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On the number of zeros of principal
solutions to second-order half-linear
ordinary differential equations
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1. Introduction
First consider the half-linear differential equation

(H) (lz'|*sgn &) + q(t)|z[*sgn e =0, t=>a,

where a > 0 is a constant and ¢(t) is a continuous function on [a,oc),a > 0, with the
property that g(t) > 0 (¢ > a). If & = 1, then equation (H) becomes the linear equation

(L) " +qt)z=0, t>a.

Although (H) is nonlinear for o # 1, its qualitative behavior is essentially the same as
that of the linear equation (L). For any initial condition z(b) = z € R, 2(b) = 2, €
R (b > a), equation (H) has a unique solution z(t) on the interval [a,00). Therefore
a nontrivial solution z(t) of (H) has either a finite number of zeros on [a, 00), in which
case z(t) is called nonoscillatory, or an infinite number of zeros clustering at ¢ = oo, in
which case z(t) is called oscillatory. Furthermore Sturmian separation and comparison
theorems can be established ([1, 5, 6]) for the half-linear equation (H) as a natural
extension of (L). Thus nontrivial solutions of (H) are either all nonoscillatory or else all
oscillatory. As usual, if the former occurs, then (H) is called nonoscillatory, and if the
latter occurs, then (H) is called oscillatory.
Now let us consider the half-linear equation

() (12 1sgn =) + M(@)lel"sgnz =0, t>a

containing a positive parameter A > 0. As in the linear case, we say that (H,) is strongly
nonoscillatory [resp. strongly oscillatory] if (Hy) is nonoscillatory [resp. oscillatory] for
every A > 0.

A complete characterization of the strong nonoscillation and the strong oscillation is
obtained in the following theorem, which is a direct generalization of a result of Nehari

[7].
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THEOREM A (Kusano, Y. Naito and Ogata [4]). (i) (H)) is strongly non-
oscillatory if and only if ' .

(1) lim ¢* q(s)ds = 0.

t—oc0 +

(i) (Hy) is strongly oscillatory if and only if

(2) lim sup ¢* /oo g(s)ds = oo.
¢

t—o0

In this paper we are interested in the situation where (H,) is strongly nonoscillatory
and are concerned with the problem of counting the number of zeros of (nonoscillatory)
solutions of (Hy). The main purpose of this paper is to show that, in the case a > 1,
precise information about the number of zeros can be drawn for some special type of
solutions z(t) of (H,) such that

(3) lim —=+ =

It can be proved that if (H,) is strongly nonoscillatory, then, for each A > 0, there is a
nonoscillatory solution z,(¢) of (H,) satisfying (3) and z(¢) is uniquely determined up
to a nonzero constant multiple. Then we have the next theorem.

THEOREM 1. Let o > 1 and suppose that (H)) is strongly nonoscillatory. Then
there exists a sequence {\,}52, of positive parameters with the properties that

() 0=Jo<Ah<--<A<:er, lim = oo;
(i)  if A€ (An1,An), n=1,2,--+, then =z)(t) has exactlyn — 1 zeros in

the open interval (a,00) and zx(a) # 0;

(i) A=A, n=1,2,---, then ,(t) has ezactly n — 1 zeros in the open
interval (a,00) and z)(a) = 0.

COROLLARY 1. Consider the si‘ngular eigenvalue problem

(Io'|*sgn @'Y + Ag(t)lel"sgnz =0, ¢>a,

(4)

:c(a) =0 and lim—==

Let a > 1 and suppose that (1) holds. Then the totality of eigenvalues of (4) is written as
a sequence {A,}2,, where 0 < Ay < -+ < Ay < -0 e nh-{f}o An = 00, and the eigenfunc-
tion z),(t) of (4) associated with A = A, has ezxactly n — 1 zeros on (a, 00).



124

Theorem 1 is closely related to the results in [2], and Theorem 1 for the case a = 1
is given in [3]. ‘

2. Proof of the Theorem

PROPOSITION 1. Let o > 1 and suppose that (1) holds. Then, for each A > 0,
there is an eventually positive solution zx(t) of (Hy)) satisfying (3). Further, such a
solution z(t) is uniquely determined up to a positive constant multiple.

Note: The condition o > 1 is used for showing that z,(t) is uniquely determined
up to a positive constant multiple. The existence of a solution z(¢) is valid for the case
0<a<l.

If we require that a solution z,(¢) obtained in Proposition 1 satisfies the nomalized
condition

[2a(@)] + [#5(a)]* = 1,

then z,(t) is uniquely determined. We denote this normalized solution of (H,) by
z(t; A). Thus z(t; A) is a unique solution of (H,) such that z(¢; A) is eventually positive
and satisfies

z(t;A) _

(5) dim = =0
and
(6) [e(a; M + [2'(s M =1.

By the proof of Proposition 1 we see that

. M-—)O as t — o0;

Vi
o Viz'(t;)\) =0 as t— oo;
o z(a;A) =1 as A —=+40;
e 2'(a;\) =0 as.‘ A — +0;
and
e z(t;A) is a continuous function of A E.(0,00) fér each fixed ¢ € [a, 0).
Moreover we find that

e there is A, > 0 such that if 0 < A < A, then z(¢;A) > 0 for ¢ 2 a;
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and

o for any. N € IN, there is A* > 0 such that if A > X*, then z(¢; A) has at least N
zeros in the interval [a,a + 1].

Now let us define the generalized trigonometric functions S(7) and C(7). The gen-
eralized sine function S(7) is defined as the solution of the specific half-linear equation

T dr

(1S]°718)" + alS|*15 =0 ( d )
satisfying the initial condition
S(0)y=0, S(0)=1.
The generalized cosine function C(7) is the derivative of S(7): C(r) = S(r). The

generalized trigonometric functions S(7) and C(7) have the same properties as the
classical sine function sinT and the classical cosine function cos7. (See [1] for the
details.) They are defined on R and are periodic with period 2m,, where

2m .
aril/ ot
Further, the generalized Pythagorean theorem holds for S(7) and C(7):

o =

[S(H)*t +C(n)]**t =1 forall T

The generalized sine and cosine functions may be used for the generalized Priifer
transformation. For the solution z(¢;X), we perform the next transformation, which
consists in associating with z(¢; A) the polar functions p(¢; A) and 8(¢; \) defined by

(7) z(t; X) = p(t; 2)S(0(5: ), 2'(A) = p(t; A)C(6(2; ).

It is easy-to see that

1/(a+1)

p(t; ) = (|2 (& V) + o' (55 1))
Moreover it can be shown that 8 = 0(¢; \) satisfies the first order differential equation
© o' = 100)F + 2 g(0)|SO)F
By the properties of z(£; ) and a'(4; ), we have
| lim B(t: A) = Z;ﬁ +2mm, for some m € Z.

We suppose without loss of generality that
T

lim (M) = —.

o
t—c0 2

The basic properties of 8(¢; \) are as follows:
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8(t; A) is a continuous function of A € (0, c0) for each fixed ¢ € [a,00);

e 0(t; ) is strictly increasing in t € [a, 00) for each fixed X € (0, 00);
e 0(t;)) is strictly decreasing in X € (0,00) for each fixed ¢ € [a, 0);
. 7Ta .
o }\1_1}120 0(a;\) = 55
e lim 6(a;\) = —oo.
A—=+o0

For the proofs of the strict increasingness in ¢ € [a, c0) and the strict decreasingness
in A € (0,00) of 8(t; A), the equation (8) is effectively used. The other properties of
0(t; \) are easily proved by the above-mentioned properties of z(t; A) and 2'(t; A).

From the above discussions we see that, for each n =1,2,---, there exists A, > 0
such that

8(a; An) = —(n — 1)7,.

Then, in view of the generalized Prifer transformation (7), we find that the sequence
{\n}o2, satisfies the properties (i), (ii) and (iii) in Theorem 1.
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