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Abstract

In thermodynamics, phase separations in binary alloys are interesting phenomena.
J.W.Cahn and J.E.Hilliard introduced the free energy and derived the famous Cahn-
Hilliard equation to analyze the spinodal decomposition. The relative minimizers for
the free energy are very interesting in mathematics, especially whose instability gives
difficult problems to makers of several products using alloys.

T. Eguchi, K. Oki, and S. Matsumura introduced the degree of order in binary
alloys adding to the concentration of components to investigate the kinetics of phase
separafions. Using this model, we shall show that the local concentration begins to
diverge by small perturbations in the degree of order though the distribution at the

beginning is homogeneous.

1 Introduction

We introduce the Eguchi-Oki-Matsumura equation describing a phase separation for a sub-
stitutional binary alloy A;_,, By, consisting of A and B atoms filled in a vessel. In the

continuum theory, the local concentration u is first introduced to be conserved as

I—é—!/ﬂu(t,m) dr = m, (1)

where ) is a bounded domain in R",n = 1,2, 3, with the smooth boundary dQ. Next the

local degree of order v is introduced to describe the thermodynamic potential of this system
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as
Flu,v) = /Q (Flu, ) + %ku;? + 2K|VoP) de. @)

Here, f(u,v) is the density of the bulk free energy,

1 1 1 1
flu,v) = éauz - 561)2 + wa‘* + §gu2v2, (3)

where a,b;, g are positive constants, and b is a physical parameter depending on the tem-
perature such as to be positive only below the critical one. And K, H are the surface energy
per unit area considered to be positive constants. Then the equations of equilibrium state

are given as follows,

Of(u,v) Jf (u,v)

= = ()
Ou B0 ’ 4
where p is a chemical potential.
Hence we obtain the kinetic equations for « and v,
_,0u . , af (u,v)

L 127 g2 Hvz . 3
ot VA “ du )
Ov ) f (u,v)
Lo KV - 2 :
5 Vv 5 in €2,

where L is the coefficient of diffusion speed of the material to one of the degree of order.

These equations are analyzed with the boundary conditions

v-Vu(t) = 0, (7)
v-Viu(t) = 0, (8)
v-Vu(t) = 0  on 99, (9)

such that the equation (1) is satisfied, and the initial conditions

u(0) = u,, (10)
v(0) = v, infd (11)

2 Mathematical Results

We can show the well posedness of the problem based on the Eguchi-Oki-Matsumura model.

(6
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Theorem 1 For any T > 0 and any (u,,v,) € Ls X (Ly N Ly), there ezist a solution
(u,v) € Cyu(0,T; Ls) satisfying
u ELOO(()?T, Lz) N LQ(O,T, I{l)7

v ELOO(O, T’, L2 M L4) N Lz(O,T, V) N LG(O, T, Ls)

1d B 9 9 Of (u,v) _,
_L_Ez(uaqs) —“H(V ’M,V ¢)+('—éu—’v QS) : (12)
Vo € H*(Q),v-Vu=0 on 00
@) =~ K(vo,v0) + (L8 4y vy e (o) (13)
(1(0),v(0)) = (uo, vo). (14)

2.1 The solutions homogeneous in space

If the distributions u,v are constant in space, the equations (5-6) is reduced to
u =0, (15)
b = (gu® +v* - b, (16)

where 1,9 denote du/dt,dv/dt. Since we have u(t) = m, let f = b — gm?®. Then we have, if
f=0,

v(t) = m, (17)

or otherwise

o(t) = v, o

1
02 — (V.2 — ) exp“zﬂt)z' (18)

In more realistic situations, the quantity b increases as the alloy gradually cooled down.
So the growth, or changing of b in time must be considered strictly. However, in this paper,
we separate the heat convection in the alloy from the model of phase separations.
First, if the temperature of the binary alloy is still high enough for 3 < 0, then we have
lim v(¢) = 0.

t—o0
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Figure 1: Evolution of homogeneous solutions, 3 < 0,3 = 0,3 > 0, respectively

Next, if the temperature is below the critical value such that b > 0, there exist other

situations such that

lim [o(t)] = /5,

if v(t) # 0 at some ¢. In this case, v(t) = 0 still satisfy the equations (15-16), but it is
unstable( Fig.2).

Figure 2: Bifurcation of uniform solutions v(t)in b
As a stationary state of u and |v|, let

(m,0)  (8<0),
(m,v/B) (B>0).

(@(6),v(0)) =

Then, we have

lim v(t) = £7(5), or 0,

t—o00

in accordance with the sign of v(0).



33

3 Problems of One-dimension in space

In this section, the problems of v and v depending on time ¢ and only one direction z are

studied. Then the equations (5-6) is reduced to
L™ = —(Hu" ~ (a + gv*)u)", (19)

v = Kv" — (gu® + v* — b, (20)

where u',u", etc. denote du/dx,d?u/dz?, etc., respectively.
For the problem (19-20), there are not only homogeneous solutions described in the pre-
vious section, but also nonhomogeneous ones. In order to examine whether the homogeneous

solutions are stable or not, and look for other solutions, numerical simulations are used.

3.1 Discretized Schemes

The equations (19-20) in the domain (0,00) x (0,1) is discretized with forward differences
in time and central differences in space. Let z; = kAz, Az = 1/n, then the equations for

approximations Uy, of u(t,z;) and V4 of v(t,z;) are as following:

LMl___ﬁk _ l]k — HUk—Z - 41]]@‘-—1 + 617]‘; - 4(]](:-{—1 + Uk+2
At Azt
(a+ gVee1® )iy — 2(a + gV Ui + (a + gVir1 ) U
" Ax? ’ (21)
Vi— W Vi1 =2V, +V,

(0< k <n),

where Uy and V; are the approximations at the next time step at t + At. The boundary

conditions v’ = 0, u" = 0 are discretized as
Uy = U-z; U—1 = U.1, Un—l = Un+17 Un——Z = Un+2, (23)
and v =0 is as
Vo=V, Voo = Vo (24)
In numerical simulations taking constants as
L=1/1024, H =K =1/1000,m = 0.25,a = 0.25,9 = 8,b; = 1,

the dependence of solutions on b, and the stability of the homogeneous states are studied.
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3.2 Instability of the homogeneous solutions

In this subsection, we show that the homogeneous solutions are not stable if 3 > 0. For that

purpose, initial conditions are perturbed slightly from the homogeneous solutions.

3.2.1 Zero solution v =0

Taking initial conditions as

v(0,2) = ecos(mz) for small |e|.

The solutions, especially u(t), are firstly going away from the initial state for all values of
b. Then, u(t) is converging to the constant function m if § < 0, then we may conclude

that the homogeneous zero solution is stable. However, if § > 0, then the perturbation for

mmnll“‘““nl‘
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Figure 3: Behavior of u(t,z),v(t,z) (evolving from behind)

v is expanding to the values near :!:\/5, and it is followed by the separation of the values
of u (which is observed as the phase separation phenomena). It is shown by mathematical

analysis in the previous subsection 2.1. In Figure 3, the simulated results are shown in
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the case of b = 0.99(, therefore f = 0.49), ¢ = 0.001, At = 1/256 and Az = 1/64, while
0<t<128.

3.2.2 Instability of v =/

Taking a value of b such that 3 > 0, there exists the solution (u,v) = (m, /). Therefore,
it is important to simulate solutions starting from the initial states near that homogeneous

solution as

u(0,z) = m, |
v(0,z) = /B + ecos(rx).

For small € such that €2 < 3, v(0,) is positive, and v(¢,z) is kept to be positive also. In
this case, v(t) approaches to a function 6scilla,ting between a number near vb and another
positive near zero. Then, oscillations of «(t) appears according to ones of v(t). In Figure 4,
the simulated results are shown in the same parameters, while 0 < ¢ < 4096. However, the
number of oscillations of v(t) and w(t) varies from one at first, to three secondly, and to one
after a long time. Also other simulations result in the same solution having one oscillation,

other than having many oscillations by symmetries.

4 Conclusion

In numerical simulations, we have observed that some homogeneous solutions are not stable
in one-dimensional problems. Then, it is shown that the phenomena of phase separation in
binary alloy are caused by perturbation only in the order parameter.

Since it is thought that the stationary problems in the E.O.M. model have many solutions

stable or not, the structure of all solutions is left to be made clear.
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Figure 4: Behavior of u(t,z),v(¢,z)
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