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In this paper we consider the differential equations on the models for
transmission of AIDS. At first we shall treat the basic equation which was
proposed by May, Anderson and Mclean on 1988.

$\frac{dX}{dt}=B-(\lambda+\mu)X$ ,

$\frac{dY}{dt}=\lambda X-(v+\mu)Y$ , (1)

$\frac{dN}{dt}=B-\mu N-vY,$ $(N=X+Y)$

where $N;\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}$ population,
$x;\mathrm{s}\mathrm{u}\mathrm{S}\mathrm{C}\mathrm{e}\mathrm{p}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{s}$ ,
$Y;\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d}_{\mathrm{S}}$,
$B$ ; birth process,
$\lambda$ ; force of infection,
$\lambda$ is defined by the following equation,

$\lambda=\frac{\beta cY}{N}$

$v$ ; disease-related death rate
$\mu$ ; death rate related all other causes
$\beta$ ; probability of acquiring infection from any one infected partner,
$c$ ; average rate of acquireing partners.
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The net birth rate $B$ is given by,

$B=\nu(N-(1-\epsilon)Y)$ ,

$\nu$ is theper capita birth rate in the absence of infection and $\epsilon$ is the fraction of

all offspring born infected mothers who survive. By subsutituting this birth

process these assumptions yield the following pair of differetial equations.

$\frac{dN}{dl}=N((\nu-\mu)-(v+(1-\epsilon)\nu)\frac{Y}{N})$ ,

$\frac{dY}{dt}=Y((\beta c-\mu-v)-\beta c\frac{Y}{N})$

This equation is seemed to be little complex but we can solve this by getting
the function $\frac{Y}{N}$ explicitly and using the logistic curve. In this model (1) birth

rate and mortarilty are all constants. This assumptions are convenient when

we consider the case which is occured in the developing coutries. On the

other hand, in the case for tne advanced countries and for the long time

prediction we must consider the age-depended parameters. By appling the

age-dependent population equation we can make the age-dependent model

for transmission of AIDS. This model is expressed by the first order partial

differential equations.

$\frac{\partial X}{\partial a}+\frac{\partial X}{\partial t}$ $=$ $-[\lambda(a,t)+\mu(a)]x$ ,

$\frac{\partial Y}{\partial a}+\frac{\partial Y}{\partial t}$ $=$ $\lambda X-[v+\mu(a)]Y$, (2)

$\frac{\partial N}{\partial a}+\frac{\partial N}{\partial t}$ $=$ $-\mu(a)N-vY$,

where $X,$ $Y,$ $N$ mean the disribution of susceptibles infecteds and popula-

tions, respectively, at time $t$ . Hence,

$\int_{0}^{\infty}X(a, t)da,$ $\int_{0}^{\infty}Y(a,t)da,$ $. \int 0(Na,t)da\infty$ , (3)

express the total number of susceptibles, infecteds and population, respec-
tively. The birth process is defined the next expression,

$B(t)= \int_{0}^{\infty}.m(a)[N(a, t)-(1-\epsilon)Y(a,t)]da$ .

In this case we do not consider the vartical transmission, then we define the

initial data as follows.

$X(0, t)=N(0,t)=B(t),$ $Y(0, t)=0$ , (4)

The initial data for $X(a, 0),$ $Y(a)0),$ $N(a, 0)$ we shall put the real distri-
bution whick we can get from the fieldwork. The parmeter $\lambda$ is also the
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most important number of this age-dependent models. Solving methods
are essentially depend on the type of $\lambda$ . In general $\lambda$ is given by,

$\lambda(a, t)=\beta c\frac{\int p(a,a’)Y(a,a)\prime da’}{\int p(a,a)N(a,a)da},,,$

.
(5)

$\beta,$ $c$ are same as in the first model(l). The function $p(a, a’)$ defines the prob-
ability that a susceptible of age a will choose a partner of age $\mathrm{a}^{)}$ . $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{C}\mathrm{i}_{\mathrm{S}\mathrm{e}}1\mathrm{y}\rangle$

the shape of the function $p(a, a’)$ decides the treating method of this partial
differential equation model There are two extreme cases.
Case $(A);\mathrm{S}\mathrm{u}\mathrm{s}\mathrm{c}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s}$ will choose only the same age poeple,
Case $(B);\mathrm{s}\mathrm{e}\mathrm{x}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ active adults choose partners inedependent of age, that is,
the function $p(a, a’)$ has a constant value.
In the case $(A)$ , we must recogaize that $\lambda$ is define $p=\delta$ . That is,

$\lambda(a, t)=\beta c\frac{Y(a,t)}{N(a,t)}$ .

In this case, $\mathrm{t}_{\}}\mathrm{h}\mathrm{e}$ partial differential equation can be transfer to the linear
integral equation with the convolutional kernel by appling the method of
the linear population models.

$B(t)$ $=$ $\int_{0}^{\infty}m(a)B(t-a)\pi(a, 0)da$

$+$ $\int_{t}^{\infty}m(a)\phi(a-t)\pi(a, a-t)exp[\int_{0}ta-vz(s)d_{S}]d$

$(1- \epsilon)\mathit{1}_{t}^{\cdot}\infty\int_{0}^{t}m(a)z(t)\phi(a-t)\pi(a, a-t)exp[vZ(s)dS]da,$ $(6)$

where

$X(a, \mathrm{O}),$ $N(a, \mathrm{O})=\phi(a)$ , (7)

$\pi(b, a)=exp[-\int_{a}^{b}\mu(S)dS]$ . (8)

The initial distribution of the population is defined the by $\phi$ , and the func-
tion $\pi$ expresses the probability which one person of age $a$ can alive until
age $b$ . Only the first term include tne unknown function $B$ , the model can
be treated as the linear Volterra integral equation of the second kind.

$B(t)= \int_{0}^{t}m(a)\pi(a, \mathrm{O})B(t-a)d_{\mathit{0}}+F(t)$. (9)

Then the standerd method of the linear integral equation with the con-
volutional kernel bring the conclusion about the existence of the solution,
uniquness and the asymptotic behavior as time goes to the infinity. We
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can calculate not only the qualitative property but also the quantitative

measure. In the integral equation we can see the function $Z$ , this function

is a kind of the logistic curve and is appeared when the mode1(2) is solved

along the characteristic curve of this equation.

For the case $(B)$ , if we calculate the solution of the first order partial

differentia1(2) along the characteristid curve, we cannot have the integral

equation. The main reason of this fact is that the power of infection $\lambda$

includes the functional of the distribution $Y(a, t),$ $N(a, t)$ . The following

equation is reduced along the characteristic line.

$U_{C}’(t)$ $=$ $\lambda(a,t)Uc(t)-[\lambda(a, t)+v+\mu(a)]Wc(t)$ , (10)

$W_{C}’(t)$ $=$ $-vU_{C}(t)-\mu(a)Wc(t)$ , (11)

where,
$W_{C}(t)=N(t+c,t),$ $UC(t)=Y(t+C, t)$ .

With the assumption that $\lambda,$
$\mu$ are Lipshitz continuous, we can prove that

the equation has only one solution on the real line. But we cannot get more

informations from this method. Recently some auther could established the

proof of the existence of the periodic solutions for the nonlinear populational

problems with the semigoup theory. There is possibility that we can apply

this method for our models. It will be clear in the future obserbation.

The analysing method for the mode1(2) with the assumption $(B)$ can

be apply for the nonlinear model of the population problem, because in

the case $(B)$ the parameter include the functional of the distribution. The

paper of Gurtin and $\mathrm{M}\mathrm{a}\mathrm{C}\mathrm{c}_{\mathrm{a}\mathrm{m}\mathrm{y}}$ did the epoc making, before this method

was used in the theory of the epidemic models. This paper is the first one

in which the population problems were treated under the rather general

assumption about the total number of population. The following equation

is the prptotype of the nonlinear population problem.

$\frac{\partial n}{\partial a}+\frac{\partial n}{\partial t}+\mu(a, N(t))n(a,t)=0$, $a>0,0<t<T$

$n(0, t)= \int_{0}^{\infty}m(a, N(t))n(a, t)da$ , $0<t\leq..T$, (12)

$n(a, \mathrm{O})=\varphi(a)$ , $a\geq 0$ .

where $n$ is the distribution of the population and $N$ is the total number of

the population, that is,

$N(t)= \int_{0}^{\infty}n(a,t)da$ . (13)
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As in the previous case the birth process $B$ satisfies the equation,

$B(t)=n(\mathrm{o}, t)$ .

For we considering the population model, $\varphi\in L^{1}(R_{+}),$ $\mu(a, N),$ $m(a, N)$ are
all nonnegative function. Especially $\mu,$ $m$ have the $\mathrm{i}_{\mathrm{I}1}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{a}1$ term of $n$ , so
$\mu,$ $m$ are the functional of $n$ . In the paper of Gurtin, $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{M}\mathrm{a}\mathrm{m}\mathrm{y}$ they putted
the hypotheses on $\mu,$ $m$ that those functional have the continuous patial
derivative with respect to $N$ . We can remove this assumption instead of
the Lipshitz continuous. Then we can get the same theorem with Gurtin
and $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{C}\mathrm{a}\mathrm{m}\mathrm{y}$ under the following two assumptions, that is, under these as-
sumption there exists only one positive solution $n(a,t)$ for the equaton(12).
$(H1)\varphi$ is piecewise continuous,
$(H2)\mu,$ $m\in C(R^{+}\cross R^{+})$ and with respect to $N$ these functional are uni-
fomly Lipshitz continuous.
The proof for this theorem is similar as the proof of the case for the equa-
tion(2). The integral equation along the characteristic line is following.

$N(t)= \int_{0}^{t}K(t-a;t;N)B(a)da+\int_{0}^{\infty}L(a,t;N)\varphi(a)da$ ,

$B(t)= \int_{0}^{t}m(t-a, N(t))K(t-a, t;N)B(a)da+\int_{0}^{\infty}m(t+a, N(t))L(a, t;N)\varphi(a)da$,

$K( \alpha, t;N)=exp(-\int_{t-a}^{t}\mu(\alpha+\tau-t, N(\mathcal{T}))d\tau)$ ,

$L( \alpha, t;N)=exp(-\int_{0}^{t}\mu(\tau+\alpha, N(\tau))d\tau)$ .

By using iterational method, that is, using Banach contraction method, we
can prove the exisetence of the unique solution on the nonnegative real half
line. From making process for this equation it is so difficult to observe the
qualitative proparty of the solution. Recently under the special hypotheses
it proved that the exicetence of the periodic solution of the equation (12).
There are many problems upon this nonlinear populational problems.
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