
A Theoretical Foundation for
Generation of Equivalent Transformation Rules

Kiyoshi $\mathrm{A}\mathrm{K}\mathrm{A}\mathrm{M}\mathrm{A}^{\uparrow}$ Hidekatsu KOIKE\dagger \dagger Eiichi MIYAMOTOt\dagger

\dagger Center of Information and Multimedia Studies, Hokkaido Univ.

\dagger \dagger Dept. of System and Information Eng., Hokkaido Univ.

Abstract

In the “Equivalent Transformation model” (ET model), computation is regarded as

equivalent transformation (ET) of declarative descriptions, and programs consist of ET

rules and control description. Programs may be improved by adoption of each new rule,

and finally a correct and efficient program may be obtained.
A method for generating equivalent transformation rules from a given set of definite

clauses is proposed. In this method, we generate new equivalent transformation rules by

transforming meta-descriptions, each of which represents many problem descriptions. We

also develop a theoretical foundation for the method based on the concept of equivalence

of meta-descriptions.

1 Difficulty of Unfolding
1.1 Problem Solving by unfolding
Many problems can be solved by transform-

ing the problem description equivalently into a
simpler form.

For example, let P be a set consisting of
the following definite clauses, where app means
append.

initial$(X, z)arrow app(X,Y, Z)$.
$app([A|X], Y, [A|Z])arrow app(X, Y, Z)$.
$app([], \mathrm{Y},Y)arrow$.

We consider two problems, (q_{1}, P) and (q_{2}, P) ,
where

$q_{1}=\dot{i}n\dot{i}t\dot{i}al([1,2], [1,2,3,4])$,
$q_{2}=initial(x, [1,2,3])$.

When given the first query q_{1} , we first make
a set of definite clauses:

$P_{1}=P\cup\{yesarrow initial([1,2], [1,2,3,4])\}$.
Then, P_{1} is transformed equivalently as follows

(Only the yes clause in P_{1} is changed.).
$yesarrow initial([1,2], [1,2,3,4])$.
$yesarrow app([1,2],Y, [1,2,3,4])$.
$yesarrow app([2], Y, [2,3,4])$.
$yesarrow app([],Y, [3,4])$.
$yesarrow$.

From this transformation, the answer “yes” is
obtained.

When given the second query
$q_{2}=initial(x, [1,2,3])$,

we first make a new set of definite clauses:
$P_{2}=P\cup\{anS(x)arrow in\dot{i}tial(X, [1,2,3])\}$.

Then, P_{2} is transformed equivalently as follows
(Only the ans clause in P_{2} is changed.).

1: ans $(X)\triangleleft-initial(x, [1,2,3])$.
2: ans$(X)arrow app(X,Y, [1,2,3])$.
3: ans $([])arrow$.

ans$([1|W])arrow app(W,Y, [2,3])$.
4: ans$([])arrow$.

ans $([1])arrow$.

数理解析研究所講究録
1125巻 2000年 44-58 44

ans $([1,2|V])arrow app(V,\mathrm{Y}, [3])$.
5: ans$([])arrow$.

ans $([1])arrow$.
ans $([1,2])arrow$.
ans $([1,2,3|U])arrow app(U,Y, [])$.

6: ans$([])arrow$.
ans $([1])arrow$.
ans $([1,2])arrow$.
ans $([1,2,3])arrow$.

Thus, the answer for the second problem is
$X=$ $[]$, [1], $[1, 2]$, or [1, 2, 3]. These two prob-
lems are easily solved by using unfolding in each
step.

1.2 Meaning of Problems
A problem in this paper is determined by a

pair (q, P) of an atom q and a set P of definite
clauses. The correct answer for a problem (q, P)

is the set of all ground atoms g such that g is
an instance of q and g is a logical consequence
$\mathrm{o}\mathrm{f}P$.

For example, the correct answer for the first
problem (q_{1}, P) is a singlet,on set

{initial$([1,2],$ $[1,2,3,4])$ }.
The correct answer for the second problem
(q_{2}, P) is a set of four ground atoms

{initial$([], [1,2,3])$,
initial$([1], [1,2,3])$,
initial$([1,2], [1,2,3])$,
$in\dot{i}tial([1,2,3], [1,2,3])\}$.

Note that an element of these sets can not be
regarded as the correct answer of problems.

primes$([8])$ false

The predicate $pr\dot{i}mes$ is defined by a set $P_{prim\mathrm{e}S}$

consisting of the following definite clauses:
primes$(P_{S)}arrow gen(2, Ns)$, si ft (Ns , Ps).
gen$(N, [])arrow$.
gen$(N, [N|N_{S}])arrow add(N, 1, N1),gen(N1,$ $N_{S)}$.
si$ft([], [])arrow$.
sift$([x|xs],$ $[X|Y_{S])}arrow filter(x,x_{s}, ZS)$,

si$ft(Zs,Ys)$.
$f_{\dot{i}lt}er(N, [], [])arrow$.
$f_{i}lter(N, [X|x_{S}], \mathrm{Y}_{S})arrow d\dot{i}vi_{S}ible(N,x)$,

$f\dot{\iota}lter(N,xs,\mathrm{Y}s)$.

filter$(N,$ $[X|Xs],$ $[X|Y_{S])}arrow\dot{i}nd\dot{i}v\dot{i}S\dot{i}ble(N, X)$,
$f_{\dot{i}}lter(N,xs, Ys)$.

add$(X,Y, Z)arrow X+\mathrm{Y}=Z$.
$div\dot{i}sible(N, x)arrow N$ is a divisor of X .
$\dot{i}nd_{\dot{i}v\dot{i}}S\dot{i}ble(N, X)arrow N$ is not a divisor of X .

Obviously, the correct answer of a query
primes$([x, Y, Z])$ is {primes$([2,3,5])$ }. How-
ever, Prolog-like “left-to-right” control can
not answer this problem correctly. Given
the query primes $([x, \mathrm{Y}, Z])$, Prolog first finds
primes$([2,3,5])$. However, it goes into an in-
finite computation (The predicate gen gener-
ates natural numbers infinitely.) when we in-
put “;” to find other solutions. Thus, Pro-
log can not know in a finite time that there is
no solution other than $pr\dot{i}mes([2,3,5])$, which
means that Prolog can not answer the query
$pr\dot{i}mes([x, Y, Z])$ correctly.

1.3 Difficulty of Unfolding
Consider a predicate primes. primes(X) is

true when X is a list of the first n prime num-
bers $(n\geq 0)$, i.e.,

primes$([])$ true
$pr\dot{i}mes([2])$ true
primes$([2,3])$ true
primes$([2,3,5])$ true
$pr\dot{i}mes([2,3,5,7])$ true
primes$([3,5])$ false

2 Problem Solving by ET Rules
2.1 Overcoming the difficulty of Un-

folding
Prolog-like “left-to-right” control can not an-

swer the “primes” problem due to endless com-
putation, even if the order of body atoms in
$P_{pri}m\mathrm{e}S$ is best arranged.

To overcome this difficulty, we adopt the E-
quivalent Transformation Paradigm [1] and use
more than one ET rule instead of only one un-
folding rule (See the ET rules in Section 3,

45

which can successfully solve the primes problem
in a finite time.). ET rules are especially useful
when infinite loops in computation are difficult
to avoid by simple “left-to-right” control.

2.2 Equivalent Transformation Rules
Assume that two disjoint sets of predicates,

R_{P} and R_{R} , are given. Predicates in R_{P} are
used for atoms in declarative descriptions, and

those in R_{R} are used for executable atoms by
an evaluator.

$Rp=$ {ans,primes, initial, $app,$ $\max,$ \cdots }.
$R_{R}=\{=, >, \leq, \cdots\}$.

An ET rule on R_{P} and R_{R} is of the form
$(n\geq 0)$:

$\langle rulename\rangle$:
$H,$ $\{Cs\}arrow\{Es_{1}\},BS_{1}$;

$arrow\{Es_{2}\},BS_{2}$;

swer substitution σ , by replacing $b\sigma$ in $C\sigma$ with
$Bs_{i}\theta\sigma$.

When $n=0$, the ET rule $(H, \{Cs\}.)$ is often
written as

$H,$ $\{Cs\}arrow\langle false\rangle$.
If Es_{i} and Bs_{i} are empty, then $\langle true\rangle$ can
be used in place of the empty i-th body
$(\{Es_{i}\}, BS_{i})$.

2.3 Problem Solving by using ET
Rules

To answer the first problem (q_{1}, P) mentioned
above, we can use the following ET rules.

$\mathrm{r}1$: initial$(X, z)arrow app(X,Y, z)$.
$\mathrm{r}2$: $app([A|x], Y, z)arrow\{Z=[A|W]\}$,

$app(x, Y, W)$.
$\mathrm{r}3$: $app([], Y, Z)arrow\{Y=Z\}$.

The process of answering the query
$q_{1}=\dot{i}nit\dot{i}al([1,2], [1,2,3,4])$

is:
$arrow\{ES_{n}\},BSn$.

Here, $\langle rulename\rangle$ is the name of a rule, H is an
R_{P} atom, Cs is a (possibly empty) sequence of
R_{R} atoms, Es_{i} are (possibly empty) sequences
of R_{R} atoms, and Bs_{i} are (possibly empty) se-
quences of R_{P} atoms. H is called the head, Cs

the applicability condition part, each Es_{i} an exe-
cution part, and each pair of Es_{i} and Bs_{i} a body
of the ET rule. The $\langle rulename\rangle$, the condition
part, and each execution part are optional.

Assume that we are given an atom b in the
body of a definite clause C . An ET rule of this
form is applicable to the atom b iff there is a
substitution θ such that. the head H matches the atom b by a sub-

stitution θ (i.e., $H\theta=b$),. each variable (in the ET-rule) that does not
appear in the head H is replaced with a new
variable by θ , and. $Cs\theta$ is true (by the given evaluator).

When the rule is applied to a clause C at an
atom $b,$ C produces n or fewer clauses. Each
new clause is obtained, after $Es_{i}\theta$ is executed
successfully (by the given evaluator) with an an-

$yesarrow init_{i}al([1,2], [1,2,3,4])$.
$yesarrow app([1,2],Y, [1,2,3,4])$. by Rule rl
$yesarrow app([2], Y, [2,3,4])$. by Rule r2
$yesarrow app([], Y, [3,4])$. by Rule r2

$yesarrow$. by Rule r3
On the other hand, the second problem can

not be solved by these three rules ($\mathrm{r}1,$
$\mathrm{r}2$, and

$\mathrm{r}3)$:
ans $(X)arrow in\dot{i}tial(X, [1,2,3])$.
ans $(X)arrow app(X, Y, [1,2,3])$. by Rule rl

–Execution halts. –

No rule can not be evoked to the last ans clause,
and the transformation terminates since match-
ing is used for the applicability test for rules $(\mathrm{r}1$,
$\mathrm{r}2$, and $\mathrm{r}3$) and there is no θ that satisfies one
of

initial$(x, Z)\theta=app(X,Y, [1,2,3])$,
$app([A|X],Y, Z)\theta=app(X, Y, [1,2,3])$, and
$app([],Y, Z)\theta=app(X,Y, [1,2,3])$.

To $\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}_{\grave{1}}\mathrm{n}$ the answer to the second problem, the
following rule is also introduced.

$\mathrm{r}4$: $app(X,Y, z)arrow\{X= [], Y=Z\}$;
$arrow\{X=[A|V], Z=[A|W]\})$

$app(V, Y, W)$.

46

Now rl and r4 solve the second problem (q_{2}, P) .
1: ans$(X)arrow initial(X, [1,2,3])$.
2: ans$(X)arrow app(X,Y, [1,2,3])$. by rl
3: ans$([])arrow$.

ans $([1|V])arrow app(V, Y, [2,3])$. by r4
4: ans$([])arrow$.

ans $([1])arrow$. .
ans $([1,2|W])arrow app(W,Y, [3])$. by r4

5: ans $([])arrow$.
ans $([1])arrow$.
ans$([1,2])arrow$.
ans $([1,2,3|U])arrow ap\mathrm{P}(U, Y, [])$. by r4

6: anS$([])arrow$.
ans $([1])arrow$.
ans$([1,2])arrow$.
ans$([1,2,3])arrow$. by r4

2.4 Priorities for Rules
The two rules rl and r4 can also solve the first

problem:
$yesarrow\dot{i}nitial([1,2], [1,2,3,4])$.
$yesarrow app([1,2], Y, [1,2,3,4])$. by rl
$yesarrow app([2], Y, [2,3,4])$. by r4
$yesarrow app([], Y, [3,4])$. by r4
$yesarrow$. by r4

However, this computation is less efficient than
the one by the rule set of $\mathrm{r}1,$

$\mathrm{r}2$, and $\mathrm{r}3$, for the
following reasons:. Given an app atom in the body of a defi-

nite clause C , Rule r4 can always fire and
clause C is duplicated into two clauses, one
of which is deleted by unifications $(X=$ $[]$

and $X=[A|V])$.. Rules r2 and r3 only examine a single
matching to fire, while Rule r4 requires t-
wo unifications ($X=[]$ and $X=[A|V]$) at
each step.

Thus, we give priority to each rule as follows:
1. Priority 1 to $\mathrm{r}1,$

$\mathrm{r}2$, and $\mathrm{r}3$.
2. Priority 2 to $\mathrm{r}4$.

Rules (e.g., $\mathrm{r}4$) with low priority can fire only
when all the rules with high priority can not
fire. Thus, the prioritized rule set

(Priority $1=\{\mathrm{r}\mathrm{l},\mathrm{r}2,\mathrm{r}3\}$,

Priority $2=\{\mathrm{r}4\})$

can be used to solve two problems efficiently:
1. The first problem is solved by only the rules

with Priority 1.
2. The second problem is solved by the rules

with Priority 1 and 2 since an app atom that
has a variable as the first argument can not
be transformed by the rules with Priority 1.

2.5 More Efficient Rules
There exists a more efficient set of rules that

can solve the first problem:
$\mathrm{r}5$: initial$([], z)arrow\langle true\rangle$.
$\mathrm{r}6$: initial$([A|X], [B|Z])arrow\{A=B\}$,

$\dot{i}n\dot{i}t\dot{i}al(x, z)$.
These rules can solve the first problem as fol-
lows:

$yesarrow in\dot{i}tial([1,2], [1,2,3,4])$.
$yesarrow\dot{i}nit_{\dot{i}}al([2], [2,3,4])$. by r6
$yesarrow initial([], [3,4])$. by r6
$yesarrow$. by r5

Similarly, the second problem can be solved
by the rules:

$\mathrm{r}7$: $\dot{i}nitial(x, [])arrow\{X= []\}$.
$\mathrm{r}8$: $in\dot{i}tial(x, [A|Z])arrow\{X= []\}$;

$arrow\{x=[A|W]\}$,
$\dot{i}nitial(W, Z)$.

By r7 and $\mathrm{r}8$, the second problem is solved as
follows.

1: ans$(X)arrow\dot{i}n\dot{i}tial(x, [1,2,3])$.
2: ans$([])arrow$.

ans $([1|W])arrow\dot{i}nitial(W, [2,3])$. by r8
3: ans$([])arrow$.

ans $([1])arrow$.
ans $([1,2|V])arrow\dot{i}nit\dot{i}al(V, [3])$. by r8

4: ans$([])arrow$.
ans $([1])arrow$.
ans $([1,2])arrow$.
ans $([1,2,3|U])arrow in\dot{i}t\dot{i}al(U$, [] $)$. by r8

5: ans $([])arrow$.
ans $([1])arrow$.
ans$([1,2])arrow$.
ans $([1,2,3])arrow$. by $\mathrm{r}7$

47

We have the correct answer set:
$\{[], [1], [1,2], [1,2,3]\}$.

3.3 More Efficient Programs
Based on Section 2.5, we can obtain a more

efficient program that can answer (at least) q_{1}

3 Rule Generation
3.1 Rule Generation Problem
In this paper, we propose a method for gen-

erating equivalent transformation rules from a
given set of definite clauses (and a query). Since
we have already constructed a system, called
ETC, that translates a prioritized rule set in-
to a C program, the main part of the program
synthesis in the ET paradigm is to generate a
prioritized set of ET rules.

For instance, given the first problem (q_{1}, P) ,
our experimental program synthesis system can
generate the following prioritized rule set:

$R_{1}=$ (Priority $1=\{r1,$ $r2,$ $r3\}$).
For the second problem (q_{2}, P) , the system can

generate
$R_{2}=$ (Priority $1=\{r1\}$,

Priority $2=\{r4\})$.
Based on the existence of the ETC system, (pri-

oritized) rule sets are often regarded as pro-
grams.

The generated rules can solve the given prob-
lem. Furthermore, they can also solve other
problems similar to the given one. For instance,
R_{1} can solve these problems (queries):

$in\dot{i}tial([a, b, c], [a, b,c, d])arrow \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$.
initial $([8], [a, 8,8,8])arrow \mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}$.
$initia\iota([], [1,2,3])arrow \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$.
$\dot{i}nitial([1, Y, z], [1,2,3])arrow \mathrm{Y}=2,$ $\mathrm{Z}=3$.

3.2 Merging of ET rule sets
When we want to obtain a program that can

answer both $(q_{1}, P_{\text{ノ}})$ and (q_{2}, P) , one of the so-
lution programs is

(Priority $1=\{r1, r2,r3\}$,
Priority $2=\{r4\})$,

which is obtained by merging the two rule sets
(R_{1} and R_{2}).

and q_{2} :
(Priority $1=\{r5, r6, r7\}$,

Priority $2=\{r8\})$.
This program can also be generated by our ex-
perimental program synthesis system and can
answer, for instance,

$q_{5}=\dot{i}n\dot{i}tial([x, 2|R], [3,Y,5,6])$

as follows.
1: ans$(x, R,Y)arrow initial([X, 2|R], [3, Y, 5,6])$.
2: ans$(3, R,Y)$

$arrow in\dot{i}tial([2|R], [Y, 5,6])$. by r6

3: ans$(3, R, 2)arrow\dot{i}nit_{\dot{i}}al(R, [5,6])$. by r6
4: ans$(3, [], 2)arrow$.

ans $(3, [5|W], 2)arrow in\dot{i}t\dot{i}al(W, [6])$. by r8

5: ans $(3, [], 2)arrow$.
ans $(3, [5], 2)arrow$.
ans $(3, [5,6|V], 2)arrow in\dot{i}t\dot{i}al(V$, [] $)$. by r8

6: ans$(3, [], 2)arrow$.
ans $(3, [5], 2)arrow$.
ans $(3, [5,6], 2)arrow$. by $\mathrm{r}7$

3.4 Examples of Rule Generation
3.4.1 \max

Let P_{\max} be a set of definite clauses that de-
fines the maximum number in a number-list:

$\max([A], A)arrow$.
$\max([A, B|X],Y)arrow A>B,$ $\max([A|X], Y)$.
$\max([A, B|X],Y)arrow \mathrm{A}\leq B,$ $\max([B|X], Y)$.

Given a query
$q= \max([1,2,3,1],Y)$,

our system generates the following three rules:
$\max([A], B)arrow\{A=B\}$.
$\max([A, B|X],Y),$ $\{A>B\}arrow\max([A|X],Y)$.
$\max([A, B|X],Y),$ $\{A\leq B\}arrow\max([B|X], Y)$.

These rules can be used to compute the maxi-
mum number of numbers in a number-list.

3.4.2 primes
Given a query primes $([x,\dot{Y}, Z])$ and a set of

definite clauses, $P_{prim}eS$ in Section 1.3, our sys-

48

tem generates the following rules:
primes$(P_{S)}arrow gen(2, Ns)$, si ft (Ns , Ps).
gen$(N, [])arrow\langle true\rangle.\cdot$

gen$(N, [M|N_{S}])arrow\{N=M$,
add$(N, 1, N1)\}$,
gen$(N\perp,$ $N_{S)}$.

si$ft(XS, [])arrow\{Xs=[]\}$.
si$ft(xs,$ $[X|\mathrm{Y}_{S])}arrow\{Xs=[X|R_{S]\}}$,

$f\dot{i}lter(X, Rs, ZS)$,
si$ft(Zs,Ys)$.

$f_{\dot{i}}lter(N, [X|x_{S}], Y_{S}),$ $\{divisible(N,X)\}$

$arrow filter(N, xs, Ys)$.
$f_{\dot{i}lter}(N, [X|x_{S}], Y_{S}),$ $\{\dot{i}nd\dot{i}v\dot{i}Sible(N,X)\}$

$arrow\{Ys=[X|RS]\}$,
$f_{\dot{i}l}ter(N,xS, Rs)$.

filter$(N,xS,$ $[X|Y_{S])},$ $\{pvar(x_{S)\}}$

$arrow\{Xs=[X|RS]\}$,
$f\dot{i}lter(N,xS,$ $[X|Y_{S])}$.

filter$(N,xs, [].)arrow\{Xs=[]\}$;
$arrow\{Xs=[X|RS]$,

$d\dot{i}viSible(N,X)\}$,
filter$(N, RS, [])$.

Only the last rule is given Priority 2 since it has
two bodies. These rules can solve the primes
problem and other similar problems such as
$pr\dot{i}mes([2,3,5,7])$ and primes$([2,3,x, Y, 11])$.

3.4.3 common-subseq
Alist X is a common subsequence of two lists

Y and Z iff X is a subsequence of both Y and
Z . A list X is a subsequence of a list L iff X

is obtained by deleting some elements from L .
Let $P_{C}ommon$ -subseq be a set of definite clauses
that defines the common subsequence relation:

$sub_{S}eq([],x)arrow$.
$sub_{S}eq([A|X], [A|Y])arrow sub_{Seq}(X, Y)$.
$sub_{S}eq([A|X], [B|Y])arrow sub_{Se}q([A|X], Y)$.
$common_{-S}ub_{Se}q(x,Y, Z)arrow subseq(x,Y)$,

$sub_{Se}q(X, z)$.
Given a query

$common_{-}SubSeq([1,2], [1,2,3], [1,2,3,4])$,
our system generates the following rules:

$common-subseq([], Y, Z)arrow\langle true\rangle$.
$common-sub_{S}eq([A|X], [], Z)arrow\langle false\rangle$.
$Common_{-Subq([}seA|x],$ $[B|Y],$ $z)$

$arrow equal(A, B)$,
auto(x,Y,A, Z) ;

$arrow common_{-}subseq([A|x], \mathrm{Y}, z)$.
auto$(X,Y, A, [])$ $arrow\langle false\rangle$.
auto$(X, Y, A, [B|Z])$

$arrow equal(A, B)$,
$common_{-S}ubseq(X, Y, z)$;

$arrow auto(X,Y, A, z)$.
The predicate auto is a newly generated pred-
icate in the process of program synthesis
by our system. These rules can check the
common-subseq relation for all ground lists.
Moreover, they can answer constraint satisfac-
tion problems such as

$common_{-}Subseq([1, X], [1,2,3], [0,1, Y, 3])$.

4 Principle of Rule Generation
4.1 $\mathrm{P}\mathrm{r}o$gram Synthesis and Rule Gen-

eration
The program synthesis discussed in this paper

is defined as generation of a correct (and effi-
cient) program to answer the query from a pair
of a set of definite clauses and a query. In the “e-
quivalent transformation (ET)” model, compu-
tation is regarded as equivalent transformation
of declarative descriptions (e.g., a set of definite
clauses) by a number of equivalent transforma-
tion rules. Therefore, generating ET rules that
can transform a set of definite clauses equiva-
lently is a foundation of the program synthesis
in the ET paradigm. Due to space limitation,
we discuss only the basic method of rule gener-
ation in this paper

4.2 Principle of Rule Generation
We adopt a new notion called meta-

description, which consists of “meta-dauses.”
A meta-description is a representative ex-
pression for many declarative descriptions. A
meta-clause is similar to a clause and consists
of “meta-atoms.” A meta-clause is a repre-
sentative expression of many clauses. Similarly,
a meta-atom is a representative expression of

49

many atoms. The purpose of introducing meta-
descriptions is to reduce many ET sequences of

descriptions into a single ET sequence of meta-
descriptions.

Given a set of definite clauses and a meta-

atom as an input pattern, we generate an ET
rule as follows.
1. From the definite clauses, we prepare cor-

rect “meta-rules,” which are used to trans-

form meta-descriptions equivalently.
2. We determine the first meta-description

(declarative) descriptions. The meaning $\mathcal{A}\Lambda(P)$

of a description P is a set of ground atoms that

is determined by
$\mathcal{M}(P)\mathrm{d}\mathrm{e}\mathrm{f}=\tau_{P}(\emptyset)\cup[TP]^{2}(\emptyset)\cup[T_{P}]^{3}(\emptyset)\cup\cdots$

$= \bigcup_{n=1}^{\infty}[T_{P}]^{n}(\emptyset)$,
where T_{P} is the “immediate consequence map-
ping,” which is defined as follows. For any set x

of ground atoms, $g\in Tp(X)$ iff there is a substi-
tution θ and a definite clause C in P such that
$C\theta$ is a ground clause, g is the head of $C\theta$, and
all the body atoms of $C\theta$ belong to x .

from the given meta-atom.
3. We apply a meta-rule to the first meta-

description to obtain the second meta-
description and repeat application of meta-
rules until we obtain the last meta-
description.

4. We obtain an ET rule from the first and the
last meta-descriptions.

In Sections 5, 6 and 7, we develop a general
theory for rule generation, which will be used

in Section 8 to generate ET rules for the term

domain.
5 Specification and Program

5.1 Description and Its Meaning
In this paper, we use the same basic defini-

tions as those used in the theory of logic pro-
gramming [3], except for the word “program.”
We prefer the word declarative description
(or simply description) to the word “program”
to represent a set of definite clauses. Thus, a
(declarative) description means a set of definite
clauses in this paper.

Let $\mathcal{P}(\Sigma)$ be the set of all descriptions on an
alphabet Σ , where Σ is a four-tuple of a con-
stant set K , a function set F , a variable set V ,
and a predicate set R . Each element of $K,$ F ,
V , and R is called a constant, a function, a vari-
able, and a predicate, respectively. In the rest

of this paper, Σ will not be mentioned for sim-
plicity. For instance, $P(\Sigma)$ is denoted by P and
a description on Σ is called simply a description.

The standard Prolog notation will be used for

5.2 Formalization of Problems
A problem is formalized as a pair (q, D) of

an atom q and a declarative description D . A
pair (q, D) determines a set by rep$(q)\cap \mathcal{M}(D)$,
where rep(q) is the set of all ground instances
of $q.$ Forlnalizing a problem in this paper is re-
garded as representing, by using a pair (q, D) ,
the set to be found in the problem.

This formalization is consistent with the log-
ical formalization in Section 1.2 since it is al-
ready proven that the set rep$(q)\cap \mathcal{M}(D)$ is e-
qual to the set of all ground atoms g such that g

is an instance of q and g is alogical consequence
$\mathrm{o}\mathrm{f}P$.

5.3 Specification
A specification is a pair (Q, D) of an atom set

Q and a declarative description D . A specifica-
tion (Q, D) determines the set $\{(q, D)|q\in Q\}$

of all problems that have to be solved.
For instance, let GL be the set of all ground

lists and let
$Q_{1}=\{in\dot{i}iial(x, y)|x\in GL, y\in GL\}$.

Then, (Q_{1}, D_{0}) is a specification that requires
judgement of whether x is a suffix of y for arbi-
trary ground lists x and y . Let

$Q_{2}=\{\dot{i}nitial(x, y)|x\in V, y\in GL\}$.
Then, (Q_{2}, D_{0}) is a specification that requires
all suffixes x of an arbitrary ground list y to be
found.

5.4 Problem Solving by Equivalent

50

Transformation
A specification (Q, D) can be regarded as a set

of pairs of the form (q, D) . A pair (q, D) formal-
izes a problem as finding a set rep$(q)\cap \mathcal{M}(D)$,
which is called a solution set. Let \hat{q} be an atom
obtained by replacing the predicate r of q with a
new predicate \hat{r} . Let ρ be a mapping such that,
for any set X of ground atoms, $.p(X)$ is the set
of all ground atoms obtained by replacing the
predicate \hat{r} of \hat{r}-atoms in X with the old predi-
cate r . It has been proven that

rep$(q)\cap \mathcal{M}(D)=\rho(\mathrm{A}\mathrm{t}(D\cup\{\hat{q}arrow q\}))$.
Let P_{0} be $D\cup\{\hat{q}arrow q\}$ and assume that
$\mathcal{M}(P_{0})=\mathcal{M}(P_{n})$. Then,

rep$(q)\cap \mathcal{M}(D)=\rho(\mathcal{M}(P_{0}))=\rho(\mathcal{M}(P_{n}))$.
Therefore, instead of computing rep$(q)\cap \mathcal{M}(D)$

directly, we can find the solution set by comput-
ing $p(\mathcal{M}(P_{n}))$. In the ET model, P_{n} is obtained
from P_{0} by repeated equivalent transformation.

$\mathcal{M}(P\mathrm{o})=\mathcal{M}(P1)=\cdots=\mathcal{M}(P_{n})$.

5.5 Equivalent Transformation Rules
A rewriting rule is a subset of $\mathcal{P}\cross$ P. A de-

scription P_{1} is transformed by a rewriting rule
r into a description P_{2} , denoted by $P_{1}arrow rP_{2}$,
iff $(P_{1}, P_{2})\in r$.

An ET rule r is a rewriting rule that satisfies
$(P_{1}, P_{2})\in rarrow \mathcal{M}(P_{1})=\mathcal{M}(P_{2})$.

In order to emphasize that r satisfies this con-
dition, an ET rule is also called a correct ET
rule.

5.6 Correctness of Computation
The correctness of ET rules can be judged in-

dependently of other ET rules. As long as we
use correct ET rules, the correctness of compu-
tation is guaranteed even though ET rules are
applied in any order, which is formalized by the
following theorem:

Theorem 1 Let R be a set of ET rules. Let
$r_{1},$ $r_{2;}r_{3_{f}}$. .., r_{n} be an arbitrary sequence of
ET rules in R. If $P_{0}-^{1}fP_{1},$ $P_{1}arrow r_{2}P_{2},$ \cdots ,

$P_{n-1}-\gamma_{n}arrow P_{n}$, then $\mathcal{M}(P_{0})=\mathcal{M}(P_{n})$. \square

Proof. Let P_{a} and P_{b} be arbitrary declar-
ative descriptions. Let $\dot{i}=1,2,3,$ \cdots , n . Since
$r_{1},$ $r_{2},$ $r_{3},$ $\cdots,$ r_{n} are equivalent transformation
rules, if P_{a} is transformed by r_{i} into P_{b} , then
$\Lambda\Lambda(P_{a})=\mathcal{M}(P_{b})$. Therefore,

$\mathcal{M}(P_{0})=\mathcal{M}(P_{1})=\cdot\cdot*=\Lambda 4(Pn)$.
IIence, we have

$\mathcal{M}(P_{0})=\mathrm{A}l(P_{n})$. \square

5.7 Control by the Priority of Rules
The efficiency of computation depends on the

selection of body atoms and ET rules. There-
fore, control strategy is very important for con-
structing efficient programs.

One of the simplest ways to achieve efficient
computation is to organize rules into lnutual-
ly disjoint groups and put them in the order
of preference for application. When equivalent
transformation is controlled by the priority de-
termined by the ordered rule sets $R_{1},$ $R_{2},$ \cdots ,
R_{n} , a rule r in the rule set R_{i} can be adopted
only when all the rules in $R_{1}\cup R_{2}\cup\cdots\cup\kappa_{-1}$

are inapplicable but- r is applicable. The union
of all rule sets, $R_{1},$ $R_{2},$ $\cdots,$ R_{n} , together with
the priority of each rule is called a prioritized
rule set.

6 Meta-description
6.1 Preliminaries
Let A be the set of all atoms on Σ and S the

set of all substitutions on Σ . Let A be a subset
of A. A is closed iff $a\theta\in A$ for any atom $a\in A$

and any substitution $\theta\in S$.
Let A_{1} and A_{2} be closed subsets of A . A def-

inite clause C is from A_{1} to A_{2} iff
1. all atoms in the body of C are elements of

$A_{1}(body(C)\subset A_{1})$, and
2. the head of C is an element of A_{2}

(head$(C)\in A_{2}$),
where head(C) is the head of C and body(c) is
the set of all atoms in the body of C . The set

51

of all declarative descriptions that consist only
of definite clauses from A_{1} to A_{2} is denoted by
Dscr$(A_{1}, A2)$.

6.2 Definition of Meta-Systems
Let A_{1} and A_{2} be mutually disjoint closed

subsets of A . A meta-system on A_{1} and A_{2} is
a 5-tuple

$\triangle=\langle$ $\hat{A}_{1},A_{1},$ O. , $\phi,$ $e\rangle$,
of four sets.$\hat{4}_{1},$ $A_{1},$ $\Theta,$

\mathcal{B} and a mapping
$\phi:_{\nu}\hat{4}_{1}\mathrm{x}\Thetaarrow A_{1}$,

where B is a subset of $\Theta\cross A_{2}\cross A_{1}^{*}$ and A_{1}^{*} is
the set of all finite subsets of A_{1} . An element of
the set $-\hat{4}_{1}$ is called a meta-atom.

6.3 Meta-clause and Meta-description
A meta-clause (on a meta-system \triangle) is de-

fined as an expression of the form $(m\geq 0)$

$harrow\{\hat{B}_{1},\hat{B}_{2}, \cdots,\hat{B}_{n}\}$,
where
1. the head is always h (called a dummy head),

and
2. the body is a finite set of meta-atoms (on

$\triangle)$.
Note that, in the formal theory, a body of a

meta-clause is not a sequence of meta-atoms but
a finite set of meta-atoms. However, in the case
of informal discussion, this meta-clause is often
written as

$harrow\hat{B}_{1},\hat{B}_{2},$ \cdots,\hat{B}_{n} .
This notation is also applied to the case of usual
definite clauses.

A meta-description (on \triangle) is a set of meta-
clauses (on \triangle). The set of all meta-descriptions
on a meta-system \triangle is denoted by $MD(\triangle)$.

6.4 Instantiation of Meta-clauses
Assume that $\beta=(\theta, H, B)$ in B is given. For

an arbitrary meta-clause
$\hat{C}=(harrow\{\hat{B}_{1},\hat{B}_{2}, \cdot\cdot, ,\hat{B}_{n}\})$,

we define $\psi(\hat{C},\beta)$ as a clause
$Harrow\{\phi(\hat{B}1, \theta), \phi(\hat{B}_{2}, \theta), \cdots, \phi(l?^{\wedge}n’\theta)\}\cup B$.

In other words, $\psi(\hat{C}, \beta)$ is constructed from \hat{C}

by the following steps:

1. The body of \hat{C} , i.e., $\{\hat{B}_{1},\hat{B}_{2}, \cdots,\hat{B}_{n}\}$, is
“instantiated” by θ into a set S of atoms
on A_{1} , i.e.,

$S=\mathrm{f}\phi(\hat{B}1, \theta),$ $\phi(\hat{B}2, \theta),$
$\cdots,$

$\phi(\hat{B}_{n}, \theta)\}$.
2. The head of $\psi(\hat{C},\beta)$ is H in β .
3. The body of $\psi(\hat{C},\beta)$ is the union of the in-

stantiated set S and B in β .
Since

1. H is an element of A_{2} ,
2. B is a finite subset of A_{1} , and
3. $\phi(\hat{B}_{i}, \theta)$ is an element of A_{1} ,

$\psi(\hat{C},\beta)$ belongs to Dscr $(A_{1}, A2)$, i.e., $\psi(\hat{C}, \beta)$

is from A_{1} to A_{2} . The operation for obtaining
a clause $\psi(\hat{C},\beta)$ from a meta-clause \hat{C} is called
instantiation by β .

6.5 Instantiation of Meta-descriptions
A meta-description M is transformed into a

declarative description P_{β} by the instantiation
of all meta-clauses in M by β in $B,$ $\mathrm{i}.\mathrm{e}.’$.

$P_{\beta}=\{C|C=\psi(C^{*}, \beta)|\hat{C}\in M\}$.

The operation for obtaining a declarative de-
scription P_{β} from a meta-description M , which
is denoted by

$P_{\beta}=\psi(M,\beta)$,
is also called instantiation by β .

6.6 Meaning of a Meta-description and
Its Equivalence

Let Dom be the set of all pairs (β, Q) of ele-
ments β in \mathcal{B} and elements Q in $D_{SCr}(A_{1}, A_{2})$,
that is,

$Dom=\mathcal{B}\cross Dscr(A_{1},A2)$.

Given an arbitrary (β, Q) in Dom , a meta-
description M determines a declarative descrip-
tion $D\cup Q\cup\psi(M, \beta)$. In this sense, a meta-
description M “represents” all declarative de-
scriptions in

$\{P|P=D\cup Q\cup\psi(M,\beta), (\beta,Q)\in Dom\}$.

Definition 1 Let D be a set of definite clauses

52

and M a $meta- deScr\dot{ip}tion$. The meaning of M

with respect to D is a mapping
$\overline{\mathcal{M}}_{D}(M):Domarrow 2^{Q}$,

which maps an arbitrary element (β, Q) in Dom

into
$\mathcal{M}(D\cup Q\cup^{\psi}(M,\beta))$.

\square

The “meaning” of M with respect to D includes
all information of the meaning of declarative de-
scriptions $D\cup Q\cup\psi(M,\beta)$ for all elements (β, Q)

in Dom.
We define the equivalence between meta-

descriptions.
Definition 2 Let D be a set of definite claus-
es. Let M_{1} and M_{2} be meta-descriptions. M_{1}

and M_{2} are equivalent with respect to D iff
their meanings with respect to D are identical,
that is,

$\overline{\mathcal{M}}_{D}(M_{1})=\overline{\mathcal{M}}D(M_{2})$. \square

6.7 A Rewriting Rule determined by a
Pair of Meta-descriptions

A pair of meta-descriptions determines a
rewriting rule as follows.
Definition 3 Let D be a set of definite clauses.
Let M_{1} and M_{2} be meta-descriptions. A rewrit-
ing rule determined by M_{1} and M_{2} with respect
to D , denoted by $rr_{D}(M_{1,2}M)$, is the set of all
pairs (P_{1}, P_{2}) of two declarative $deSC\dot{\eta p}ti_{ons}$

$P_{1}=D\cup Q\cup\psi(M_{1},\beta)$ and
$P_{2}=D\cup Q\cup\psi(M_{2},\beta)$

for any element (β,Q) in Dom . \square

Theorem 2 Let D be a set of definite claus-
es. Let M_{1} and M_{2} be meta-descriptions. If M_{1}

and M_{2} are equivalent with respect to D , then
the rewriting rule $rr_{D}(M_{1,2}M)$ is an equiva-
lent transformation rule.
Proof. Assume that (P_{1}, P_{2}) \in

$rr_{D}(M_{1,2}M)$. From the definition, there exists
an element (β, Q) in Dom such that

$P_{1}=D\cup Q\cup\psi(M_{1},\beta)$, and
$P_{2}=D\cup Q\cup\psi(M_{2},\beta)$.

Since M_{1} and M_{2} are equivalent with respect to
D , we have

$\Lambda\not\in(P_{1})=\mathcal{M}(P_{2})$.
Therefore, $rr_{D}(M_{1,2}M)$ is an equivalent trans-
formation rule. ロ

6.8 Meaning of Rewriting Rules based
on a Meta-system

A rewriting rule
$rr_{D}(\{harrow\hat{A}\}, \{harrow\hat{B}_{1},\hat{B}_{2}, \cdots,\hat{B}_{n}\})$

is often denoted by
$\hat{A}arrow\hat{B}_{1},\hat{B}_{2},$ \cdots,\hat{B}_{n} .

By using this rewriting rule,
$Harrow\{\phi(\hat{A}, \theta)\}\cup B$

is transformed into
$Harrow\{\phi(\hat{B}_{1}, \theta),\phi(\hat{B}_{2}, \theta), \cdots, \phi(\hat{B}_{n}, \theta)\}\cup B$

for an arbitrary $\beta=(\theta, H, B)$ in B .
More generally, a rewriting rule with m bodies

$(m=0,1,2, \cdots)$

$rr_{D}(\{harrow\hat{A}\}$,
$\{harrow Body_{1}$,

h –Body‘2,

$harrow Body_{m}\})$

is denoted by
$\hat{A}arrow Body_{1;}$

$arrow Body_{2;}$

$arrow Body_{m}$.
For an arbitrary $\beta=(\theta, H, B)$ in B , this rewrit-
ing rule transforms

$Harrow\{\phi(\hat{A}, \theta)\}\cup B$

into $m\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{a}- \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{u}\mathrm{S}\mathrm{e}\mathrm{s}*$:
$Harrow\phi(Body1, \theta)\cup B$.
$Harrow\phi(Body2, \theta)\cup B$.

$Harrow\phi(B_{\mathit{0}}dym’\theta)\cup B$.

7 A Theory for Rule Generation
7.1 Deflnition of Meta-rules
A meta-rule is a rule that rewrites meta-

descriptions. Repeated application of meta-

$*\phi(Body, \theta)$
$\mathrm{d}\mathrm{e}\mathrm{i}=$

$\{\phi(B_{1}, \theta), \phi(\hat{B}_{2}, \theta), \cdots, \phi(\hat{B}_{n}, \theta)\}$

when $Body=\mathrm{t}\hat{B}_{1},\hat{B}_{2},$ \cdots,\hat{B}_{n} }

53

rules to meta-descriptions is called meta-
computation.

Formally, a meta-rule mr is a set of pairs of
meta-descriptions on a meta-system \triangle , i.e.,

$mr\subset MD(\triangle)\cross MD(\triangle)$.
A meta-description M_{1} is rewritten into a meta-
description M_{2} by a meta-rule mr , denoted by
$M_{1}arrow M_{2}mr$, iff $(M_{1}, M_{2})\in mr$. Let MR be a set
of meta-rules. $M_{1}MRarrow M_{2}$ iffthere is a meta-rule
mr in MR such that $M_{1}mrarrow M_{2}$. When MR is
obvious from the context, it is also written as
$M_{1}arrow M_{2}$.

7.2 Correctness of meta-rules
We define the correctness of meta-rules.

Definition 4 Let D be a set of definite claus-
es. A meta-rule mr is correct with respect to
D iff, for each rewriting pair $(M_{1}, M_{2})\in mr$,
M_{1} and M_{2} are equivalent with respect to D ,

that is_{f}

$(M_{1}, M_{2})\in mrarrow\overline{\mathcal{M}}_{D}(M_{1})=\overline{\mathrm{A}l}_{D()}M_{2}$.

7.3 Correctness of Meta-computation
Theorem 3 Let D be a set of definite clauses
and MR a set of meta-rules. Let

$M_{1}arrow M_{2}arrow M_{3}arrow\cdotsarrow M_{n}$

be an arbitrary rewriting sequence of meta-
descriptions obtained by using meta-rules in
MR. If all meta-rules in MR are correct with
respect to D , then a set $rr_{D}(M_{1,n}M)$ obtained

from this sequence is an equivalent transfor-
mation rule.
Proof. Assume that

$M_{1}arrow M_{2}arrow\cdotsarrow M_{n}$

is obtained by repeated application of meta-
rules in MR. Then, each adjacent pair of rewrit-
ing

$M_{i}arrow M_{i+1}$ $(\dot{i}=1,2, \cdots, n-1)$

preserves the meaning with respect to D , i.e.,
$\overline{\mathcal{M}}_{D}(Mi)=\overline{\mathcal{M}}D(M_{i+}1)(i=1,2, \cdots, n-1)$.

Therefore,
$\overline{\mathcal{M}}_{D}(M_{1})=\overline{\mathcal{M}}D(M_{n})$.

Thus, from Theorem 2, a rule $rr_{D}(M_{1,n}M)$ is
an equivalent transformation rule. \square

7.4 A Method for Rule Generation
Let D be a set of definite clauses. We define a

method for generating ET rules, each of which

has a given meta-atom in its left-hand side.
1. Assume that a meta-atom \hat{A} is given.
2. Prepare a set MR of correct meta-rules

with respect to D .
3. Let \hat{C} be a meta-clause $harrow\hat{A}$. Let M_{1} be

a meta-description $\{\hat{C}\}$.
4. Transform M_{1} into M_{n} by repeated appli-

cation of meta-rules in MR , i.e.,
$M_{1}arrow M_{2}arrow\cdotsarrow M_{n}$.

5. From $M_{1}=\{harrow\hat{A}\}$ and
$M_{n}=\{harrow Body_{1}$,

$harrow Body_{2}$,

$harrow Body_{m}\}$,
obtain a rewriting rule $rr_{D}(M_{1,n}M)$, which
is also denoted as

$\hat{A}arrow Body_{1;}$

$arrow Body_{2;}$

$arrow Body_{m}$.
By Theorem 3, rewriting rules obtained by

this procedure are equivalent transformation
rules.

8 Example in the Term Domain
8.1 A Meta-system
A meta-system for the term domain is $\mathrm{p}\mathrm{r}o_{-}$

posed. This meta-system can be used to gen-
erate many ET rules, including some ET rules
presented in this paper.

Meta-terms are of the same form as usu-
al terms (simple terms and compound terms)

in logic programming, but &-variables and #-
variables are used instead of usual variables. For
example, “terms” such as f(&A, $a,$ $\# Z$), $a,$ &B,
and $\# X$ are meta-terms. An &-variable is a
variable that begins with &(such as &A) and
can be replaced with an arbitrary usual term.
A $\#$ -variable is a variable that begins with $\#$

54

(such as $\# Z$) and can be replaced with an ar-
bitrary usual variable.

Let R_{1} and R_{2} be mutually disjoint subsets
of R_{P} . We assume that R_{1} and R_{2} are both
infinite sets. Let A_{1} be the set of all atoms,
each of which consists of a predicate in R_{1} and
a sequence of (possibly zero) terms. Let A_{2} be
the set of all atoms, each of which consists of
a predicate in R_{2} and a sequence of (possibly
zero) terms.

Let \hat{A}_{1} be the set of all expressions, each of
which consists of a predicate in R_{1} and a se-
quence of (possibly zero) meta-terms. For in-
stance, when equal and app are elements in R_{1} ,

equal(&X, [&AI#Z])
and

$app(\# Z, [a|\ Y], \# Z)$

are elements in $’\hat{4}_{1}$.
Let A_{1} be the set of all atoms consisting of

a predicate in R_{1} and a sequence of (possibly
zero) terms.

Let Θ be the set of all mappings θ , from the

8.2 Meta-rules
The next three rules are simple meta-rules.
(a) $\dot{i}nitial(*A, *B)arrow app(*A, \% Y,$ $*B)$.
(b) $app(*X, *Y, *z)$

$arrow equal(*x, [])$,
equal$(*Y, *Z)$;

$arrow equal$ ($*X,$ [%AI%V]),
equal($*Z,$ [%AI%W]),
app(%V, $*Y$, %W).

(c) $app(*X, \% Y,$ $*Z)arrow in\dot{i}t_{\dot{i}a}l(*X, *Z)$.
All of these transform a meta-description into

another one by replacing a meta-atom (called a
target meta-atom) in a body of a meta-clause
(called a target meta-clause) with a sequence
of meta-atoms.

In these meta-rules, we use $*$ -variables and
%-variables as well as constants, but not &-
variables, $\#$-variables, and ordinary variables.

$*$ -variables are variables that start with $*$

(such $\mathrm{a}\mathrm{s}*Y$), and %-variables are variables that
start with % (such as %Y). $\mathrm{A}*$-variable can be
replaced with any meta-term, and a %-variable

set of all&-variables and all $\#$-variables to the
set of all meta-terms, that satisfy the following
conditions.
1. An&-variable is mapped into a term.
2. A $\#$-variable is mapped into an ordinary

variable.
Let ϕ be a mapping from.$\hat{4}_{1}\cross\Theta$ to A_{1} such

that $\phi(\hat{A}, \theta)$ is the atom obtained by substitut-
ing all&- and #- variables v in \hat{A} with $\theta(v)$.

Let B be the set of all $\beta=(\theta, H,B)$ in
$\Theta\cross A_{2}\mathrm{x}A_{1}^{*}$ that satisfies the following con-
dition. Each $\#$-variable v is mapped by θ into
an ordinary variable that

(b-1) is different from variables substituted for
other #-variables,

(b-2) is not included in any terms substituted for
&-variables, and

(b-3) does not appear in H and B .
Then,

$\Delta=\langle\hat{A}_{1},A_{1}, \Theta, \phi, \beta\rangle$,
is obviously a meta-system.

with any $\#$-variable. On substitution for these
variables, the following “exclusive condition re-
garding %-variables’’ should be satisfied.

[Exclusive Condition Regarding
%-Variables]
Each $\#$-variable substituted for a %-

variable does not appear in the meta-
clauses before and after the transfor-
mation for a reason other than substi-
tution for the %-variable.

8.3 Meta-rules for Equality Atoms
In addition to the meta-rules above, we intro-

duce four meta-rules that are applied to for e-
quality meta-atoms. $\langle true\rangle$ and $\langle false\rangle$ are used
in the same manner as in Section 2.2.

(Ea) equal$([*A|*X], [*B|*\mathrm{Y}])$

$arrow equal(*A, *B)$,
equal$(*X, *Y)$.

(Eb) equal$(*X, *X)arrow\langle true\rangle$.
(Ec) equal$([], [*A|*X])arrow\langle false\rangle$.

equal$([*A|*x], [])arrow(false\rangle$.

55

(Ed) $\mathrm{W}\mathrm{h}\mathrm{e}\mathrm{n}*V$ is a $\#$-variable, and
$*Z$ does not include the #-variable:
equal$(*V, *z)arrow\{*V/*Z\}$.
equal$(*Z, *V)arrow\{*V/*Z\}$.

When there is a meta-atom of the form
equal$([*A|*X], [*B|*Y])$ in the target meta-
clause, this meta-atom can be rewritten, by

meta-rule (Ea), into two meta-atoms of the for-
$\mathrm{m}equal(*A, *B)$ and equal$(*X, *Y)$. By meta-
rule (Eb), an equal meta-atom whose two argu-
ments are identical can be removed. By meta-
rule (Ec), a target meta-clause that includes in
the body an equal meta-atom whose arguments
are a null list and a non-empty list can be delet-
ed. Meta-rule (Ed) means that when there is

an equal meta-atom whose arguments are a #-
variable and a meta-term that does not include
the $\#$ -variable, the equal meta-atom is removed
and the $\#$-variable is replaced with the meta-
term. In this case, all occurrences of the #-
variable in the body of the meta-clause should
also be changed in the same way by the replace-
ment.

8.4 Meta-computation
When a meta-atom initial(&X, []) is given as

an input pattern, we have the following trans-
formation. In this case, each meta-description
consists of one or two meta-clauses.

(1) h\leftarrow initial(&X, []).
by meta-rule (a)

(2) $harrow app(\ X, \# Y, [])$.
by meta-rule (b)

(3) h -equal(&X, []),
equal$(\# Y, [])$.

h\leftarrow equal(&X, $[\# A|\# V]$),
equal$([], [\# A|\# W])$,
$app(\# V, \# Y, \# W)$.

by meta-rule (Ec)
(4) h –equal(&X, []),

equal $(\# Y, [])$.
by meta-rule (Ed)

(5) $harrow equal(\ X, [])$.

Silnilarly, when a meta-atom
initial(&X, [&AI&Z])

is given as an input pattem:
(6) h\leftarrow initial(&X, [&AI&Z]).

by meta-rule (a)
(7) $harrow app$($\ X,$ $\# Y,$ [&A|&z]).

by meta-rule (b)
(8) h\leftarrow equal(&X, []),

equal($\# Y,$ [&A|&z]).
h –equal(&X, $[\# B|\# V]$),

equal$([\ A|\ Z], [\# B|\# W])$,
$app(\# V, \# Y, \# W)$.

by meta-rule (Ed)
(9) h –equal(&X, []).

h\leftarrow equal(&X, $[\# B|\# V]$),
equal$([\ A|\ Z], [\# B|\# W])$,
$app(\# V, \# Y, \# W)$.

by meta-rule (Ea)
(10) $harrow equal$(&X, []).

h\leftarrow equal(&X, $[\# B|\# V]$),
equal(&A, $\# B$),
equal(&Z, $\# W$),
$app(\# V, \# Y, \# W)$.

by meta-rule (Ed)
(11) h\leftarrow equal(&X, []).

h –equal(&X, [&AI#V]),
equal(&Z, $\# W$),
$app(\# V, \# Y, \# W)$.

by meta-rule (Ed)
(12) h –equal(&X, []).

$harrow$ equal(&X, [&AI#V]),
app($\# V,$ $\# Y,$ &Z).

by meta-rule (c)
(13) h\leftarrow equal(&X, []).

h –equal(&X, [&AI#V]),
initial($\# V,$ &Z).

Meta-rule (c) can be applied to the second meta-
clause in (12) since $\# Y$ does not appear except
in the second argument of app($\# V,$ $\# Y,$ &Z) in
(12).

56

8.5 Examples of Rule Generation
Two rules can be created from the example

in this section. Since meta-clause (1) is trans-
formed into (5), we obtain a rule:

(p) initial(&X, $[]$) $arrow equal(\ X, [])$.
By this rule, an atom that matches the
meta-atom initial(&X, []) is changed into
equal(&X, []).

Consider the following ET rule:
equal(&X, &Y)-- {&X=&Y}.

By the composition of the rule (p) and this rule
for equality, we obtain a new ET rule (which is
represented here using the notation in Section
2.5):

$\mathrm{r}7$: $in\dot{i}t\dot{i}al(X, [])arrow\{X=[]\}$.
Furthermore, since meta-clause (6) is trans-

formed into (13), the following rule is obtained.
(q) initial(&X, [&A|&z])

-\rightarrow equal(&X, [])
$arrow equal$ ($\ \gamma x,$ [&AI#V]),

$\dot{i}n\dot{i}t\dot{i}al$($\# V,$ &Z).
Finally, we have:

$\mathrm{r}8$: $in\dot{i}t\dot{i}al(x, [A|Z])arrow\{X=[]\}$;
$arrow\{X=[A|V]\}$,

initial(V, Z) .

9 Comparison
9.1 Program Transformation $\mathrm{v}.\mathrm{s}$. Rule

Generation
Rule generation $(\mathrm{R}\mathrm{G})$ is different from pro-

gram transformation [2] $[4](\mathrm{P}\mathrm{T})$. In logic pro-
gramming, a set of definite clauses is regarded
as specification and as a program at the same
time. PT in logic programming transforms a
set of definite clauses into a new set of definite
clauses. On the other hand, RG generates ET-
rules from a set of definite clauses (and a query).

9.2 Ordinary Variables $\mathrm{v}.\mathrm{s}$. Meta-
variables

Transformation of meta-descriptions is simi-
lar to program transformation of logic program-
s . By omitting &and $\#$ from meta-variables,

we have a sequence similar to a program trans-
formation sequence [4]. For instance, from the
first example in Section 8.4, we have:

(1’) $harrow initial(X$, [] $)$.
(2’) $harrow app(X,Y, [])$.
(3’) $harrow equal(x, [])$,

equal$(Y$, [] $)$.
$harrow equal(X, [A|V])$,

equal$([], [A|W])$,
$app(V, Y, W)$.

(4’) $harrow equal(x, [])$,
equal$(Y$, [] $)$.

(5’) $harrow equal(X$, [] $)$.
This can also be obtained by using the following
ET-rules:

$init\dot{i}al(x, z)arrow app(X, Y, Z)$.
$app(X, Y, Z)arrow equal(X$, [] $)$, equal(Y, z) ;

$arrow equal(X, [A|V]),$ $equal(Z, [A|W])$,
$app(V,Y, W)$.

equal$(x, Y)arrow\{X=Y\}$.
However, these rules can transform (5’) further
into a clause $(harrow$-. $)$, which results in an incor-
rect rule:

$in\dot{i}tial(x, [])arrow\langle true\rangle$.
When these three rules are used, we can not
explain why transformation should be stopped
at (5’). Therefore, equivalent transformation of
usual definite clauses can not be used (at least
without change) for generation of ET rules.

The difference between $\#$ -variables and &-
variables is essential to correct generation of ET
rules. Meta-rules can prevent further t,ransfor-

mation at (5) since there is no rule applicable to
equal(&X, []). On the other hand, when given
equal$(\# X, [])$ instead of equal(&X, []), meta-
rule (Ed) can remove it.

10 Concluding Remarks
In order to develop a foundation for prograni

synthesis in the ET paradigm, we have proposed
a method for generating ET rules from a set
of definite clauses and a rneta-atom. A new
notion called meta-description, which consist-

57

s of “meta-clauses,” was introduced. A meta-
description is a representative expression for

many declarative descriptions. An ET rule

is generated by transforming meta-descriptions

using meta-rules.
One of the most important characteristics of

the proposed method is modularity. A meta-

rule is modular in the sense that its correct-
ness can bejudged independently of other meta-
rules. Meta-rules can be applied in any order,

while the folding rule in logic programming can

not.

References
[1] K. Akama, Y. Shigeta, and E. Miyamoto,

“Problem Solving by Equivalent Transformation of
Logic Programs”, 5th International Conference on In-
formation Systems Analysis and Synthesis $(\mathrm{I}\mathrm{S}\mathrm{A}\mathrm{s}’ 99)$,
1999.

[2] Futamura,Y., Nogi,K. and Takano,A.: Essence
of Generalized Partial Computation, Theoretical
Computer Science,90, pp61-79 (1991).

[3] $\mathrm{J}.\mathrm{W}$. Lloyd, Foundations of Logic Program-
ming, Second edition, Sprillger-Verlag, 1987.

[4] A. Pettorossi and M. Proietti, “Transfolmation
of Logic Programs: Foundations and Techniques”,
The Joumal of Logic Programming, $\mathrm{V}\mathrm{o}\mathrm{l}.19/20$, 1994,

pp.261-320.

58

