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IS THE FREE TOPOLOGICAL GROUP
- ON A C.C.C. SPACE C.C.C. ?

HIERFHEFE IWH #= (Kohzo Yamada)

ABSTRACT. Let F(X ) and A(X) be respectively the free topological group
and the free abelian topological group on a Tychonoff space X. For all natural
number n we denote by F,(X) (An(X)) the subset of F(X) (A(X)) consisting
of all words of reduced length < n. Then F(X) (A(X)) is the union of {F,(X) :
n € N} ({An(X) : n € N}). In addition, for every n € N, F,(X) (A,(X)) is a
continuous image of (X ® X~! @ {e})". Therefore, it follows that if we assume
MA, then the free (abelié,n) topological group on a c.c.c. space is also c.c.c. On
the other hand, we show here that if we assume the existence of a Suslin line,
then there is a c.c.c. space X such that neither F(X) nor A(X) is c.c.c. This
means that the question “Is the free (abelian) topological group on a c.c.c. space

c.c.c. ?” is consistent with ZFC.

1 Introduction

The results in §3 of this note are joint work with Professor Gary Gruenhage (Auburn
University).

All spaces are assumed to be Tychonoff. Let F(X) and A(X) be respectively the
free topological group and the free abelian topological group on a Tychonoff space X
in the sense of Markov [5]. For each n € N, F,,(X) stands for a subset of F(X) formed
by all words whose reduced length is less than or equal to n. Then F(X) is the union
of Fr,(X), n € N. This concept is defined for A(X) in the same fashion.

In this note, we consider the c.c.c. property of FI(X) and A(X). Recall that a
topological space X has the countable chain condition (c.c.c.) iff there is no uncountable
family of pairwise disjoint non-empty open subsets of X. Since both F,(X) and A, (X )
are respectively continuous images of (X @ X' @ {e})" and (X & —X @ {0})™ for each
n € N, it is easy to show that ‘



if we assume MA, then both F(X) and A(X) on a c.c.c. space X is also c.c.c.

On the other hand, Tkacenko [7] proved the following.
" Theorem 1.1 If a space X is pseudocompact, then both F(X) and A(X) are c.c.c.

spaces.

Of course, the reverse implication of the above result does not hold. For, both F(X)
and A(X) on a separable space X is separable. Thus, for example, F(R) and A(R)
are c.c.c. The Tkadenko's result asserts that F'(w;) and A(w;) are c.c.c. however the
ordinal space w; is not c.c.c. Since F(X) and A(X) on a c.c.c. space X are c.c.c.
if we assume MA, one might conjecture that if the finite product of a space X, in
particular X2, has an uncountable pairwise disjoint family of non-empty open subsets,
then neither F(X) nor A(X) could be c.c.c. However, by the above Tkatenko’s result,
the free (abelian) topological group on a compact Suslin line is c.c.c. and also since
there is a pseudocompact space X, in ZFC, whose square has an uncountable discrete
family of non-empty open subsets (apply Example 3.10.19 in [2]), both F(X) and
A(X) on the space X are c.c.c. Of course, if we assume more strongly that a space X
has an uncountable discrete family of non-empty open subsets, then we can prove that
neither F(X) nor A(X) is c.c.c. applying the Graev’s continuous pseudometric on F'(X)
(A(X)) (see Theorem 1 of [3]). However, we should mention that F(X) and A(X) are
not necessary to be c.c.c. on a space X which does not have an uncountable discrete
family of non-empty open subsets. For example, let X be the one-point Lindelofication
~ of an uncountable discrete space. Then X is a P-space, and hence so is F(X) (A(X)),
and the pseudocharacter of F(X) (A(X)) is uncountable. It follows that F(X) (A(X))
is not c.c.c.

The above results suggest that it is not so easy to clarify the question whether both
F(X)and A(X) on ac.c.c.space X are c.c.c.or not. In addition, we don’t know whether
the free (abelian) topological group on a (of course, non-compact) Suslin line is c.c.c.
or not. However, Gruenhage and the author could recently construct a c.c.c. space X
such that neither F(X) and A(X) is c.c.c. under the assumption of the existence of
a Suslin line. Therefore, we can show at least that the statement “the free (abelian)
topolégical group on a c.c.c. space is c.c.c.” is consistent with ZFC.

In the next section, we introduce neighborhood of the identity in F(X) and A(X),

respectively, and which are used for proving the results in §3. By N we denote the set



of all natural numbers. We refer to [4] for elementary properties of topological groups

and to [1] and [3] for the main properties of free topological groups.

2 Neighborhoods of the identity in F(X) and A(X)

We first introduce the neighborhoods of 0 in A(X) constructed by Tkacenko [8] and
Pestov [6].

Let Ux be the universal uniformity on a space X. For each P = {U;,Us,...} €
(Ux), let |

VIP)={z1—y1+z2—y2+ -+ —yp: (i) €U fori =1,... ,k, k € N},
and V = {V(P): P € (Ux)“}. Then the following is known.
Theorem 2.1 ([8],[6]) For a space X, V is a neighborhood base at 0 in A(X).

In the non-abelian case, we introduce the neighborhoods of e in F'(X) which are defined
by the author [10].

Let X be a space and X = X @ {e} & X!, where e is the identity of F(X). Fix an
arbitrary n € N. For a subset U of X which includes the diagonal of X7, let Gn(U)
be a subset of Fy,(X) which consists of the identity e and all words g satisfying the

following conditions;

(1) g can be represented as the reduced form g = z1z2- - zo, where z; € X for
i=1,2,...,kand 1 <k <n,

(2) there is a partition {1,2,...,2k} = {41,42,... , %} U {1, J2,- -, Jk},
(3) W <ig<---<igandig<jsfors=12 ...k,

(4) (zis,mj_sl) eUfors=1,2,... ,kand

(5) is<iy < js<=is<jt <jsfors,t=12,... k.

Then it was proved that G,(U) is a neighborhood of e in Fy,(X) for every U € Ux
and n € N. To prove it, the author [10] applied the following fact:



From Graev’s construction of d which is a continuous pseudometric on F(X) extending
a continuous pseudometric d on X (see the proof of Theorem 1 in [3]), there exists a
~partition {1,2,...,2n} = {i1,49,... ,i} U{J1, J2,... ,jx} satisfying (3) and (5) of the
definition of G,(U) and that d(g,e) = Z';Zl d(z;,, yu,;l).

However, Graev didn’t describe the existence of the above partition in the proof of
Theorem 1 in [3], and also there are no papers in which the above fact is mentioned with
its proof. So, we give here another proof. Though it is rather long and complicated,
the reader will be sure that each G,(U) is a neighborhood of e in Fy,(X).

We introduce the following neighborhood base at e in F'(X) constructed by Tkacenko
[9] which are used in the proof. Let X be a space. For each n € N, we define a mapping
jn from X X X t0 Fon(X) by jn((z,9)) = in(x)is(y) ! for every (z,y) € X" xX".
Let U, be the universal uniformity on X" for each n € N. For each R = {Up:n €
N} € [1;2, Un, we put

o0

Wa(R) = | J{Un)Unn) * * Grn) Unm)) : 7 € Sp} and W(R) = | Wa(R),

n=1
where S, is the permutation group on {1,2,...,n}. Then Tkacenko [9] proved that
{W(R): R e [][2,U,} is a neighborhood base at e in F(X).

Let 4 be a uniformity on a space X and U € Y. Theset UoU € U is defined as
follows: (z,2) € U o U iff there is y € X such that (z,y) € U and (y,z) € U. The

following technical lemma is also used in the proof.

Lemma 2.2 ([8]) LetU be a uniformity on a space X and {Up, Uy, ...} be a sequence

inU such that Upyy0Uppr0Unyy C Uy for eachn =0,1,.... Then for each k € NU{0}
p

and ky, ks, ...k, € N(p € N) such that Y 275 < 27,

i=1

UklOUkzo"'OUkngk.

We define some notation that is used in the proof. Let xzo---x, be a form, where
ne€ Nand z; € X for each i < n. For a,b € {z; : i = 1,2,... ,n}, the inequality
a < b means that a = b or a appears on the left of b in the above form, that is,
there are 4,5 € {1,2,...,n} such that ¢ < j, a = z; and b = z;. The symbols
[zi, z;] and (z;,z;) means the forms z;x;;---x; and x4y -+ -1, respectively. For
a,b,c,d € {z;:i=1,2,...,n}, the symbol [a,b] C [c,d] means that c < a < b < d.



Theorem 2.3 Let X be a space. Then for every U € Ux and everyn € N, G,(U) is
a neighborhood of e in Fon(X).

Proof. Let U € Ux. Then there is a sequence {U,, € Usy : m € N} such that Uy = U,
Un € X2 (X2 {(e,e)}, Un = Uzl and {(z1,57) : (z,9) € Up N X2} =
UnN (X Y2 for m = 1,2,... and Upy1 0 Upyt © Uy € Uy for m = 0,1, ... Since
every Uy, is the universal uniformity, we can take Vj, € U such that Vi, C (U M)k for
each k € N. If we put R = {V},V,,...}, then R € [];2, U;. To prove that an(U) is a
neighborhood of e in F,(X), we shall show here that W(R) N F5,(X) C G,(U).

Let g € W(R) N Fy,(X). Then, by the definition of W(R), there are k € N, # € S
and (wn(i), y,,(z-)) € Vo fori=1,2,...,k such that

9 = J=x)(®r1), Yr())) - Jr2)((Tr2)s Yn2))) * -+ - - Iy (i), Ym(r)))-

For convenience, we only prove when = is the identity (it can be proved similarly in

the general case). So we can put g = x,y7 zoy; "+ zyyy'. Foreachi=1,2,... k
iz — 1

let T; = (ajpi+11$pi+27 s 7‘Tpi+i) and y= (ypﬁ-l, Ypit+2s - - - 1ypi+i)) where p; = ( 2 )

and z;,y; € X for j = p; + 1,p; +2,...p; +1i. Then, g is represented as follows;

_ —1 -1, —1 -1 -1 -1
g =2Z1Y; T2T3Y3 Yz - Tpi+1Tpi+2 " Tpiti Yp,i 0 YUpi+2 Ypigr
-1 -1 -1
Tpp+1Tpe+2 """ Tpptk Yprake """ Ypt2 Ypp+1- (1)
For each 7 = 1,2, Cea ,k, since (azi,yi) € Vz - (Ui(i;l))l - Ui(i;1)+1 X Uigi;12+2 X X

Us-v ; = Upie1 X Upiyz X -+ X Up,4i, We have that (Tp,4j,Yp4s) € Ups for each
2
j=1,2,... 4. This means that

(zi,y)) € Uy forevery l =1,2,... ,pp + k. (2)

Put A={z;:1=1,2,...,pp+k}U{y;':1=1,2,... ,pr + k} and we assume that
ceach element of A is distinct. Since g € F,(X) and the number of the elements of A

is even, the reduced form of g can be represented as follows:
g =222y, Wwhereg<mnandz € Afori=1,2,...,2q. (3)

Since the length of g < 2n, the form (1) of g may contains letters that can be reduced.
Now we fix a way to reduce g from the form (1) to the reduced form (3). To prove



that g € G,(U), we decompose the set {1,2,...,2q} into two sets {i1,49,... ,ix} and
{41, J2,-- -, jx} in the following way.
~ Let 4, =1 and ag,,1) € A such that z;; = a(,,1- Then there is b, 1) € A such that
{ag, 1), ban} = {2, y[l} for some l =1,2,...,pr+ k. If by, 1) is an irreducible letter,
then it is equal to some z;,% = 1,2,...,2¢. Let j; be such that z;, = bi, 1) Clearly
i1 # j1. Otherwise, there is a(;, 2) € A such that b, 1) is reduced by a(, 2). Again take
bii,2) € A such that {ag, 2), buo} = {z;,y; '} for some I =1,2,... ,pr + k. It is clear
that the elements a,,1), br,1)» G(i1,2) and b(;, 2y are distinct elements of A. If b, o) is an
irreducible letter, then we can find a number j; € {1,2,...,2¢}\ {i1} with 2, = b(i,2).
Otherwise, let a(;, 3y € A such that b, 2) is reduced by a;, 3. Continue the step till
we reach an irreducible letter b, j and let j; be a number with z;, = b, ;). Clearly it

- always exists, since A is a finite set.

For the sake of understanding we prepare here the following example:
Let ¢y, Co. ... ,c1p € X such that (s, c3') € Vi, ((e3!, c2), (czty 1)) € Vo,

((C:’)—17 Cs, Cg)(Cgl, Cq, Cg)) € Vé and ((Cé_l, Cs, C10, Cll)(c;lv Cr, 61_217 Cll)) € ‘/;1 Then,

Ziy
I
A(i1,2)  @(ir,3)  Q(in,1)  Hin,5) A(ir,4)  G(ir,6) A, 7)
I I I I i I I
g=c2’1 C3 cgl Co cl_1 C4 cgl C5 Co cgl c;l Cs cgl Cs Ci10 C11 cfll C12 c;l Cr
I Il I Il I I I
b2 by, b D biirs)  biinm) b(iy )
Il
_ Zj1
= cl'l Cg Cio Ci2-

Next let 45 = min{l : I € {1,2,...,2¢} \ {é1,71}}. We start the same step from
z;, and find z;,. Consequently we can get the sets {31, 49, ... ,ix} and {J1, 72, .-, Jk}

satisfying the following properties:

(4—1) {1,2, ,QQ} = {7:1,’1;2,... ,iq}U{jl,jQ,... ,jq}, il < 'iQ < -e <'iq,



4-2) {i1,19,... ,%q,J1,J2,-- - ,Jqr consists of distinct numbers, and
q q

for each s € {1,2,...,q} there is a subset A; = {a(,,1), bi,,1), BGis.2)> Olis,2)s - - - 5 Aisus)s
bisus) } Of A such that

(4—3) Zi, = Qig 1)y Zjs = b(is,us) and A(is,1) < b(is,us)v

(4-4) {ag, ), b, p} = {z,y; '} for some [ =1,2,... ,pe+k, j=1,2,... ,us,

-1

(4-5) by, is reduced by ag, j41), i-e. Qi itl) = b, 5 for j=1,2,... ,u, -1,

4-6 av@- b d=1,2,...,us,8=1,2,...,q} consists of distinct elements of A.
(is,5)> Y(is.7)

Let s,7 € {1,2,...,q},t € {1,2,... ,us} and v € {1,2,... ,u,}. By (4-4) there are
i, € {1,2,...,i} and j,5' € {1,2,... 4} such that {a;,+, by}t = {a:pi+j,yz;frj} and
{ag, ), bem} = {mpi’+j,’y];; ,1+j,}. If ag,y < ag,w) < b, then since these letters
appear in T;y; L bi,v) also appears between a(;, ;) and b, . On the other hand,
assume that ¢,v > 2 and by, t—1) < b, w-1) < a,,1)- Since b, ;1) is reduced by ag, .y
by (4-5), [ba,,t-1), @G.,5y)] = €. Thus, each letter between by, ;1) and a;, s must be
reduced by another letter between them. It follows that by, -1y < a0 < @8-
These arguments yield the following properties:

For each s,7 € {1,2,...,q},t € {1,2,... ,us} and v € {1,2,... ,u,}

ity < Oip) < blist) <> Qi n) < Dii ) < bii,py and
b(z‘s,t) < Qi v) < Q(iy 1) — b(is,t) < b(z‘r,v) < Qi t)-
For each s,7 € {1,2,... ,q},t €{2,3,... ,us} and v € {2,3,... ,u,}

b, t-1) < b w-1) < G > b, e-1) < A, < A, and

(6)

Aig,t) < bipu—1) < by i-1) = A0 < Qi) < by, e-1)-

By (4-1),(4-2) and (4-3), to show that g € W,,(U) it suffices to prove the following two

claims.
Claim 1. (zis,zj_sl) €U foreachs=1,2,...,q.

Foreach j = 1,2,... ,us, by (4-4), we can choose a number (i, j) € {1,2,... ,pé—{—k:}
such that {ag, ;) b))} = {Ti6,9):YiG. ;). From the forms of Up,m € N and the



properties of (2), (4-3) and (4-5), we have that (z;,,2;.") = (a,1), b(l ) € Ulio
Uiig2) © - © Uiy ). If we put Iy = min{i(is,5) : j = 1,2,... ,Us}, then [y > 1.
Therefore, by Lemma 5.1, we conclude that (2, 2}, DeUp-1CU=U.

Claim 2. iy < i, < js <= 1is < jr < js for each 5,7 € {1,2,...,¢}.

Fix s,r € {1,2,...,q}. We shall prove that if ag,,1) < a¢,,1) < bji,u,), then ag, 1y <
biir ) < D(is ) Define a mapping ¢ from A to {1,2,... ,k(k + 1)} by ¢(zp,+;) =
i(i—1)+j and ¢(y; ;) = i(i+1)—j+1foreachi=1,2,... ,kandj =1,2,... ,i. Then
® preserves the order, i.e. for a,a’ € A if a < @ (in the form (1)), then ¢(a) < ¢(a’).
For each t = 1,2,... ,u let a(s,t) and 3(s,t) be the points of the plane R? such that
a(s,t) = (¢(ag,.t ) 0) and B(s,t) = (¢(bg,1),0). We define paths P(s,t) from a(s,t)
to A(s,t) in R? for t = 1,2,... ,u,, paths Q(s,t — 1) from B(s,t — 1) to a(s,t) in R?
for t =2,3,...,u, and a path Q(s,u,) from B(s, us) to a(s, 1), as follows:

(i) If there are ti,ts,...,t € {1,2,...,us} such that [cu, ), dt)] € [ diian)
for each j = 1,2,...,r, where ¢y, ; = min{ag, ), bu,, )} and dg, ;) = max{ag,;),
b(iSaj)} for j = tla t2’ R ,tr,ty then put

P(s,t) = {(¢(cipn)y) 1 0<y <r+1}U {(x r+1) 1 ¢ci,n) < T < Pd,n)}

(ii) If there are t1,t9,... ,t, € {1,2,... ,us} such that [e,.s,), ft,)] le¢io.t) Slist)]
for each j = 1,2,...,r, where e, ) = min{ag, j), b, j-1)} and fu, ;) = max{ag, ),
b(is,j——l)} for j =11,t9,... s, T then put

Q(s,t) = {(d(eip) y) : —(r+1) <y <0}
U{(z, = (r +1)) : ¢leg,n) <o < d(f,0)}
U{(¢(fio)y) s —(r+1) <y <0}

(iii) If there are t1,t9, ... ,t, € {1,2,... ,us} such that [eg, t;), fi..¢;) )] € @iy, 195 bsus))



for each 7 =1,2,... ,r, then put

Q(s,us) = {(d(ag,,1),y) : —(r+1) <y <0}
U{(z, —(r + 1)) : dlag,1)) <& < @(b,w,))}
U {(&(biisus))s¥) - —(r +1) <y <0}

Recall the example on page 5, that is, let
-1, —1, -1, —1 ~1,-1, —1 -1 —1
g = C9 "C3C3 "CaCy C4C5 C5C9Cq €4 CeCq C8C10C11C11 C12C7 C7
—1
= €y "CgC10C12

The following figure illustrates the points a(1,t) = (d(agi,g), 0), B(1,t) = (¢(buy,y), 0)
and the paths P(1,t), Q(1,t), t =1,2,...,7 with respect the above word g.

P(1,3) P(@1,5) P(1,6)
P(1,2) P(1,1) P(1,4) P@,7)
o(1j2) |o()3) |o() |om) |ol)) |of) | a1
Bf2) [ A AP | Ay |6l | Ay | AL
Q(L,2) QL) Q(L,5) Q(L,6)
QL) ,3)
Q(L.7)

The above constructions of the paths and the properties (5) and (6) say that L =
P(s,1)UQ(s,1) U P(s,2)UQ(s,2) U---U P(s,us) UQ(s,us) is a simple closed curve
in R?. Let L(i;) = {(¢(ag, 1)), y) : y < 0}. Since z;, = a;, 1) is irreducible, the letter
a,,1) cannot appear between a, and b, ;1) for each ¢t = 1,2,... ,u,. Hence the
half line L(4,) cannot intersect Q(s,t) for each t = 1,2,... ,us— 1. On the other hand,
since a(;, 1) < agi,,1) < b, u,), L(ir) must intersect Q(s,u,). This means that the half
line L(i,) intersects the simple closed curve L only once. Furthermore, the part of
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L(i,) whose second coordinate is less than the one of Q(s,u,) is an unbounded set in
R2. Therefore, these facts follow that the point (¢(a(, 1)),0) is inside of L. By the
- properties (5) and (6), we can construct a path from (¢(ag, 1)), 0) to (6(bi,u,),0) that
does not intersect L. So, the point (¢(bg, u,)),0) is also inside of L. Now suppose that
Biy r) < G(iy.1) OF Biiyuy) < Dy uy)- Then the half line M(i,) = {(¢(bgi,un)) y) y < 0}
cannot intersect Q(s,us). Furthermore, since a;, = b, u,) 18 irreducible, b, u,) cannot
appear between a(;, ¢ and bg, ¢—1) for each ¢ = 2,3,... , us, and hence M(i,) does not
intersect any Q(s,t). Therefore, the half line M (i,) does not intersect the simple closed
curve L. Since M(i,) is an unbounded subset of R?, it follows that M(i,) is contained
in the outside area of L, and hence so is (¢(b(, u,)),0). This is a contradiction.

By Claim 1 and 2, we can conclude that g € Gn(U ). Therefore, it follows that
W (R) N Fyu(X) € Ga(U). O

For every U € Uy, let G(U) = U2, Ga(U). Then, by Theorem 2.3, we have the

following.

Theorem 2.4 Let X be a space. Then for every U € Ux, G(U) is a neighborhood of
e in F(X).

3 Example

In this section, we shall construct a c.c.c. space X such that neither F(X) nor A(X)
is c.c.c. under the assumption the existence of a Suslin line.

Let T be a Suslin tree such that each node has 2 immediate successors and X be the
space of all branches which topology is induced by {[t] : t € T'} as a clopen base, where
[t] means the set of all branches going through ¢. Then the space X is the required
space. Since it is easy to show that X is a c.c.c. space, we need to prove that neither
F(X) nor A(X) is c.c.c. To begin the proof, we start by defining some notations.

For every z € T, the height of z in T, or ht (z,T), is type({y € T : y < z}). Let
a < w; and t, € T such that t, € Leve(T), where Levy(T) ={x € T :ht {y € T :y <
z}) = a}. Since each node has 2 immediate successors, let tg, and t; be the successors
of to. Pick b% € [ti] and put ki, = type (b%) for i = 0,1. Then, there is a cofinal set W
in w; such that if o, 8 € W and 8 < ¢, then h}, < afori=0,1. For every a < wy, let
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sg(a) < t, such that sg(a) € Levg(T) and

Pa = ({220, (141} U {[sp(@)]\ [sp41(@)] : 6 < 0},

Then P, is a partition of X. Since, for each 8 < «, [sp(a)] \ [ss+1(a)] = [ss(a)] for

i=0or 1, P, is consisting of basic clopen subsets of X, and hence for revery PeP,

and P’ € Pg P and P’ are comparable, that is, if PN P’ # (), then P C P' or P' C P.
Let a € W. In the non-abelian case, put

Us=J{PxP:PeP}u{(ee)} Ul {P'x P PeP,}.

Since the space X is paracompact and U, is an open neighborhood of the diagonal A%
in Yz, we have that U, € Ux. On the other hand, in the abelian case, put

Va=|J{Px P:PeP,}.

Then, we have that V,, € Ux by the same reason. In this note, we only prove that
F(X) is not c.c.c. In the abelian case, we can show that A(X) is not c.c.c. with the
similar argument if we use the neighborhoods V(R,) of 0 in A(X) instead of G(U,),
where R, = {V4, Va, ... } € (Ux)“.

We need the following technical lemmas.

Lemma 3.1 Let U € Ug. IfU = U1, then G(U) = GU)~".

Lemma 3.2 Let A and B be partitions of X such that every A € A and B € B are

comparable. Put

U=|J{AxA:Ac AU{(e,e)}U| {4 x A7 1 A A}
V=|/{BxB:BeB}u{(e,e))u| {B'xB':Be B}

Then G(U)-G(V) C GUUYV).
Theorem 3.3 F(X) is not c.c.c.

Proof. Let g, = b2 b. for each a € W. Then each g, € F(X). To complete the
proof, we shall prove that the family {g, G(U,) : « € W} is pairwise disjoint. Suppose
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that go G(Us) N g3 G(Us) # 0 for some o, § € W with 8 < a. Then, by Lemma 3.1
and 3.2,
9:"9p € G(Us) - G(Up) ™" = G(Us) - G(Us) € G(Ua U Up).

Since g;'gs = b}x_lbg—lb% b}, by the definition of the neighborhood Ga(U) of e in
F4(X), the both of the pairs‘(béﬂl,b};l) and (bg—l,bg_l) must be in U, U U, and
hence (b,,b5) € Us U U for i = 0,1. On the other hand, by the definition, b, € [t]
and b}, € [t5]. Since [to] and [tg] are comparable and § < a, we need the following two

cases.

Case 1. [ta] C [ta]- ,
Since [ta) C [tg+1] = [t5] C [tg] for i = 0 or 1, without loss of generality, we

may assume that i = 0. Then, [tg1] = [t3] and [t5] = [tg] \ [tp+1]. It follows that
[t/@] \ [t5+1] € P, N ’Pg. Since

(b5 bp) € [t x [t5] = [ta] X ([ts] \ [Ea41)),
we conclude that (b}, bs) & Uy U U, but this is a contradiction.

Case 2. [to]N[ts] = 0.

In this case, we can choose v < 3 and i € {0, 1} such that [t,] C [t}] and [tg] € [t;7*].
Hence, Pa 5 [51(e0] \ [sy1(@)] = ] and Py 3 [5,(8)] \ [s241(8)] = [27). By the
definitions of U, and Usp, it follows that

(UaUUs) N X x X = [ U557 U H(ss(@)\ [sea()])? : 6 <,

because ss(a) = s5(8) if § < 7. On the other hand, since b3 € [t3] C [t}] and
b9 € [t9) € [t277], (83, 63) € [t3] x [¢57°]. Thus, it follows that (83,b%) & Uy U Up, and
which is a contradiction.

Since we have contradictions in both of the above cases, we can conclude that
9oG(Uy) N gsG(Ug) = 0. Therefore, F(X) is not c.c.c. 1

Corollary 3.4 Assume (—~SH). Then there is a c.c.c. space X such that neither F(X)
nor A(X) is c.c.c.

Theorem 3.5 The statement “the free (abelian) topological groups on c.c.c. space are

)

c.c.c.” is consistent with ZFC.



We conclude this note with the following question.

Question Is the free (abelian) topological group on a Suslin line c.c.c. ?
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