On the cohomology of Coxeter groups

筑波大学大学院数学研究科 保坂 哲也 (Tetsuya Hosaka)

§1 はじめに

本研究では、有限生成な Coxeter group の cohomology を調べることを目的としている。まず Coxeter group の定義を与える。集合 S と写像 $m: S \times S \to \mathbb{N} \cup \{\infty\}$ で次の条件をみたすものを考える。

- (1) m(s,t) = m(t,s) for all $s,t \in S$,
- (2) m(s,s) = 1 for all $s \in S$,
- (3) $m(s,t) \ge 2$ for all $s \ne t \in S$.

このような Sと m によって

$$W = \langle S \mid (st)^{m(s,t)} = 1 \text{ for } s, t \in S \rangle,$$

と表現される群 W を Coxeter group とよぶ。そして (W,S) の組みを Coxeter system とよぶ。

Coxeter group の歴史は古く、その由来は、鏡映によって生成される有限群 (有限鏡映群)が上記のような表現をもつ有限群として特徴付けられることを H. S. M. Coxeter が証明したことによる。現在では有限無限を問わず、上記のような表現をもつ群は Coxeter group とよばれる。有限な Coxeter group については [B] にみられるように、完全に分類が与えられるなど、ある程度のことがわかっているのだが、無限な場合についてはほとんど何も分かっていない状況にある。本研究では、直接扱うことの難しい無限の Coxeter group に対して、Coxeter system から定義される幾何的な対象を扱うことによって、もとの Coxeter group に関する情報を得ることを目的としている。特にここでは、最近 M. W. Davis によって [D3] の中で与

えられた Coxeter group の cohomology に関する公式を改良し、Coxeter group の cohomology について考察する。

§2 Davis の定理

まず、いくつかの定義を与える。

Definition. Let (W, S) be a Coxeter system. For a subset $T \subset S$, W_T is defined as the subgroup of W generated by T, and called a *parabolic subgroup*. It is known that the pair (W_T, T) is also a Coxeter system ([B]). If T is the empty set, then W_T is the trivial group.

Let $S^f(W, S)$ be the family of subsets T of S such that W_T is finite. We note that the empty set is a member of $S^f(W, S)$. We define a simplicial complex L(W, S) by the following conditions:

- (1) the vertex set of L(W, S) is S, and
- (2) for each nonempty subset T of S, T spans a simplex of L(W, S) if and only if $T \in \mathcal{S}^f(W, S)$.

For each nonempty subset T of S, $L(W_T, T)$ is a subcomplex of L(W, S).

Remark. If (W_1, S_1) and (W_2, S_2) are Coxeter systems, then $(W_1 \times W_2, S_1 \cup S_2)$ and $(W_1 * W_2, S_1 \cup S_2)$ are also Coxeter system. Indeed, if

$$W_i = \langle S_i | (st)^{m_i(s,t)} = 1 \text{ for } s, t \in S_i \rangle$$

for each i = 1, 2, then we define $m, m' : S_1 \cup S_2 \to \mathbf{N} \cup \{\infty\}$ as

$$m(s,t) := \begin{cases} m_1(s,t) & \text{if } s,t \in S_1 \\ m_2(s,t) & \text{if } s,t \in S_2 \\ 2 & \text{otherwise,} \end{cases} \quad m'(s,t) := \begin{cases} m_1(s,t) & \text{if } s,t \in S_1 \\ m_2(s,t) & \text{if } s,t \in S_2 \\ \infty & \text{otherwise.} \end{cases}$$

Then we have

$$W_1 \times W_2 = \langle S_1 \cup S_2 | (st)^{m(s,t)} = 1 \text{ for } s, t \in S_1 \cup S_2 \rangle,$$

 $W_1 * W_2 = \langle S_1 \cup S_2 | (st)^{m'(s,t)} = 1 \text{ for } s, t \in S_1 \cup S_2 \rangle.$

By the definition of L(W, S), we also have

$$L(W_1 \times W_2, S_1 \cup S_2) = L(W_1, S_1) * L(W_2, S_2)$$
 (simplicial join)
 $L(W_1 * W_2, S_1 \cup S_2) = L(W_1, S_1) \cup L(W_2, S_2)$ (disjoint union).

本論文では、Coxeter system (W,S) について、S は常に有限集合であるものとする。また、簡単のため

$$S^f := S^f(W, S)$$
$$L := L(W, S)$$
$$L_T := L(W_T, T)$$

とあらわすことにする。

Definition. Let (W, S) be a Coxeter system. We define K as the simplicial cone over the barycentric subdivision sd L of L = L(W, S). For each $s \in S$, the closed star of s in sd L is denoted by K_s . The closed star K_s is a subcomplex of K. For each nonempty subset T of S, we set

$$K^T := \bigcup_{s \in T} K_s.$$

We note that K^T has the same homotopy type as L_T .

Definition. For each $w \in W$, we define a subset S(w) of S as

$$S(w) := \{ s \in S \mid \ell(ws) < \ell(w) \},$$

where $\ell(w)$ is the minimum length of word in S which represents w. For each subset T of S, we define a subset W^T of W as

$$W^T := \{ w \in W \, | \, S(w) = T \}.$$

上記の定義のもと、M. W. Davis によって次の定理が証明された。

Theorem 1 (Davis [D3]). Let (W, S) be a Coxeter system and let Γ be a torsion-free subgroup of finite index in W. Then there exists the following isomorphism:

$$H^*(\Gamma; \mathbf{Z}\Gamma) \cong \bigoplus_{T \in \mathcal{S}^f} \left(\mathbf{Z}(W^T) \otimes H^*(K, K^{S \setminus T}) \right),$$

where $\mathbf{Z}(W^T)$ is the free abelian group on W^T .

Remark. It is known that there exists a torsion-free subgroup Γ of finite index in a Coxeter group W, and $H^*(W; \mathbf{Z}W) \cong H^*(\Gamma; \mathbf{Z}\Gamma)$ (cf. [D1], [D3]).

いま、K は contractible で、 $H^*(K^{S\setminus T})$ と $H^*(L_{S\setminus T})$ は同型となるため、上の定理は次のように書き換えることができる。

$$H^*(\Gamma; \mathbf{Z}\Gamma) \cong \bigoplus_{T \in \mathcal{S}^f} \left(\mathbf{Z}(W^T) \otimes \tilde{H}^{*-1}(L_{S \setminus T}) \right),$$

where \tilde{H}^* denotes the reduced cohomology.

この式からわかるように、 $H^i(\Gamma; \mathbf{Z}\Gamma)$ が (r-ベル群として) 無限生成となる必要十分条件は、ある $T \in \mathcal{S}^f$ で、 W^T が無限集合となり、 $\tilde{H}^{i-1}(L_{S\backslash T}) \neq 0$ となるものが存在することである。

このように、 W^T の元の個数は、 $H^i(\Gamma; \mathbf{Z}\Gamma)$ が有限生成となるか無限生成となるかに関わる係数であるのだが、定義からもわかるように、実際に直接求めることは困難である。ここで、 $\tilde{H}^*(L_{S\backslash T})$ が自明でない場合に、 W^T の元の個数がどのようになるのかを調べ、上で述べた Davis の定理をより簡単にすることを考える。

§3 W^T について

次の補題が成り立つ。この補題の中の 'only if' については, [D3] の中で Davis によって証明されている。その逆の 'if' の部分についても, 自然な議論によって証明することができる。

Lemma 2 (cf. [D3, Lemma 1.10]). Suppose that $T \in \mathcal{S}^f$. Then W^T is a singleton if and only if W decomposes as the direct product: $W = W_{S \setminus T} \times W_T$.

上の補題を用いて、次の補題を示すことに成功した。証明には様々な準備が必要となるため、ここでは証明は省略して証明の方針についてのみ記す。

Lemma 3. Suppose that $T \in \mathcal{S}^f$. If W^T is finite and not a singleton, then $L_{S \setminus T}$ is contractible.

Idea. We give an idea of the proof. Suppose that W^T is finite and not a singleton. Then W does not decompose as the direct product of $W_{S\setminus T}$ and W_T by Lemma 2. Hence there exist $s_0 \in S \setminus T$ and $t_0 \in T$ such that $m(s_0, t_0) \neq 2$. Then we show that $L_{S\setminus T} = s_0 * L_{S\setminus \{\{s_0\}\cup T\}}$.

この補題から、 $\tilde{H}^*(L_{S\backslash T})$ が自明でない場合には、 W^T は一点からなる集合か、もしくは無限集合となることがわかる。次に、T がどのような場合に W^T が一点集合となるのかについて考える。その準備として、定義を与える。

Definition. A Coxeter system (W, S) is said to be *irreducible* if, for any nonempty and proper subset T of S, W does not decompose into the direct product of W_T and $W_{S\setminus T}$.

Let (W, S) be a Coxeter system. Then there exists a unique decomposition $\{S_1, \ldots, S_r\}$ of S such that W is the direct product of the parabolic subgroups W_{S_1}, \ldots, W_{S_r} and each Coxeter system (W_{S_i}, S_i) is irreducible (cf. [B], [H, p.30]). Here we enumerate $\{S_i\}$ so that $S_1, \ldots, S_q \in \mathcal{S}^f$ and $S_{q+1}, \ldots, S_r \notin \mathcal{S}^f$. Let $\tilde{T} := \bigcup_{i=1}^q S_i$ and $\tilde{S} := S \setminus \tilde{T}$. We say that $W_{\tilde{S}}$ is the essential parabolic subgroup in W. We note that $W_{\tilde{T}}$ is finite and W is the direct product of $W_{\tilde{S}}$ and $W_{\tilde{T}}$.

Remark. The essential parabolic subgroup $W_{\tilde{S}}$ has a finite index in W. Hence a torsion-free subgroup Γ of finite index in $W_{\tilde{S}}$ has a finite index in W as well, and $H^*(W; \mathbf{Z}W) \cong H^*(\Gamma; \mathbf{Z}\Gamma) \cong H^*(W_{\tilde{S}}; \mathbf{Z}W_{\tilde{S}})$.

If W is finite, then $\tilde{T}=S$ and \tilde{S} is empty, hence the essential parabolic subgroup is the trivial subgroup.

ここで定義された \tilde{T} は次のような性質をもつ。

Lemma 4. Let T be a subset of S. If $\tilde{T} \setminus T$ is nonempty, then $L_{S \setminus T}$ is contractible.

Proof. Suppose that $\tilde{T} \setminus T$ is nonempty. By definition, W is the direct product of $W_{\tilde{S}}$ and $W_{\tilde{T}}$. Hence

$$W_{S\backslash T} = W_{\tilde{S}\backslash T} \times W_{\tilde{T}\backslash T}$$
 and $L_{S\backslash T} = L_{\tilde{S}\backslash T} * L_{\tilde{T}\backslash T}.$

Since $W_{\tilde{T}}$ is finite, $W_{\tilde{T}\backslash T}$ is finite. Hence $L_{\tilde{T}\backslash T}$ is a simplex. Thus $L_{S\backslash T}$ is contractible.

Lemma 3 と Lemma 4 を用いることにより、次の補題を証明することができる。 この補題によって $H^*(L_{S\backslash T})$ が自明でない場合の W^T の元の個数が決定される。

Lemma 5. Suppose that $T \in S^f$ and $L_{S \setminus T}$ is not contractible. Then W^T is finite if and only if $T = \tilde{T}$.

Proof. Since W is the direct product of $W_{S\setminus \tilde{T}}$ and $W_{\tilde{T}}$, $W^{\tilde{T}}$ is a singleton by Lemma 2. Thus W^T is finite if $T = \tilde{T}$.

Suppose that W^T is finite and $L_{S\backslash T}$ is not contractible. Since $L_{S\backslash T}$ is not contractible, $\tilde{T}\setminus T$ is empty by Lemma 4. Hence $\tilde{T}\subset T$. Since W^T is finite and $L_{S\backslash T}$ is not contractible, W^T is a singleton by Lemma 3. Hence W is the direct product of $W_{S\backslash T}$ and W_T by Lemma 2. Then

$$W = W_{S \setminus T} \times W_T = W_{S \setminus \tilde{T}} \times W_{\tilde{T}}.$$

Since W_T is finite and $\tilde{T} \subset T$, we have $T = \tilde{T}$ by the definition of \tilde{T} .

§4 Coxeter group の cohomology について

Lemma 5 を用いることにより、Theorem 1 は次のように書き換えることができる。

Theorem 6. Let (W,S) be a Coxeter system and Γ a torsion-free subgroup of finite index in W. Then

$$H^{*}(\Gamma; \mathbf{Z}\Gamma) \cong \tilde{H}^{*-1}(L_{\tilde{S}}) \oplus \left(\bigoplus_{\tilde{T} \subseteq T \in \mathcal{S}^{f}} \bigoplus_{\mathbf{Z}} \tilde{H}^{*-1}(L_{S \setminus T})\right)$$
$$\cong \tilde{H}^{*-1}(\tilde{L}) \oplus \left(\bigoplus_{\emptyset \neq T \in \tilde{\mathcal{S}}^{f}} \bigoplus_{\mathbf{Z}} \tilde{H}^{*-1}(\tilde{L}_{\tilde{S} \setminus T})\right),$$

where \tilde{S} is the subset of S such that $W_{\tilde{S}}$ is the essential parabolic subgroup in W, $\tilde{T} = S \setminus \tilde{S}$, $\tilde{L} = L(W_{\tilde{S}}, \tilde{S})$ and $\tilde{S}^f = S^f(W_{\tilde{S}}, \tilde{S}) = S^f \cap \tilde{S}$.

Proof. We note that $W^{\tilde{T}}$ is a singleton by Lemma 2. By Theorem 1 and Lemma 5, we have that

$$H^*(\Gamma;\mathbf{Z}\Gamma)\cong \tilde{H}^{*-1}(L_{S\backslash \tilde{T}})\oplus \left(\bigoplus_{\tilde{T}\neq T\in \mathcal{S}^f}\bigoplus_{\mathbf{Z}}\tilde{H}^{*-1}(L_{S\backslash T})\right).$$

If $\tilde{T} \not\subset T$ (i.e., $\tilde{T} \setminus T$ is nonempty), then $L_{S \setminus T}$ is contractible by Lemma 4. Hence,

$$H^*(\Gamma;\mathbf{Z}\Gamma)\cong \tilde{H}^{*-1}(L_{S\backslash \tilde{T}})\oplus \biggl(\bigoplus_{\tilde{T}\subsetneq T\in\mathcal{S}^f}\bigoplus_{\mathbf{Z}}\tilde{H}^{*-1}(L_{S\backslash T})\biggr).$$

The parabolic subgroup $W_{\tilde{S}}$ has a finite index in W, and $W_{\tilde{S}}$ is the essential parabolic subgroup in the Coxeter system $(W_{\tilde{S}}, \tilde{S})$. Therefore,

$$H^*(\Gamma; \mathbf{Z}\Gamma) \cong \tilde{H}^{*-1}(\tilde{L}) \oplus \left(\bigoplus_{\emptyset \neq T \in \tilde{\mathcal{S}}^f} \bigoplus_{\mathbf{Z}} \tilde{H}^{*-1}(\tilde{L}_{\tilde{S} \setminus T})\right)$$

by Theorem 1 and Lemma 5. ■

この Theorem 6 により、直ちに次の系を得ることができる。

Corollary 7. Let (W,S) be a Coxeter system, Γ a torsion-free subgroup of finite index in W, \tilde{S} the subset of S such that $W_{\tilde{S}}$ is the essential parabolic subgroup in W, and $\tilde{T} = S \setminus \tilde{S}$. Then the following statements are equivalent:

- (1) $H^i(\Gamma; \mathbf{Z}\Gamma)$ is finitely generated;
- (2) $H^{i}(\Gamma; \mathbf{Z}\Gamma)$ is isomorphic to $\tilde{H}^{i-1}(L_{\tilde{S}})$;

(3)
$$\tilde{H}^{i-1}(L_{S\backslash T}) = 0$$
 for each $\tilde{T} \subsetneq T \in \mathcal{S}^f$.

Example. It is known that, for every finite simplicial complex M, there exists a Coxeter system (W, S) such that L(W, S) is equal to the barycentric subdivision of M ([D1, Lemma 11.3]).

Let (W, S) be a Coxeter system such that L = L(W, S) is the barycentric subdivision of a triangulation of the projective plane. In [Dr], Dranishnikov showed that $\operatorname{vcd}_{\mathbf{Z}} W = 3$ and $\operatorname{vcd}_{\mathbf{Q}} W = 2$, where $\operatorname{vcd}_{R} W$ is the virtual cohomological dimension of W over R. Now, using Theorem 6, we calculate the cohomology of a torsion-free subgroup Γ of finite index in W.

Since L is the projective plane,

$$\tilde{H}^i(L) \cong \left\{ egin{aligned} \mathbf{Z}_2, & i=2, \\ 0, & i
eq 2. \end{aligned} \right.$$

Since $L = L_{S\setminus\emptyset}$ is not contractible and W^{\emptyset} is a singleton, \tilde{T} is the empty set (i.e., $W = W_S$ is the essential parabolic subgroup) by Lemma 5. For each $T \in \mathcal{S}^f \setminus \{\emptyset\}$, $L_{S\setminus T}$ has the same homotopy type as a circle. Hence,

$$\tilde{H}^i(L_{S\backslash T})\cong \left\{egin{array}{ll} \mathbf{Z}, & i=1, \\ 0, & i\neq 1. \end{array}\right.$$

Therefore, by Theorem 6, we have

$$H^{i}(\Gamma; \mathbf{Z}\Gamma) \cong \tilde{H}^{i-1}(L) \oplus \left(\bigoplus_{\emptyset
eq T \in \mathcal{S}^{f}} \bigoplus_{\mathbf{Z}} \tilde{H}^{i-1}(L_{S \setminus T}) \right)$$

$$\cong \begin{cases} \mathbf{Z}_{2}, & i = 3, \\ \mathbf{Z} \oplus \mathbf{Z} \oplus \cdots, & i = 2, \\ 0, & \text{otherwise.} \end{cases}$$

上の例からもわかるように、Coxeter group W で、 $H^i(\Gamma; \mathbf{Z}\Gamma)$ は有限生成となり、 $H^j(\Gamma; \mathbf{Z}\Gamma)$ は無限生成となるもの $(i \neq j)$ が存在する。特に、各 i について $H^i(\Gamma; \mathbf{Z}\Gamma)$ が有限生成となる場合については、Theorem 6 の系として次が得られる。

Corollary 8. Let (W, S) be a Coxeter system, Γ a torsion-free subgroup of finite index in W, and \tilde{S} the subset of S such that $W_{\tilde{S}}$ is the essential parabolic subgroup in W. Then the following statements are equivalent:

- (1) $H^i(\Gamma; \mathbf{Z}\Gamma)$ is finitely generated for each i.
- (2) $H^i(\Gamma; \mathbf{Z}\Gamma)$ is isomorphic to $\tilde{H}^{i-1}(L_{\tilde{S}})$ for each i.
- (3) Γ is a Poincaré duality group.

Coxeter system に対して、空間 Σ が次のように定義される。

Definition. Let (W, S) be a Coxeter system and let WS^f be the set of all cosets of the form wW_T , with $w \in W$ and $T \in S^f$. The set WS^f is partially ordered by inclusion. The contractible simplicial complex Σ is defined as the geometric realization of the partially ordered set WS^f ([D3, §3], [D1]). If W is infinite, then Σ is noncompact.

Σ は次のような性質をもつことが知られている。

Remark. It is known that Σ can be cellulated so that the link of each vertex is L ([D2, §9, §10], [M]). In [M], G. Moussong proved that a natural metric on Σ satisfies the CAT(0) condition. Hence, if W is infinite, Σ can be compactified by adding its ideal boundary $\partial \Sigma$ ([D2, §4]). It is known that

$$H^*(\Gamma; \mathbf{Z}\Gamma) \cong H^*(W; \mathbf{Z}W) \cong H_c^*(\Sigma) \cong \check{H}^{*-1}(\partial \Sigma),$$

where Γ is a torsion-free subgroup of finite index in W. Here H_c^* and \check{H}^* denote the compactly supported cohomology and the Čech reduced cohomology, respectively.

実際, Davis によって証明された Theorem 1 は, この Σ の cohomology $H_c^*(\Sigma)$ を計算することによって得られている。

上の Remark と Corollary 8 から直ちに次を得る。

Corollary 9. Let W be a Coxeter group.

- (1) $H^i(W; \mathbf{Z}W)$ is finitely generated for each i if and only if W is a virtual Poincaré duality group.
- (2) Suppose that W is infinite. Then $\check{H}^i(\partial \Sigma)$ is finitely generated for each i if and only if the Čech cohomology of $\partial \Sigma$ is isomorphic to the cohomology of an n-sphere for some n.

References

- [B] N. Bourbaki, *Groupes et Algebrès de Lie*, Chapters IV-VI, Masson, Paris, 1981.
- [Br] K. S. Brown, *Cohomology of groups*, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- [D1] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983), 293–324.
- [D2] M. W. Davis, Nonpositive curvature and reflection groups, Preprint (1994).
- [D3] M. W. Davis, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. **91** (no.2) (1998), 297–314.
- [Dr] A. N. Dranishnikov, On the virtual cohomological dimensions of Coxeter groups, Proc. Amer. Math. Soc. 125 (no.7) (1997), 1885–1891.
- [F] F. T. Farrell, Poincaré duality and groups of type (FP), Comment. Math. Helv. **50** (1975), 187–195.
- [H] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990.
- [M] G. Moussong, *Hyperbolic Coxeter groups*, Ph.D. thesis, The Ohio State University, 1988.