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0 Introduction

The sequence z,, = (noy — [nay), ..., nae, — [na,)); n €N, (ay,...,aq,) € R,
called the Kronecker sequence with respect to (o, ..., ), is distributed uni-
formly in the s-dimensional unit cube if and only if 1, o, . . ., a, are linearly in-

dependent over Q. There is another well-known classical uniformly distributed
sequence, called the van der Corput sequence. Many studies have been made
of the distribution properties of these sequences [2,6,7,9].

In this paper, we study Kronecker sequences by using the accelerated Brun’s
algorithm [13].

Theorem 3.1 shows that we can construct the set of admissible words and
the orbit of the origin by the adding machine transformation (Definition 3.5)
on this set expresses the given Kronecker sequences. We can consider the
van der Corput sequence to be the orbit of the origin under the adding machine
transformation. Therefore, we say that the theorem gives a van der Corput-
type expression of the Kronecker sequence. Following this principle of regard-
ing the van der Corput sequence as an orbit of the adding machine transfor-
mation, a generalization of the van der Corput sequence is studied in [8,10,11].
Pages [12] and Hellekalek [3] also consider the van der Corput sequence from
this point of view.

We see from Theorem 5.1 that the distribution of the Kronecker sequence is
connected with the stepped surface associated with the accelerated Brun’s al-
gorithm. The notion of stepped surfaces is introduced by Ito and Ohtsuki [5].
They construct the stepped surface associated with the modified Jacobi-Perron
algorithm. The theorem gives a geometrical characterization of the Kronecker
sequence and it is reasonable to say that this theorem is a multidimensional
analogue of the classical three-distance theorem for the one-dimensional se-
quence generated by irrational rotation [14]. We emphasize here that the er-
godic property of irrational rotations plays an essential role in the proof of the
theorem.

1 Kronecker sequences

First, we recall the notions of irrational rotations and Kronecker sequences.

N, Z, Q, and R are the sets of all natural numbers, all integers, all rational
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numbers, and all real numbers, respectively. We also set

se={reR|r>a}
>n={i€Z]i2n}

and so on. I denotes the unit matrix. I; denotes the d-dimensional unit matrix.

For z € R, [z] denotes the integer part of z, and [(z1,...,%,)] means for

([z1], -5 [2s])-

Let F, be a parallel shift on R® by @, where o € R?, that is to say Fy
T+ a.

Definition 1.1 A transformation on the s-dimensional unit cube [0,1)* de-
fined by =+~ Fax (mod Z°) is called an irrational rotation if o = (o, ...,a)
satisfies the following condition:

(IR) 1,al,...,a° are linearly independent over Q.

Let a = (a!,...,a*) € (0,1)° satisfy the condition (IR) and o = (1 + o' +
.+ 4+ a*)"la. Let L, be a Z-module defined by (1.1).

1+o! ot ol
o? 1+« o?
(L.1) Lo=2Z + +Z
o’ of 1+af
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The transformation Fy (mod Z*) over R® /Z* and the transformation F, (mod L)

over R*/L, are isomorphic, that is to say there exists a linear isomorphism
®, : R* /L, — R°/Z* that satisfies @,0(F, (mod L,)) = (Fw (mod Z°))o®,.
Note that when o satisfies (IR), ¢/ also satisfies (IR) and vice versa. In this
paper, we consider F, (mod L,) rather than Fy (mod Z°).

Definition 1.2 Let o € (0,1)° satisfy (IR) and let L, be a Z-module de-
fined by (1.1). We define the transformation R, over R® /Ly as Fy (mod Ly).
The s-dimensional Kronecker sequence K, = {Kq(n)}oro with respect to o is

defined by K,(0) =0, K,(n+1) = R.Kq(n).



2 Accelerated Brun’s algorithm

In this section, we define the multidimensional continued fraction algorithm,
called the accelerated Brun’s algorithm [13)].
Definition 2.1 Let

X:{x:(xl,...,xd)e[ﬂ,l)dl z! >m2>-'-->xd}.

For a = (a,...,a%) € X that satisfies (IR), we define

[ 1
a(a)z_a-l—],
( 2
Lo F-[a]>&
e@=1{i if ¥>L-|L]|>% and 1<i<d
. d 1 1
& i > lar
and
2 e(a) 1 e(a)+1 d
(8 o (97 (04
T(a):<J,...,——&—1——,E—a(a),7,...,af).

The triple (X, T, (a(c),e())) is called the accelerated Brun’s algorithm. We
also define ay,a,, and €, as follows:

o — o ifn=20
" T(om-r) ifn>1,

(@ny€n) = (a(om-1),6(apn-1)) forn>1.

Definition 2.2 Fora € N and € € {1,...,d}, we define a matriz A, €
GL(d+ 1,Z) as follows:

A(a,e) = (A'ij)ogi,j,Sd

where
(a if (Z’J) = (O’ 0)
1 if (Z,]) = (0,¢)
Aij=31 if(4,j)=(E,3i—1) and1<i<e
1 if(i,5)=(G,i) ande+1<i<d
(0~ otherwise.

Definition 2.3 For o € X satisfying (IR), we define M(a), My(c) and
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0.(a) as follows:

M(a) = Aa(e)e()

1 ifn=20

Mn(e) = {Mn_l(a)M(an_l) ifn>1,
1 | ifn=0
(@) = {Hnml(a)a}l_l- if n > 0.

For 0 <1,j <d, we define my(a;1,5) as the (i, j)-entry of M,(a), that is to
say

My (@) = (mn(0;%, ))oci j<a -

We also define

d
ln(OA,j) = zmn(a; 7'1.7)

1=0

Definition 2.4 For o € X satisfying (IR), we define b,(a) € R? and d x d-
matrices B(a), B,(a) as follows:

bn(a) = (mn(a;0,0)aj ~ My (0 4, O))1<j<d for n >0,
B(a) = (Bij)1_<_i,j5d |

if (5,7) = (4,1 —1) and 2 < i < eg(a)
1 if (1,5) = (4,1) ande(a) +1<1<d
—’ai Zf (27.7) = (iis(a))

0 otherwise

where Bj; =

b

1 ifn=0
Bale) = {Bn_l(a)B(an_l) ifn> 1.

We also define b () as the i-th element of b,(c), that is to say,

bn(@)f = mn(;0,0)0’ — mn(053,0) i=1,...,d.

Definitions 2.2, 2.3, and 2.4 and direct calculations lead to the following propo-
sition: :



Proposition 2.1 For all n € Z5y, we have

(2.1) (tl) = O (a) My () (tl )

(2.2) bn(@) = Bu(a)'oy,.

3 Van der Corput-type expression

We construct a unique expansion of natural numbers associated with the accel-
erated Brun’s algorithm. By using this expansion, we obtain a van der Corput-
type expression of the Kronecker sequence.

From now on, in this paper, we let a € X satisfy (IR) and we let o, and
(an,€n) be generated from a by the accelerated Brun’s algorithm.

From definition 2.3, we have
lnt1(0;0) = apy1ln(a; 0) + I, (a5 1)
Int1(0;1) = In(0 2)

lnt1(0; eng1 — 1) = ln(a; €nga)
(3.1) /
ln+1(a; E'n+1) = ln(a; O)

lni1(0 eng1 + 1) = ln(os €41 + 1)
ln+1(0‘; d) = ln(a; d)
These recurrent relations (3.1) immediately lead us to the following proposi-
tion:
Proposition 3.1 For all n > 0, there ezists unique k > 0 which satisfies
ln(a; 1) = ln—k(a; O)
Definition 3.1 We define k(n) as the k in the previous proposition.

For any positive integer NV, we have the unique expansion of N in the follow-
ing definition. This is a d-dimensional analogue of the well-known expansion
associated with one-dimensional continued fraction [4,6,15].
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Definition 3.2 Let N be a positive integer. We define ¢(N), e(N), and r(N)
as follows:
C(N) = max{c S ZZ()I l. < N}
e(N) = max {e € Zzol elc(N) < N}
T(N) =N - e(N)lC(N)’
where l, = l,(a; 0). We remark that r(N) < N holds and, taking this inequality
into account, we can define s(N) and c;, 5 =0,...,s(N) thus:
s(N) = min {s € Zy| r**'(N) =0}
= c(N) ifj=0
T e (N)) iz,

where r7(N) denotes r(r(...r(N)...)). Define e;(N), j = 0,1,...,¢(N) as

j times

follows:

e;(N) = e(r'(N)) if 0 < 3i < s(N) such that j = ¢,
! ~ 1o otherwise. .

We then have the unique expansion of N,

¢(N)

(3.2) N =3 ej(N)l(c;0),
=0

associated with the sequence {l,(c;0)}5,.

Definition 3.3 We define a set Q° of sequences of non-negative integers as
follows: .

Q) = {(eo(N),e1x(N), ..., ec)(N),0,0,...) | N =0,1,2,... }.

We also define Q2(N) as (eg(N), ..., eqn)(N),0,0,...).

Definition 3.4 Let Y; be a finite set {0,1,...,a;} with discrete topology and
Y =12, Y; with the product topology. We define Q, as the closure of Q2 in

Y.

From Proposition 3.1, Definition 3.2, Definition 3.3, and Definition 3.4 we have
the following proposition:

Proposition 3.2 (eg,e;,...,€y5,...) € (ZZO)N belongs to Q4 if and only if the
following two conditions hold:
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(1) ej < ajy1 forallj=0,1,2,....
(2) €j = ajy implies ej_y = -+ = ej_k(j)-1 = 0

The adding machine transformation 1* : Q, — Q, is defined as in the follow-
ing definition.

Definition 3.5 Fore = (eg,e1,...) € Q, we define
1+(6) = (0, ey 0, €; + 1,6j+1,€j+2, ‘s ) s
where

j=min{iEZ20| (0,...,0,61;+1,6,'_|_1,6i+2,...) EQQ}.

We say 0 = (0,0,...) as the origin of 2,. Remark that
(17)(0) = Q(n) for all n € Zx
holds.
In the following definition, we define a mapping p from Q2 to R4/ L.

Definition 3.6

pleo, €15 ..,€n,0,0...) = exbr(a) (mod L,)
k=0

When 332, exb(@) (mod L,) = y € R?/L, exists for an e = (eg,e1,...) €
Q4, p(e) denotes the value y and we say that e is the expansion of y.

The following theorem shows that the adding machine transformation on Qq
and the irrational rotation R, are connected by p.

Theorem 3.1 Let e € Q,. When p(e) ezists, it follows that
p(17(e)) = Ra(p(e)).
Corollary 3.1
Ko(N) = p(Q(N)) for all N € Zy.

PROOF. Let e = (eg,e€1,...) and 1*t(e) = (0,...,0,ex + 1, €xt1, €2y .- ).
The following equality '

(33) lk(a; 0) = ’Sejl,-(a; 0) +1



holds from Definition 3.2. From Definition 2.3 and Definition 2.4, we have

i(a; 0)a = Zm,(a i,0)a

=0
(1 + al\ ol
a 1+a
= bj(oz) -+ mj(a; 1, 0) . + mj(a; 2, 0)
(3.4) \ o ) o
(o)
o2
+ -« +mj(o;d,0)
\1+ ad}
=b;(a) (mod L,) forall j € Zx.
From (3.3),
k-1 k—1
be(a) — ) ejbj(a) = le(a; 0)a — Y e;l(a; 0)a
3=0 j""ﬂ
3.5 :
(3:5) (lkaO Ze,l (a; 0)
3=0
=q
holds. We also have
(3.6) p(1*(e)) — p(e) = b(a) — Z ejbj(a) (mod L)

from Definition 3.6. From these equalities (3.5) and (3.6), we have
p(1*(e)) = ple) +a  (mod La),

and the theorem follows. [

4 Stepped surfaces

We define stepped surfaces and substitutions on these from the accelerated
Brun’s algorithm. The notion of stepped surfaces was first introduced by Ito
and Ohtsuki [5]. We introduce the notion following Arnoux and Ito [1].
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Let A be a set of d + 1 letters, that is to say A = {0,1,...,d}. Let .A* be the
set of finite words on the set .4, that is to say A* = U2, A" A* is endowed
with the concatenation product. A substitution o on .A* is an endomorphism
of A* defined as follows:

(1) fori € A, o(i) = W € 4%,
(2) for all U,V € A*, o(UV) = o(U)o(V).

For a word U, leng(U) denotes its length and U(i) € A denotes the i-th
letter of U, that is to say U = U(1)U(2) - - - U(leng(U)). When j < k, U[j, k)
denotes the word U(5)U(j+1) -+ - U(k—1) and U(j, k] the word U(j+1)U(j+
2)---U(k). When j > k, Ulj, k) and U(j, k] denote the empty word.

Definition 4.1 We define a homomorphism f : A — Z%t1 as follows:

f()=e; forie A,
fUV)=fU)+ f(V) forUV e A,

where e;, i = 0,1,...,d denotes the i-th unit vector in R¥™'. We define a
linear transformation % by the following commutative relation:

A* o y A*
fl ' Jf
7,d+1 % y Z+1

Definition 4.2 A substitution o is called unimodular if % has determinant 1
or —1.

We consider only unimodular substitutions in the following part of this paper.

Definition 4.3 We define Z-modules F and F* as follows:

F= @ 2

Za+1x A
F* = {u € Homg(F, Z) | support of u is finite.}

For g € F and h € F*, (h,g) denotes the natural pairing.

For z € Z%! and i € A, (z,14) is identified with the element of F which takes
value 1 at (z,%), and O elsewhere. (z,i*), i € A denotes the element of F*
defined by

<(w,z‘*),(y,j)>={1 ifo=yandi=

0 otherwise.
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We remark that the set {(m,z) | reZtie .A} is a basis of F and the set

{(a:, *) |z e Z i€ A} is its dual basis. For a unimodular substitution o

~ defined as above, we define the one dimensional geometric realization v: F—o
F and its dual map 'o* : F* — F* as in the following definition.

Definition 4.4

leng(W ()

a(z,)= (W) +f(WOLK),WOER)

k=1
(o*(u),v) = (u,'o(v)), forallue F,veF.

From Definition 4.3, Definition 4.2, and Definition 4.4, we have the ‘following
lemma.

Lemma 4.1 (Arnoux-Ito [1]) The map 'o* is defined by

b= Y (% @ (WOLK)),5).
115’;)’(1)6:}

We define a mapping R that give a geometric interpretation of F* and 'o*.
" Forie A, teRand s € {0,1}, A*(é; t) is defined as follows:

/\0(’1:; t) = te;
Aist) = (1 — t)es.

We define E; a subset of R4t! as follows:

2'1,7:2,...,7,"
1,1,..., 1, 0, ...,0
0,1,...,i=1,i+1,...,d

Definition 4.5 Any u € F* is uniquely expressed as a finite sum

81, 82, ..., 8p . .
E( b ' ) = {N (i3 t) 4o+ N (i tn) | 0 < tyynn st < 1},

U= Zuk(xk,z;) sz 7&]) (xk,ik) 75 (mjaij)-
k

When all coefficients u are 1 or —1, u is called geometric. For a geometric



.......................

Flg 4.1. EQ, El, and Eg, (d = 2)

u € F*, R(u) C R is defined as follows:

R((z,7*)) = z + E;,

R (Zk: Uk (T, i,”;)) = [_k_|R((xk, %))

v, € ]R‘”l P,, P>, PZ C R**! and £,, C Z*! are defined for o as follows:

(4.1)

(4.2)
(4.3)
(4.4)

(4.5)

ny £ s B
. {Zkzoek ifn=0
YAlan,en)Vn-1 ifn>1,
P, = {x € R “xvn = 0}
Py = {z e R*" |7v, > 0},
Pz = {x € Rt Izvn > 0}

c Z(e1——eo)+Z(e2—eo)+---+Z(ed—eo) ifn=0
S U VoY o if n > 1.

We have the following proposition immediately from the definition:

Proposition 4.1 For all n € Zxo, Ag, . \Pa-1 = P, and L, = P, N Z%!

hold.

In the following definition, we define stepped surfaces S, and S’ on P,:

Definition 4.6 C, and C], C F* are defined as follows:

Co = {(2,#") [R((z,#") C P> and z ¢ P}
¢ ={(2,i") [R((z,#")) € PZ and z ¢ PZ}.

- Sn and 8, are families of all finite subsets of C,, and C. respectively; that is,

= { Z(:E,\, Z;)

A€A

#A < 00, (.’B)‘, "'i) € Cna
(22,35) # (@x,83) for all A # X
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and

#A < 00, (17)‘,?/;) € c':’u
(22,33) # (@, i}) for all A # X

where elements are denoted as formal sums. An element of S, (resp. S;, ) and
its image by R are called a patch of the stepped surface. IfUV,W eS8, (or

S ) satisfy U =V + W, we write V < U and defineU ~V =W. S, and S,
are defined as follows: .

S:'l = { Z(zhz;)

AEA

S,= U RO, Si= U RQO).

UESa Ues,

We now construct the substitution between stepped surfaces. First, we define
substitutions 0,,, n € N on the set A* as follows: ‘

(W® =00...01 ifi=0
Nammcnses, e’

arn times
W =2 ifi=1
(4.6) on(i) = { W) =€n fi=g,—1
Wien) =0 ifi=e,

Went) =g, +1  ifi=g,+1

Wil =d if i = d.

\

We introduce the following two lemmas which show that 'o7, induces a mapping
from S,_; (resp. S,_;) to S, (resp. S,,).

Lemma 4.2 For all (2,i*) € Cyo_y (resp. Ci_,), it follows that 'o}(z,i*) €
Sn, (resp. S;).

PROOF. We prove the lemma for the case in whichv(x, i*) € Cp—1. We can
prove the case of C],_; in the same way. First we show that

(4.7) (A (2= £ (WP1,m)) ) ,5°) € C
holds for all 4,m, j that satisfy W9 (m) = i.

Let 3, m, j satisfy W{/)(m) = i. We know by (4.1) that

(4.8) Va = My (c) i er = (In(o; 0), ey In(@, d)) € N#H
k=0 B
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holds for all n € Zo. From this fact and Definition 4.6, we have

(4.9) At ey (2= £ (WO1,m))) € P,

(an.en)

Taking Definition 4.1 into account, we see that

%t (x ~f (W,ﬁj)[l,k))) + e;
(4.10) =% (o~ F (WOILK) + £(0(3)))

=%! (x +e+ f (W,Sj)(k, leng(W,(lj))]))
holds. By (4.7) it follows that

'f (W (k, leng(W)]) vay > 0,

and it follows that
(4.11) T +e+f (W,Sj)(k,leng(W,gj))]) € P>,
From (4.10) and (4.11), we have
(412) it (z - f (W) +e; € P,
(4.7) follows from (4.9) and (4.12). |

Second, we show that 'o}(z,*) is geometric for all (z,4*) € C,_;. Let

(ou (e =1 (W0, 0)),57) = (o (2 = £ (W1, 8)) ) .5").
If Wil(k) = Wi(k) = i then j = 4. If k < K then f(WU)[1,k')) #
f(W[1,k)) holds and it contradicts the fact that %, € GL(d + 1;Z). Thus
k = k',j = j' holds. By virtue of Lemma 4.1 we know that 'o?(z,7*) is
geometric. From this fact, (4.7), and Lemma 4.1, we see that the lemma is
proved. [ ,

Lemma 4.3 For all (21,5}), (€2,53) € Ca_1 (or Ci._1), if there exists a unit
chip (y,1*) which satisfies (y,i*) < Yop(z1,57) and (y,i*) < ‘0% (x2,52) then
(z1,J5) = (22, j3) holds.

PROOF. We prove the lemma for the case of C,,_;. We can prove the case of
C,_; in the same way. Let

(xl:jf), (7"2,.7;) € Cn—l:

4.13 21 2] = o L
(4.13) (1,6") < 0@n,31), and (,i*) < 107 (22, 33).
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By virtue of Lemma 4.1, we know that there exist k; and k, Wthh satisfy the
following;: : '

‘ (414) Y= 00',,:1 (1121 e f (W,Ez)[l,kl))) = 00',,:1 (1’2 - f (W#)[l, kg))) .
Remark that
(4.15) o1~ f (WOIL, k) =22 — £ (WL, k2))
follows.
First, we assume z; = . In this case, k; = ky and W (k;) = W2 (k;) = i
hold from (4.14). Then we see j; = j follows from the definition of o, (4.6)
and the lemma follows.
Then we assume T; # Zg. k1 # ko holds. Let k1 < ko. We have z; +

FWD[ky, ky)) = z, from (4.15). This equality and ji = W (k1) lead to
(%2, 73) & Cn_1. This contradicts (4.13). O

Definition 4.7 Mappings 'o}|s and o} s, are called substitutions on the
stepped surfaces associated with the accelerated Brun’s algorithm.

5 Kronecker sequences and domain exchange transformations

In this section, we see the correspondence between the distribution of the
Kronecker sequence K, and stepped surfaces associated with the accelerated
Brun’s algorithm.

First, we prepare five'lemmas related to stepped surfaces and domain exchange
transformations.

Let U, U', U(3), and U'(¢) (¢ € A) denote elements of F* as follows:

Ui = (0,7%), U'(z) = (—ej,1"),
(5.1) e, v S

=0 i=0

From (IR), U (resp. U’) belongs to Sy (resp. Sp). Taking this into account,



we define U, (i), U, € S, and U}, (¢), U}, € S;, (i € A, n € L) as follows:
U (i) = U(z) 1fn=(.)
6} (Un-1(3)) otherwise,

U ifn=0
Un—1) otherwise,

i
U%)={ 3) oo
L

(5.2)

otherwise,

U’ ifn=0
_1) otherwise.

UI

n

From Lemma 4.3,

(5.3) ’ Up= || Un(}) and U, =[] U,®)
icA Y

hold.

Figures 5.1,5.2, and 5.3 show examples of U, U’, U,,, and U]}, in the case where
d =2, o' =1/V3, a® = 1/V5, (an,ea) = (1,2), (1,2), (1,2), (3,1), (4,2),
- (1,1), (3,1), (4,1),.... In these figures, we mark cells that belong to U,(2) or
U} (2) with crosses and cells that belong to U,(3) or U/, (3) with black squares.

Lemma 5.1 ([1]) Foralln € Zso, U < Uy, U' < U}, and U, - U =U., - U’
hold.

PROOF. If n = 0, the statement holds. We assume that U < U,_;, U’ <
U,_, and Up—1 — U =U],_, — U’ hold. From these assumptions and following
two equalities:

Up—U="0}(U,1 = U)+0:(U) -
and

Up=U' = "o (Uy_y = U') + o (U") = U,
it is enough to show that U < %} (U), U' < Y%%(U’) and 0}(U) -
ox(U') — U’ hold. If W) (1) = i, we have (0, j*) < '07(0,*) from Lemma 4. 1
Then U < 0% (U) holds. If W\ (leng(W{?))) = 4, we have
r(—ei, %) > (Oa,jl (—-e,- i (W,gj) [1,leng (W,g”)))) ,j*)

- (s (1 () )
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from Lemma 4.1. Then U’ < 5% (U") holds. When W9 (k) = i, we have
(5.4) e+ f (W,Sj)[l,k)) =f (W,gj)[l,k + 1)) when k < leng (W,(,J))

and

(5.5) %1 (—-e,- —f (W,gj)[l,k))) = —e; when k=Ileng (W(J))

From Lemma 4.1 and equalities (5.4) and (5.5), we have

(5.6)
1 * UI 21 * Ei,i*)
icA
=Y T (e - F (WOLR)),5)
i€A 1<k, jeA
w9 (k)=i
leng(W,) _
=¥ Y (o (~ewogy — / (WPNLK)).57)
JEA k=1
leng(W,ﬁj) )-1
= > (ot (-f (WO E+1))),5") + X (e, 57)
jEA k=1 jEA
leng(W,?)
= Y (%t (-f(WPL,k)),5") +U
jeA k=2
and
on(U) =3 07 (0,4%)
€A
= ¥ (% (-f (WP K)).5*)
i€A 1<k, jEA
w9 (k)=i
(5.7) leng(W)
=Y ¥ (ot (-f(WPILEK)),5") + 2 0,57)
jEA k=2 JjeEA
leng(W{) '
=3 (o (-1 (W9,1)) ) + U
JEA k=2 _

From (5 6) and (5.7), 1o} (U") = U’ = 'o%(U) — U holds. O

Let 7, be a projection from R**! to {(z°,2?,...,z%) € R*!| 2o = 0} along
{1, ). Hereafter, we identify R¢ with {(z%,2!,...,2%) € R¥*!| 25 = 0}. We



105

\

Fig. 5.1. U and U’

Fig. 5.2. Uy

Fig. 5.3. U}



define D,,, D!, D,(i), and D. (i) (i € A, n € Zxg) as follows:

(5.8) D, = m,(R(Ur)), D), = n,(R(U})),
(5.9) Dy(3) = ma(R(Un(3))), Djp(6) = ma(R(Uy(4)))-
We also define D = Dy, D' = D}, D(i) = Dy(i), and D'(i) = Dy(i). From

(5.8)- and Lemma 4.3, we have

D, = || Du(3), D= |]Dn(s);
(5.10) icA icA

if i # j then Do(i) N Da(j) = Dy(5) N DL(j) =
It is trivial to show that D = D'. Then, from Lemma 5.1
(5.11) D,=D, foralln€ Zs
holds.

We introduce the domain exchange transformation on stepped surfaces and
their images projected by m,. We define f,,(i) € Z%*!, i € A as follows:

(5.12) Ma(0)™ = (a0) £al) -+ Fald))

that is to say f,(j) is the j-th column vector of M,(a)™!. fn(j)* denotes the
k-th element of f,(5), that is to say f.(j) = {fa(45)° - .-, f(5)%).

For y € Z%! and u = ¥, ux(xx, 1) € F*, we define y + u as Y ug(y + Zk, if)-
Lemma 5.2 Fori e A, U,(i) = U, (i) + fa(?) holds.

Corollary 5.1 Fori € A, D,(i) = D, (i) + 7o fn(i) holds.

PROOF. If n =0,
Uo(i) = (0,6") = —ei + (—ey,8*) = Ug(4) + fo(i)

holds and the statement follows. We assume that Up,_;(5) = U._;(3) + fa_1(2).
Then we have

Un(z) - (Un 1(7'))
= ( ~1(8) + fa=1(9)) from the induction hypothesis
=1 *(U’ 1) + A oy fa-1())  from (4.6)
= U, (1) + fa(%) from (5.12)

and the lemma follows. [
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Taking (5.3), (5.10) and Lemma 5.2 into account, we define the domain ex-
change transformation.

Definition 5.1 We define the mapping Q, from R(U.) to R(U,) and the
transformation Q,, on D,, as follows:

On(z) =z + fu(1)  if € R(UL(2)
Qn(z) =+ mpfn(t) if z € D, (7).

9, and Q, are called domain exchange transformations.

The next lemma shows that U,, U}, and D,, give periodic tiling.

Lemma 5.3 It follows that
Su= | z+RWL), Sp= L] (z+R(W)),

Zecn ZGCn
and

Rt= || (2+ Dn).

ZEMR Ly

PROOF. It is trivial to show that
So= |] (z+R(Uo)) and S;= || (z+R(Y)).

2€Ly z€Lp

Then from the definition of %o}, (4.5), and Lemma 4.3, the lemma holds. [

In the next lemma, we see that the domain exchange transformation is an
irrational rotation on R?/m,L,. Figure 5.4 and Figure 5.5 show examples of
D7 and Dj for the same « as in the preceding figures. In these figures, large
hexagons drawn with dashed lines denote R? /7, L.

Lemma 5.4 For all x € D,,

Qn(x) =z + ann(o) (mOd 7rn£n)-

PROOF. We see that

Ln = My(a)™ L.
d

= (fn(o) fn(l) e fn(d)) ZZ (ei - eo)

=1

d
= ZZ(fn(z) - fn(O))

i=1



holds from (4.5) and (5.12). Then,

Tnfn(0) = Tnfu(1) = - = mpfald) (mod m,Lp). |

From Definition 5.1 and Lemma, 5.3, the lemma follows. (1

Lemma 5.5

—B,(0)QnB.(a)"! = R,.

PROOF. From Lemma 5.4, we see that @, = F, (mod 7,L,). Then, from
Lemma 5.3, it is enough to show that

(5.13) B (@) Ln = Lo,
and
(5.14) Bu(0)mnfa(0) = ~'a

hold for all 72 € Z . In the case where n = 0, we have (5.13) and (5.14), from
Definition 1.1 and the definition of m,. We assume that

(515) Bn_l(a)wn_lfn_.l(i) = Wofo(i)

holds. From Definition 2.3 and Proposition 2.1, we have

1 1
5.16) = ot _ Moy, :
( (tan-——l) 1 M (on-1) (‘an)

From Definition 2.4,
€it1 if i=1,...,e,—-1
(517) B(an—l)ei =q -l if i=e,

e, if i=e¢e,+1,...,d,

holds. From (5.12), we also have

(5‘18) 4 E-al,,,en) (.I:n—l(o) fn—-l(l) et fn—-ll(d)) = (fn(o) fn(l) U fn(d)) :
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By using (5.16), (5.17) and (5.18), we see that
(5:19)
B(an—1)mnfn(5)
= Ban) (~ou 1a) Fuld)
= B(an-1) (fn—1(i)1(“-t01n) + fa-1(i)?er + - + fo1(i)*"ec, 1
+ (fa-1(8)° = anfaar(5)') e,
+ fac1 (D) ep, 1+ + fao1(i)%eq)

. 1 .
= B(om_1) (fn_l(z)1 ( - t(ai_l, ey 0fr 1 — anog_y,

1
n—1

g, 08) ) + fa-1()%e1 + -+ fro1 (i) e,
+ (fn-fl(i)o - a'nfn—l(i)l)em

+ fae1()™ e+ + fn——l(i)ded)

. 1 | ;
= fn_1(3)' B(0n-1) (—— o t(aﬁ_l, conofr ottt an_l))
n—1 :

+ fac1(9)?B(an-1)e1 + - - + fa—1(8)" B(om-1)€c, -1

+ fa-1(2)°B(an-1)ec, + fn—1(i)5"+lB(Oln—1)eeﬂ+1 + oo+ fa1(i) %4
= fa1(i)er + - + far (i) e, + fro1(8)*(—'om—1)

+ fac1(8)*m legpr + o+ + fao1(i)%eq

= (—-tozn—1 Id) fa-1(4)

= 7Tn—1fn——1 (2)

holds for all ¢ € A. Multiplying the equality (5.19) by By-1(a) from the left,
we see that '

B ()T fu(3) = mofo(3)

holds from (5.15). (5.13) is proved in an analogous way. [

We now have the following theorem, which gives the geometrical character-
ization of the distribution of the Kronecker sequence. This theorem implies
that elements of the Kronecker sequence reside in the lattice that is the
projection of the stepped surface. Figures 5.6 and 5.7 show By(a)mUs and
Ba(e)ms(R(Us) N Z3) respectively where o is the same as in the preceding
figures. In these figures, large hexagons denote R? /(By(a)myL4) = R?/L,. Let
H be a polyhedron which represents R%/L,,.
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Theorem 5.1 For alln € Z,,
(Kak))ici LoD _ _p.(a)ma (R(U) NZ*')  (mod Ly)
—Hﬂ( B, ( )7711 (S nZd+1))
holds.

PROOF. We abbreviate I,,(c; j) to i in the following. From Definition 1.2
and Lemma 5.5, it is enough to show that

(5.20) {Q’“(O)} =t _ = 1 (R(Un) N 2%)
holds.

For V € &, we define C, (V) = {(z,7*) | (z,%*) < V} and C,(V;3) = {(x,5*) €
C.(V) | j = i}. From (4.6), Lemma 4.3, and Definition 2.3, we have

(5.21) #Cn(Up;5) =1 for all j € A.
We consider the orbit of U’(¢), (i € A) by the transformation Q,. Taking

account of Lemmas 5.1, 5.2, and 5.4, we define a set of elements of C,,(Uy; i) U
{U'(4)} and m; € N as follows

U'(4) if j =0,
vi 2 JVi= Vi) Vi € (CalUnid) \{U0}) U {U'(0)}
g and Qu(Vi) N (V.. -, Vi) =0,
undefined 0therw1se,

m; = max{j € Zxo| V; exists}.

If we assume that there exists some j € N that satisfies j < I} — 1 and
Qn(V}) = U(i), then m; = j and, from (5.21), there exists a non-empty
subset B of Co(Un; i) \ {UG)} \ {V4,...,Vi} that satisfies Q,8 = B. This
implies that

@ (m U RO)) =m0 U R(V)

vVeB veB

and contradicts the fact that irrational rotation @, is ergodic. If we assume
that there exists some 7, j' € N that satisfies j' < j < I{ —1 and (Vi) =V},
then @,({V},...,Vi}) ={V},...,V}}. Thisis also a contradlctxon Thus

(5.222) {U'()), Qu(U'(3)), .., Q™" (U'(5))}
= (Ca(Un; ) \{U@)}) U {U'(5)}
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Fig. 5.6. B4(a, B)msUy

Fig. 5.7. By(o, B)ma(R(Uy) NZ3)



and

(5.22b) QHU'(E) = U().

hold. From Definition 4.5

(5.23a) RU@G)NZH =RU'(j + 1)) N2 for j € A\ {d}
and
(5.23b) {0} = R(U'(0)) N Z4+!

hold. From (5.22) and (5.23), we have

(5.24) Qlat+h(0) € m, (R(U(z')) NZ™Y) forie A.

Then we have (5.20). O
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