Langevin型確率常微分方程式系の数値解について

岐阜聖徳学園大学 齊藤善弘 (Yoshihiro Saito) 名大院•人間情報 長岡正隆 (Masataka Nagaoka)

1 はじめに

確率常微分方程式(Stochastic Ordinary Differential Equations 以下 SODEs と略す)の 数値解法に関する研究が盛んに行われている. SODEs の時間離散近似解法は、大きく分け て2種類(強い意味と弱い意味)の数値スキームが提案され、各々収束次数の高いスキー ムが開発されている. ところが、提案されている数値スキームによる解は統計量で得ら れ、しかも予想以上に数値解の精度が良くない. そのため、時間離散近似解法は実用的で ないと見られている.本論文では、Langevin型SODEの時間離散近似解法による数値解 の誤差を決定論的部分と統計的部分に分けて考察し、時間離散近似解法の問題点について 述べる.

2 Langevin 型 SODE 系の時間離散近似解法

本論文では、次のような自励系のd次元Langevin型SODE系を考える.

$$dX = f(X)dt + GdW$$

ここで、 $f = \{f^i\}$ はd次元ベクトル値函数, $G = \{g^{ij}\}$ は $d \times m$ 定数行列, $W = \{W^j\}$ はm次元 Wiener 過程を表す.本論文で考察する SODE 系は拡散項のGをd次元対角ノイズ, すなわち,

 $G = diag(g^1, g^2, \cdots, g^d)$

とする. SODE系(2.1)に対して、様々な数値スキームが提案されている. 数値スキーム には、収束値に適応した2種類の数値スキーム、すなわち強い意味の近似法(strong approximation methods)と弱い意味の近似法(weak approximation methods)がある. 強い 意味の近似法はSODEの解の軌道(sample path)に対して良い近似を与える数値スキーム である. 弱い意味の近似法はSODEの解の分布(平均や分散)を最良に近似するスキー ムである.

まず、本論文でとりあげる強い意味の数値スキームをいくつか紹介しよう.ただし、数 値スキームに現れる記法は

$$\Delta t_n = t_{n+1} - t_n, \quad \Delta W_n^i = W^i(t_{n+1}) - W^i(t_n),$$

$$\Delta Z_n^i = \int_{t_n}^{t_{n+1}} \int_{t_n}^{s_2} dW^i(s_1) ds_2, \quad f_n^i = f^i(\bar{X}_n),$$

を意味し、上付き添え字はそのベクトルの成分を表す.そして、数値スキームは方程式 (2.1)に対応する型になっていることに注意しておく.

1. Euler スキーム

収束次数0.5のEulerスキームは次式で与えられる.

(2.2)
$$\bar{X}_{n+1}^i = \bar{X}_n^i + f_n^i \Delta t_n + g^i \Delta W_n^i.$$

2. Heun スキーム

Heun スキームはRunge-Kutta型スキームの一つである. これは2段Runge-Kutta法(Heun 法)のSODE版である[2].

(2.3)
$$\bar{X}_{n+1}^{i} = \bar{X}_{n}^{i} + \frac{1}{2} [F_{1}^{i} + F_{2}^{i}] \Delta t_{n} + g^{i} \Delta W_{n}^{i},$$

ここで,

$$F_1^i = f^i(\bar{X}_n), \quad F_2^i = f^i(\bar{X}_n + F_1 \Delta t_n + G \Delta W_n).$$

Heun スキーム(2.3)は、Langevin型SODEに対して強い意味で1次を達成することができる.

3. order 1.5 strong Ito-Taylor スキーム

Ito-Taylor スキームはSODEの解をIto-Taylor 展開し、収束次数に応じた項で打ち切ってできたスキームである[4].

(2.4)
$$\bar{X}_{n+1}^{i} = \bar{X}_{n}^{i} + f_{n}^{i} \Delta t_{n} + g^{i} \Delta W_{n}^{i} + \frac{1}{2} L^{0} f^{i} (\Delta t_{n})^{2} + \sum_{j=1}^{a} L^{j} f^{i} \Delta Z_{n}^{j}$$

$$L^{0} = \sum_{k=1}^{d} f^{k} \frac{\partial}{\partial x^{k}} + \frac{1}{2} \sum_{k=1}^{d} (g^{k})^{2} \frac{\partial}{\partial x^{k} \partial x^{k}}, \quad L^{j} = g^{j} \frac{\partial}{\partial x^{j}}.$$

4. Explicit order 1.5 strong スキーム

explicit スキームはTaylor スキーム(2.4)が基になっていて, Taylor スキームに現れる微係数を適当な差分で置き換えてできたスキームである[4].

(2.5)
$$\bar{X}_{n+1}^{i} = \bar{X}_{n}^{i} + g^{i} \Delta W_{n}^{i} + \frac{1}{2\sqrt{\Delta t_{n}}} \sum_{j=1}^{d} (f^{i}(Y_{+}^{j}) - f^{i}(Y_{-}^{j})) \Delta Z_{n}^{j} + \frac{1}{4} \Delta t_{n} \sum_{j=1}^{d} (f^{i}(Y_{+}^{j}) - \frac{2(d-2)}{d} f_{n}^{i} + f^{i}(Y_{-}^{j})),$$

$$Y^j_{\pm} = \bar{X}_n + \frac{1}{d} f_n \Delta t_n \pm g^j \sqrt{\Delta t_n}.$$

Euler スキーム (2.2), Heun スキーム (2.3), Taylor スキーム (2.4), 及び explicit スキーム (2.5) を実行するとき, Wiener 過程の増分 ΔW_n^i 及び ΔZ_n^i は, 平均0, 分散1の互いに独立 な正規乱数 $\xi_n^i > \tilde{\xi}_n^i$ を使って次のように実現すべきである [4].

$$\Delta W_n^i = \xi_n^i \sqrt{\Delta t_n}, \quad \Delta Z_n^i = \frac{1}{2} (\xi_n + \frac{\tilde{\xi_n^i}}{\sqrt{3}}) (\Delta t_n)^{3/2}$$

次節では、これらの数値スキームをテスト方程式に適用しよう.

3 数値シミュレーション

本節では、テスト方程式として、次のような3次元Langevin型のSODE系を考える.

(3.1)
$$d \begin{bmatrix} X^{1} \\ X^{2} \\ X^{3} \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} X^{1} \\ X^{2} \\ X^{3} \end{bmatrix} dt + \begin{bmatrix} dW^{1} \\ dW^{2} \\ dW^{3} \end{bmatrix}$$

初期値は $(X^{1}(0), X^{2}(0), X^{3}(0)) = (0, 0, 0)$ とする. テスト方程式(3.1)の理論解は次式で与えられる.

(3.2)
$$X(t) = \int_0^t R(t,\sigma) dW(\sigma)$$

ここで,

$$R(t,\sigma) = \frac{1}{4} \begin{bmatrix} 1 & \sqrt{2} & 1\\ \sqrt{2} & 2 & \sqrt{2}\\ 1 & \sqrt{2} & 1 \end{bmatrix} e^{(-2+\sqrt{2})(t-\sigma)} + \frac{1}{2} \begin{bmatrix} 1 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 1 \end{bmatrix} e^{-2(t-\sigma)}$$
$$+ \frac{1}{4} \begin{bmatrix} 1 & -\sqrt{2} & 1\\ -\sqrt{2} & 2 & -\sqrt{2}\\ 1 & -\sqrt{2} & 1 \end{bmatrix} e^{(-2-\sqrt{2})(t-\sigma)}$$

である.しかし,強い意味の数値スキームによる誤差の評価において,理論解として(3.2) 式をそのまま使うことができず,工夫が必要である.ここでは,Liske & Platenの手法を 紹介しよう[6].これは(3.2)式に現れる確率積分を

(3.3)
$$\int_0^T e^{-\beta\sigma} dW^i(\sigma) = \sum_{j=1}^N \int_{t_{j-1}}^{t_j} e^{-\beta\sigma} dW^i(\sigma)$$

$$= \sum_{j=1}^{N} e^{-\beta t_{j-1}} (\Delta W_{j-1}^{i} - \beta \Delta \bar{Z}_{j-1}^{i} + \Delta E_{j-1}^{i})$$

で置き換えるものである.ここで、 ΔW_n^i 、 $\Delta Z_n^i = \Delta W_n^i - \Delta Z_n^i$ は各数値スキームに現れる確率変数と同一である.また、 ΔE_j^i は、 ΔW_n^i 、 ΔZ_n^i に現れる正規乱数と独立で、かつ平均0、分散

$$\frac{1}{2\beta}(1 - e^{-2\beta\Delta t_n}) - 2\Delta t_n e^{-\beta\Delta t_n} + \Delta t_n - \beta(\Delta t_n)^2 + \beta^2 \frac{(\Delta t_n)^3}{3}$$

を満たす正規乱数である. 次に、数値解の平均2乗誤差は、まず、10個の標本 S_j (= 1, · · · , 10)

(3.4)
$$S_j = \frac{1}{500} \sum_{i=1}^{500} \sum_{k=1}^{3} (X^{k,i,j}(T) - \bar{X}_N^{k,i,j})^2$$

を求める.それから、誤差の信頼度90%の推定値を次式で計算する.

$$(S - \hat{\sigma} \cdot 1.83, S + \hat{\sigma} \cdot 1.83)$$

$$S = rac{1}{10} \sum_{j=1}^{10} S_j, \quad \hat{\sigma}^2 = rac{1}{9} \sum_{j=1}^{10} (S_j - S)^2$$

ステップ幅 Δt_n は等間隔にとり、2⁻⁴,2⁻⁵,2⁻⁶を採ることにする. T = 15とし、得られた結 果をまとめたものがTable. 1.である. ここで機種はApple社Macintosh Centris 650 を、擬 似乱数にはKahaner らが作成した函数RNORを使用した[3]. Table. 1.から、数値スキー ムの収束次数通りの結果が得られていることがわかる. また、Taylorスキームとexplicit スキームが同じ値になったのは、テスト方程式が線型だからである. ここで誤差評価法を 見返すと、誤差評価に用いた理論解は(3.2)式に現れる確率積分を(3.3)式で置き換え、擬 似乱数によって実現された解であることに注意する. 齊藤・三井[7,8]は、この実現され た解を実現理論解(realized exact solution)と呼び、理論解と区別した. そして、実現理論 解と理論解との誤差の部分を統計的部分、実現理論解と数値解との誤差の部分を決定論的 部分と呼んでいる. つまり、本節で行ったシミュレーションは誤差の決定論的部分を推定 したことになる. 誤差の統計的部分の具体的な評価法についてはまだ確立していないが、 一つの評価法として、実現理論解の実現度という観点で誤差を評価することを試みた[9]. 次節では、実現理論解の2次モーメントについて数値シミュレーションを行う.

4 考察

本節では、テスト方程式(3.1)の2次モーメントについて、理論解と実現理論解とを比較してみる.これは実現理論解を弱い意味の近似とみて評価することを意味する.物理及

Δ	Scheme	$S - \hat{\sigma} \cdot 1.83$	S	$S + \hat{\sigma} \cdot 1.83$
2^{-4}	Euler	$2.60 imes10^{-3}$	$2.76 imes10^{-3}$	$2.92 imes 10^{-3}$
	Heun	7.59×10^{-4}	8.11×10^{-4}	$8.62 imes10^{-4}$
	Taylor 1.5	$4.80 imes 10^{-5}$	$5.17 imes 10^{-5}$	$5.54 imes10^{-5}$
	explicit 1.5	$4.80 imes 10^{-5}$	5.17×10^{-5}	$5.54 imes10^{-5}$
2^{-5}	Euler	$5.78 imes10^{-4}$	$6.34 imes10^{-4}$	$6.89 imes10^{-4}$
	Heun	1.90×10^{-4}	$2.10 imes10^{-4}$	$2.30 imes10^{-4}$
	Taylor 1.5	$2.86 imes 10^{-6}$	$3.19 imes10^{-6}$	$3.53 imes10^{-6}$
	explicit 1.5	$2.86 imes10^{-6}$	$3.19 imes 10^{-6}$	$3.53 imes10^{-6}$
2^{-6}	Euler	$1.32 imes 10^{-4}$	$1.48 imes 10^{-4}$	$1.65 imes 10^{-4}$
	Heun	$4.52 imes 10^{-5}$	$5.25 imes 10^{-5}$	$5.98 imes 10^{-5}$
	Taylor 1.5	$1.69 imes 10^{-7}$	$1.97 imes 10^{-7}$	$2.25 imes 10^{-7}$
	explicit 1.5	$1.69 imes 10^{-7}$	$1.97 imes 10^{-7}$	$2.25 imes 10^{-7}$

Table. 1. 平均2乗誤差の推定値

び化学などの応用分野では、強い意味の近似解より、弱い意味の近似解を求めるだけで充分な場合が多い[5,10]. そして前節の結果より、SODEsの時間離散近似解は対応する実現理論解へ収束することから、実現理論解の実現度(統計的性質)を調べることは応用上重要である. さて、理論解X(t)のモーメント函数M(t)、すなわち

$$M(t) = E(X(t)X(t)^T)$$

は、 線型なSODE系

(4.1)
$$dX = FXdt + \sum_{i=1}^{d} g^{i}dW^{i}(t)$$

(F:d×d定数行列, gⁱ:d次元定数ベクトル)に対して, 次の常微分方程式を解くことで得られる[1].

(4.2)
$$\frac{dM}{dt} = FM + MF^T + \sum_{i=1}^d g^i g^{iT}$$

テスト方程式(3.1)はd=3であるから、次の6つの変数を用意すればよい.

 $Y^1 = E(X^1X^1), \quad Y^2 = E(X^2X^2), \quad Y^3 = E(X^3X^3),$ $Y^4 = E(X^1X^2), \quad Y^5 = E(X^2X^3), \quad Y^6 = E(X^3X^1)$ このとき、テスト方程式(3.1)に対する2次モーメント函数を求めるための常微分方程式は

(4.3)
$$\frac{dY}{dt} = \begin{bmatrix} -4 & 0 & 0 & 2 & 0 & 0 \\ 0 & -4 & 0 & 2 & 2 & 0 \\ 0 & 0 & -4 & 0 & 2 & 0 \\ 1 & 1 & 0 & -4 & 0 & 1 \\ 0 & 1 & 1 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1 & 1 & -4 \end{bmatrix} Y + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

となる. ここで初期値はY(0) = (0,0,0,0,0,0)である. 常微分方程式(4.3)をステップ幅 2⁻⁴のEuler 法を使って, t = 15まで解き,その数値 $Y^1 = E(X^1)^2$ のグラフをFig. 1.に 示す. グラフを見ればわかるように, Y^1 は0から増加し,t = 6のあたりで定常値0.375に 近づく. Y^1 以外の変数についても,同様の傾向なので,以後 Y^1 に関して実現理論解と理 論値との比較を行うことにする. 他方,実現理論解はステップ幅 $\Delta t_n e^{2^{-4}}$ に固定し,軌 道数を100として10個の標本をとり,その全体の平均値,すなわち

$$S = \frac{1}{10 \cdot 100} \sum_{j=1}^{10} \sum_{k=1}^{100} (\hat{X}^{1,k,j})^2$$

を計算し、グラフ化したものがFig. 2. である. また, 10 個の標本を元に信頼度90%の 区間推定し、その上限と下限を記したものがFig. 3. である. 定常値における数値を見 ると、軌道数100では信頼区間の幅の揺らぎが大きく、その上限や下限が理論値にかかり そうになることが見て取れる (t = 7及びt = 14付近). この原因として軌道数が少ない ことが考えられる.そこで、軌道数を1000にして、同様に平均値及び区間推定した結果 をFig. 4.とFig. 5.に示す. 平均値の信頼区間が狭まり、精度が増したことがわかるが (Fig. 5.), それでも、信頼区間の幅の揺らぎは大きく見える. この要因の一つとして擬 似乱数の特性(周期性や独立性)の影響が考えられる.本論文では3次元のテスト方程式 (3.1)を立てたが、実際の応用では100次元,1000次元のSODE系を解くことは普通であ る[5,10,11]. 高次元のSODE系を解く際,コンピュータの能力ゆえ軌道数を充分に大き くとることができない場合、テスト方程式(3.1)の結果(Fig. 3. 及びFig. 5.)よりも悪く なっていることが予想される.また、打ち切り誤差より統計誤差が非常に大きいことも要 因の一つと考えている[9]. つまり、収束次数の高い数値スキームが良い結果を与えると は限らない.テスト方程式(3.1)のようなSODEs系では、計算効率の観点等考慮に入れる と、収束次数の高い数値スキームより Euler スキームの方が良い結果を与えることもあり うる. 逆に、収束次数の高い数値スキームを使用して得られた数値解は対応する実現理論 解に近づいていくのであるから、その数値解は擬似乱数の影響を強く受けていることに なる. そこで、もし実現理論解の実現度を高める擬似乱数群を作ることができたならば、 前節の結果で見たように、収束次数の高い数値スキームによる数値解の信頼度を高めるこ とができると推測している.

5 まとめと今後の課題

Langevin型SODE系の時間離散近似解法による数値解について、3次元のテスト方程式 でシミュレーションを行い考察した. 誤差の決定論的部分を見れば、時間離散近似解法は 理論解より実現理論解に近似する数値解を得るものであることがわかる.他方、実現理論 解の2次モーメントを見ると、軌道数や標本数が数値解に強く影響していることがわかっ た、今後は、並列計算機用も含め、様々な擬似乱数発生器でシミュレーションを行ってい くと同時に、擬似乱数が数値解に与える影響を調べる予定である、また、本論文で取扱っ たテスト方程式は3次元であったが、応用では100以上の高次元のSODE系を解くことが 主である、高次元のSODE系における数値解の誤差の評価、擬似乱数の数値解への影響な ど興味深い課題は多い. さらに、モーメント量を効率良く求める方法として技巧的ではあ るが,分散減少法(variance reduction method)が提案されている[4]. このような手法を 適用することによって,数値解の精度を高めることが期待できるであろう.また、本論文 でとりあげたテスト方程式のように定常解のあるSODE系に対して、数値解の定常値を 必要とする場合がある [5,11]. 初歩的な技法ではあるが、時系列の平滑化または移動平均 をとることが考えられる、このとき、求める数値解の精度や信頼度を得るために、ステッ プ幅及び軌道数や標本数そして移動平均に必要な標本数をいくらにとればよいかなど、工 学的課題が残っている.

参考文献

- [1] Gard, T.C., Introduction to Stochastic Differential Equations, Marcel Dekker, New York, 1988.
- [2] Greiner, A., Strittmatter, W., and Honerkamp, J., Numerical integration of stochastic differential equations., J. Statist. Physics, 51(1987), 95-108.
- [3] Kahaner, D., Moler, C., and Nash, S., Numerical Methods and Software, Prentice Hall Inc., Englewood Cliffs, 1989.
- [4] Kloeden, P.E., and Platen, E., Numerical Solution of Stochastic Differential Equations, Springer-Verlag, New York, 1992.
- [5] 長岡正隆,凝縮系の化学反応と確率数値解析,数理解析研究所講究録,1032,74-85,1998.
- [6] Liske, H. and Platen, E., Simulation studies on time discrete diffusion approximations, Mathematics and Computers in Simulation. 29(1987), 253-260.

- [7] Saito, Y. and Mitsui, T., Simulation of stochastic differential equations, Ann. Inst. Statis. Math., 45(1993), 419–432.
- [8] 齊藤善弘・三井斌友,確率微分方程式の数値スキームの誤差における統計的部分,日本応用数理学会論文誌,4(1994),127-139.
- [9] Saito, Y. and Mitsui, T., Statistical Error Analysis in Numerical Simulation for Stochastic Integral Processes, Numerical Analysis of Ordinary Differential Equations and its Applications, World Scientific Co., 219–228.
- [10] 齊藤善弘・新宮康平・三井斌友, Langevin型拡散方程式(KPZ 方程式)の数値解法, 数 理解析研究所講究録, **1032**, 86–100, 1998.
- [11] Saito, Y. and Nagaoka, M., Characteristics of Numerical Realization via Stochastic Partial Differential Equation: An Application to Density Matrix Calculation, Int. J. Quantum Chem., 74(1999), 653-660.

Fig. 1. 理論解Y¹のグラフ

Fig. 2. 理論値と平均値(数値解)との比較,軌道数100

Fig. 3. 平均値の信頼区間の上限と下限,軌道数100

Fig. 4. 理論値と平均値(数値解)との比較, 軌道数1000

Fig. 5. 平均値の信頼区間の上限と下限,軌道数1000

152