2,000 for recursion in
UltraSparclli and never for iteration. A tiny pri-
mary cache and no secondary cache don’t work
for either recursion or iteration in 68030. To-
day’s processors have adequate cache for min-
imizing speed gap between memory and pro-
cessors, and this example shows recursion re-
moval suits the current computing environments
greatly. ‘
Experiments in other environments, that
is UltraSparc, Pentium and PowerPC, showed
scattering in improvements; calculating ¢ with
an argument 6,000 becomes 1.3 times faster in

one environment and 16.9 times faster in an-
other for example. What is in common is, how-
ever, the more arguments become, the more ef-
fects of recursion removal is in recent processors
having cache of adequate size.

4 Experiments in Common

Lisp

Next language we are going to investigate is
Common Lisp. Its language processor has a
build-in garbage collector and this is one point of
our research. Environments for experiments are
Allegro Common Lisp (ACL) and Gnu Common
Lisp (GCL) running on Sun Ultra Enterprise 2,
and Macintosh Common Lisp (MCL) on Power-
Macintosh 9600. '
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Figure 4: Behaviors of stacks and heap in case temporary data is created: recursion (left) and
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4.1 Effects expected for garbage col-
lection

This subsection gives analysis of the relation be-
tween recursion removal and garbage collection.

What we have to notice that GC process is
influenced not only by heap cells but other mem-
ory area like stacks. GC process, which collects
dead cells, i.e. cells without pointers pointing to
them, for new allocation, uses roots for checking
cells. This root consists of global variables and
stacks. If this stack grows, GC process takes
more time to check roots for finding pointers to
cells. Stack is also one element of memory, thus
there is memory and cache competition between
stack and cells. ~

Considering these issues, following four im-
provements on garbage collection are expected
by recursion removal. Note that recursion re-
moval only aims at changing stack behavior, not
at decreasing total quantity of cells or data cre-
ation.

(1) decreasing traversal cost In program-
ming by recursion each stack elements points
to (some part of) argument, data made by the
stack and upper stack for next data, as seen in
Figure 4. For each time GC process traverses all
stack elements pushed and all pointers the stack
elements have. Recursion removal reduces this
cost of traversal by minimizing stacks to some
fixed size and reducing pointers to ones needed

for current execution. A considerable effect can
be expected because root scanning can take up
to 70% of the total GC cost [4]. Additionally, it-
erative programs generated by recursion removal
decrease the number of pointers, pointing only
to middle of argument lists, top and middle of
generating lists, and one of the current tempo-
rary result.

(2) shortening lifetime Decreasing pointers
changes lifetime of cells or data. Consider the
case where temporary results are required to
proceed calculation which is illustrated in Fig-
ure 4. In recursive case, every temporary re-
sult is pointed by each stack element, surviv-
ing long until its calculation terminates. Iter-
ative programs, on the contrary, only need the
current result, and once the next temporary re-
sult is gained the previous is discarded. This
lifetime shortening also applies to intermediate
data passed between two functions. Interme-
diate data are not pointed by global variables.
When an element of the intermediate list is used,
iterative programs replace pointer from the ele-
ment to the next, implying there are no pointers
to data already consumed by the outer iterative
program.

This lifetime shortening has great meanings
to garbage collection. It does not only reduce
cells or data to be checked by GC process. The
quantity of the free space after one garbage col-
lection widens and the duration between GCs



becomes longer. Total cell allocation doesn’t
change by recursion removal, then this decrease
of frequency implies decrease of GC invocation.

(3) memory competition In a fixed mem-
ory, growing stacks pressurize heap area and in-
creases frequency of garbage collection. This
implies recursion essentially increases the num-
ber of invoking GC process. Recursion-removed
programs can have larger heap, and the smaller
invocation of GC.

(4) cache competition As Section 3 pointed
out, recursion removal restrains cache miss by
minimizing stack size. This also applies to
garbage collection. Recursive programs refer to
stack elements, data or cells, and arguments,
and GC process checks them all: they conflict
on cache, and when GC process is invoked only
recently referred items remains in cache, as Fig-
ure 4 shows, resulting in longer garbage collec-
tion. Smaller number of stack elements reduces

cache miss and speed up GC process. This effect -

is massive for programs generating temporary
results. Reachable data is the most recently cre-
ated one, and it is hardly conceivable that this is
swept out of cache when GC process is invoked.

4.2 Consing functions

First experiments are programs using conses,
that is, merge, halve and mergesorts. The first
two are independent functions which do not call
other recursive functions, while the last is a
compound function which is composed of plu-
ral functions.

Figure 5 shows results of 50 times compu-
tation to merge two ascending lists of length
30,000, and results to halve a list of length
60,000 50 times. halve takes one list and halve it,
and returns a new cons cell which have pointers
in car and cdr parts to halved two lists:

halve( (31254) )= ((324) (15))

The auxiliary function of halve is not a single
cons but a more complicated one, but we can

find its realization function utilizing the auxil-
iary function.

Generally, good improvements have achieved -
for both of total and GC time, at most 5.7
times faster on total and 19.8 times faster on
GC. The bottom part of figures, plotting, shows
sequences of each garbage collection time. Re-
markable in iteration are:

e cach of GC time are kept under 200 msec,
on average 150 msec;

o frequency of GC invocation is reduced.

Change in frequency differs on its execution con-
dition like heap size, and sometimes GC process
is invoked more frequently in recursion removed
functions than the original recursive ones. In
any case, recursion removal reduces each GC
time.

Results of mergesorts is shown in Figure 6.
Mergesorts can take two forms: one is con-
structed in a top-down manner, tree-recursively
halving and merging a list; the other is con-
structed in a bottom-up manner, recursively con-
tinuing to merge neighboring two lists. While all
parts of bottom-up can be recursion-removed,
the calling function of top-down is tree-recursive
and all but this can be iterative. The figures
shows results of 5 times sorting of one uniform
random sequence of length 60,000 generated by
Random Data Server [8].

While the top-down mergesort doesn’t show
refinement by recursion removal as good as in-
dependent functions due to its tree structure,
the bottom-up one, in which all parts can be
recursion removed, is improved a little more.

‘Reduction of GC time is not so much as inde-

pendent functions like merge. This is because
(a) frequency doesn’t change so much; (b) each
GC time of the recursive are kept small. In
this mergesorts, we have expected effects of life-
time shortening for intermediate data are cre-
ated, but it is not noticeable in this results. It is
true inlining is possible here, but it is not done
under environments experimented with.
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4.3 Numeric funcfions

Now results of numeric functions, which creates
not cons cells but temporarily calculated data
in heap, will be shown. Here applies the anal-
ysis of temporary data in Subsection 4.1. Ex-
ecuted functions are c¢ of integer type and g of
double float type which appear in Subsection 3.
Figure 7 shows results of calculating ¢ with an
argument 60,000 10 times, which shows typical
characteristics.

Disappointingly almost all of total time
worsened. One reason is these recursion-
removed functions requires two cumulative func-

tions and introduce more variables (see gloop in

Subsection 2.2). One more reason is, as [11] ex-
plains, recursion removal changes computation
from smaller numbers into computation from
larger, complicated numbers. Interesting here
is garbage collection. Indeed computation and
generated data increase due to overheads, total

and each GC time decreases in ACL and GCL.

In this method, reduction of GC frequency
is hard to notice due to increase of computation.
To confirm this benefit, we have checked results
of another recursion removal. This transforma-
tion follows the evaluation strategy of ‘left-most
inner-most’ (call-by-value). We have to be aware
of the following points in case of this transfor-
mation:

e the inverse of descent functions d~!(z) is
needed,

e conditions p(x) have to be ‘=’;

otherwise auxiliary stacks or lists are required
to store the chain of z,d(z), d?(z),.... Our nu-
meric examples, ¢ for instance, fits them and
easily translated.

Figure 8 shows the result of g. This time
good performance of execution was achieved as
well as garbage collection. Following the same



evaluation strategy extra computation or vari-
ables are not needed any more. We also notice
that the frequency of garbage collection has de-
creased. There is no change in data creation,
so we can conclude that this decrease is due to
lifetime shortening introduced by recursion re-
moval.

5 Related Works

As is mentioned in Section 1, recursion re-
moval has energetically studied. Most notable
is Burstall and Darlington [3]. This transfor-
mation basically utilized template matching to
achieve recursion removal. Similar transforma-
tion as our cumulative functions is [1] for ex-
ample. Cohen [5] focused on redundant recur-
sive calls. One of recent works is Harrison and
Khoshnevisan [9]. They utilized FP [2], which
investigated function-level reasoning, for achiev-
ing recursion removal. These methods intro-
duced so far transform basically numeric func-
tions into iterative forms, and don’t mention
general consing functions. Another recent work
by Liu and Stoller [11] introduced quite simi-
lar technique as our pseudo-associativity, and
showed also similar results. Yet they don’t think
of benefits brought by recursion removal or ben-
efits of cache.

On effects of garbage collection, Cheng,
Harper and Lee [4] mentioned that in the worst
case scanning costs of roots take up to 70% of
garbage collection time. Their observation fits
this report and we can say recursion removal can
be the candidate to eliminate that time.

6 Conclusion and Future

Works

This report showed the effects of recursion re-
moval on total execution and garbage collection,
with data by gcc and Common Lisp. Due to
good cache utilization, functions have high pos-
sibility to become faster and this has effects to
combined functions. In some kinds of programs,
however, recursion removal worsens execution

10

by introducing overheads. Garbage collection
also benefits from recursion removal especially
by the effects of reduction of traversal cost and
cache competition.

There are two directions to tackle: power
of transformation and automation. As Subsec-
tion 4.3 showed, recursion removal by cumula-
tive functions didn’t succeed in improving exe-
cution. We have to figure out how to circum-
vent introduction of overheads and achieve suc-
cessful transformation, like emulation of eval-
uation strategies. Current methods explained
here don’t fit for automation yet due to de-
pendency on heuristics. We are now trying to
automate these methods, especially one using
pseudo-associativity, by analyzing consing struc-
tures and making independent from heuristics.
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