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Abstract: In this paper, we consider the discrete-time opportunistic replacement models with
application to scheduled maintenance for electric switching devices. It is shown that a replace-
ment model with three maintenance options can be classified into six kinds of $\mathrm{m}o$dels by the
priority of maintenance options. Further, we develop the models with probabilistic priority to
unify the six models with deterministic priority.

1. Introduction

In this paper, we consider the discrete-time opportunistic replacement models with applica-
tion to scheduled maintenance for electric switching devices to distribute the electric power to
other places. The electric switching devices equipped with telegraph poles have to be replaced
preventively before they fail and the electric current is off over an extensive area. On the other
hand, it can be replaced if the telegraph pole is removed for any construction before its age has
elapsed a threshold level. This problem is reduced to a simple opportunity based age replace-
ment model. In the earlier literature, many authors analyzed several opportunistic replacement
models. Radner and Jorgenson [1] was the seminal work on the opportunistic replacement model
for a single unit. Berg [2], Pullen and Thomas [3] and Zheng [4] discussed opportunity-triggered
replacement policies for multiple-unit systems. Further, Dekker and Smeithink $[5, 6]$ , Dekker
and Dijkstra [7], and Zheng and Fard [8] extended the models from a variety of standpoints.
Recently, simple but somewhat different opportunity based age replacement models were con-
sidered by Iskandar and Sandoh $[9, 10]$ . In fact, their model [10] is essentially same as ours in
this paper except that it is considered in a discrete-time setting.

Ordinarily, the discrete-time models are considered as trivial analogies of the continuous-time
ones. First, Nakagawa and Osaki [11] formulated a discrete-time model for the classical age
replacement problem. Kaio and Osaki $[12, 13]$ derived some discrete maintenance policies along
the line of Nakagawa and Osaki [11]. Nakagawa [14-18] summarized and generalized the discrete-
time maintenance models by taking account of the significant concept of minimal repair. For the
details of discrete models, see Kaio and Osaki [19]. The main reasons to adopt the $\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{C}}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{e}-\mathrm{t}\dot{\mathrm{D}}$ne
model for the scheduled maintenance problem for electric switching devices are as follows. (i)
In the electric power company under investigation, the failure time data of electric switching
devices are recorded as group data (the number of failures per year). (ii) It is not easy to
carry out the preventive replacement schedule at the unit of week or month, since the service
team is engaged in other works, too. From our questionnaire, it is helpful for practitioners that
the preventive replacement schedule should be determined roughly at the unit of year. These
motivate our discrete-time opportunistic replacement model. In addition, we show in this paper
that a replacement model with more than two maintenance options can be classified into some
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kinds of models by the priority of maintenance options. This implies that the discrete-time
model has more delicate aspects for analysis than the continuous one.

The rest part of this paper is organized as follows. In Section 2, the discrete-time opportunistic
replacement models under consideration are described with notation and assumptions. By the
priority of maintenance options, we introduce six kinds of models. In Section 3, the optimal
preventive replacement times which minimize the expected costs per unit time in the steady-
state are derived for respective models. Section 4 develops the $\mathrm{m}o$dels with probabilistic priority
to unify the six models with deterministic priority.

2. Model Description

First, we consider a discrete-time model corresponding to Iskandar and Sandoh [10]. Let us
consider the single-unit system with a non-repairable item in a discrete-time setting. Suppose
that the interval between opportunities for replacements $X$ obeys the geometric distribution
$\mathrm{P}\mathrm{r}\{X=x\}=gx(x)=p(’1-p)^{x}-1(x=1,2, \cdots ; 0<p<1)$ with survivor function $\mathrm{P}\mathrm{r}\{X\geq$

$x\}=(1-p)^{x-1}=\overline{G}_{X}(X-1)$ , mean $\mathrm{E}[X]=1/p$ and variance $\mathrm{V}\mathrm{a}\mathrm{r}[X]=(1-p)/p^{2}$ , where in
general $\overline{\phi}(\cdot)=1-\phi(\cdot)$ . Then, the unit may be replaced at a first opportunity after elapsed
time $S$ ( $S$ is a non-negative integer) even if it does not fail. The failure time (lifetime) $\mathrm{Y}$

follows the common probability mass function $\mathrm{P}\mathrm{r}\{\mathrm{Y}=y\}=f_{Y}(y)(y=1,2, \cdots)$ with survivor
function $\mathrm{P}\mathrm{r}\{\mathrm{Y}\geq y\}=\overline{F}_{Y}(y-1)$ and failure rate $r_{Y}(y)=f_{Y}(y)/\overline{F}_{Y}(y-1)$ . Without any loss
of generality, we assume that $f_{Y}(0)=g_{X}(0)=0$ . If the failure occurs before a prespecified
preventive replacement time $T(T=1,2, \cdots)$ , the corrective replacement may be executed. On
the other hand, if the unit does not fail up to the time $T$ , the preventive replacement may be
made at time $T$ . The configuration of the opportunistic replacement model is depicted in Fig.
1.

$\mathrm{O}$ : arrival of opportunities
$\bullet$ : preventive replacement
X: failure replacement

Figure 1: Configuration of the model.

The cost components under consideration are the following;

$c_{1}(>0)$ : corrective replacement cost per failure

$c_{2}(>0)$ : cost for each preventive replacement

$c_{3}(>0)$ : cost for each opportunistic replacement.
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Rom the above notation, we make two types of assumptions;

Assumption (A-1): $c_{1}>c_{3}>c_{2}$

Assumption (A-2): $c_{1}>c_{2}>c_{3}$

It is valid to assume that the corrective replacement cost is most expensive. The relationship
between the preventive replacement cost and the opportunistic replacement one has to be ordered
taking account of the economic justification.

Note that the discrete-time model above has to be treated carefully. At an arbitrary dis-
crete point of time, the decision maker has to select one decision among three options, failure
(corrective) replacement $\mathrm{F}_{\mathrm{a}}$ , preventive replacement $\mathrm{S}_{\mathrm{c}}$ and opportunistic replacement $\mathrm{O}_{\mathrm{p}}$ . We
introduce the following symbol for the priority relationship;

Definition 2.1: The option $\mathrm{P}$ has a priority to the option $\mathrm{Q}$ if $\mathrm{P}\succ \mathrm{Q}$ .

From Definition 2.1, if two options occur at the same time point, the option with higher priority
is executed. In our model setting, consequently, it is possible to consider total six different
models as follows.

Model 1: $\mathrm{S}_{\mathrm{c}}\succ \mathrm{F}_{\mathrm{a}}\succ \mathrm{O}_{\mathrm{p}}$

Model 2: $\mathrm{F}_{\mathrm{a}}\succ \mathrm{S}_{\mathrm{c}}\succ \mathrm{O}_{\mathrm{p}}$

Model 3: $\mathrm{S}_{\mathrm{c}}\succ \mathrm{O}_{\mathrm{p}}\succ \mathrm{F}_{\mathrm{a}}$

Model 4: $\mathrm{O}_{\mathrm{p}}\succ \mathrm{S}_{\mathrm{c}}\succ \mathrm{F}_{\mathrm{a}}$

Model 5: $\mathrm{F}_{\mathrm{a}}\succ \mathrm{O}_{\mathrm{p}}\succ \mathrm{S}_{\mathrm{c}}$

Model 6: $\mathrm{O}_{\mathrm{p}}\succ \mathrm{F}_{\mathrm{a}}\succ \mathrm{S}_{\mathrm{c}}$

For Model 1, Model 2 and Model 5, t.he probabilities that the system is replaced at time
$n(n=0,1,2, \cdot , .)$ are

$h_{1}(n)=h_{2}(n)=h5(n)=\{$

$f_{Y}(n)$ $(0\leq n\leq S)$

$f_{Y}(n)\overline{G}_{X}(n-1-^{s)}+\overline{F}_{Y}(n)gX(n-s)$

$(S+1\leq n\leq T-1)$

$\overline{F}_{Y}(T-1)\overline{G}X(T-1-s)$ $(n=T)$
$0$ $(n\geq T+1)$ ,

(1)

respectively. In a fashion similar to Eq.(l), the probabilities that the system is replaced at time
$n(n=0,1,2, \cdots)$ for the other models are

$h_{3}(n)=h_{4}(n)=h6(n)=\{$

$f_{Y}(n)$ $(0\leq n\leq S)$

$f_{Y}(n)\overline{G}x(n-S)+g_{X}(n-S)\overline{F}Y(n-1)$

$(S+1\leq n\leq T-1)$

$\overline{F}_{Y}(T-1)\overline{G}X(\tau-1-s)$ $(n=T)$
$0$ $(n\geq T+1)$ ,

(2)

where $\sum^{\infty}n=0hj(n)=1(j=1, \cdots, 6)$ .
bom Eqs.(1) and (2), the mean time length of one cycle $A_{j}(T)$ for Model $j(j=1, \cdots, 6)$ are

all same, that is, $A_{1}(T)=A_{2}(T)=A_{3}(T)=A_{4}(T)=A_{5}(T)=A_{6}(T)$ , where

$A_{1}(T)$ $\underline{\infty}$ $\sum_{n=0}nfY(n)S+\sum_{n=S+1}^{1}n\{fY(n)\overline{G}\tau-x(n-1-s)$
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$+\overline{F}_{Y}(n)g_{X}(n-S)\}+T\overline{F}_{Y}(T-1)\overline{G}_{X}(T-1-s)$

$=$ $\sum_{k=1}^{s}\overline{F}_{Y(}k-1)+\sum_{k=S+1}^{T}\overline{F}_{Y(}k-1)\overline{G}_{X}(k-s-1)$ , (3)

and are independent of priorities.
On the other hand, the total expected costs during one cycle $B_{j}(T)$ for M.odel $j(j=1, \cdots, 6)$

are

$B_{1}(T)$ $=$ $c_{1} \sum_{n=0}^{\mathit{8}}f_{Y}(n)+C_{1}\sum_{n=s+1}^{1}fY(n)\overline{G}xT-(n-1-s)$

$+c_{2} \overline{F}_{Y}(T-1)\overline{G}X(\tau-1-s)+c_{3}\sum_{n=s+1}^{1}\overline{F}Y(n)g_{X}(n-S)\tau-$, (4)

$B_{2}(T)$ $=$ $c_{1} \sum_{n=0}^{s}f_{Y}(n)+c_{1}\sum_{+n=s1}^{T}fY(n)\overline{G}_{X}(n-1-s)$

$+c_{2} \overline{F}_{\mathrm{Y}}(T)\overline{G}x(T-1-s)+c_{3}\sum_{+n=\mathit{8}1}^{1}\overline{F}_{\mathrm{Y}}(n)gx(n-S)\tau-$ , (5)

$B_{3}(T)$ $=$ $c_{1} \sum_{n=0}^{s}f_{Y}(n)+c_{1}.\sum_{+n=S1}^{1}fY(\tau-..n)\overline{G}x(n-S)$

$+c_{2} \overline{F}_{\mathrm{Y}}(T-1)\overline{G}X(T-1-s)+c_{3}..\sum_{n=S+1}^{-}\overline{F}Y(n-1)gx(n-S)T1$ , (6)

$B_{4}(.T)$
$=$ $c_{1} \sum_{n=0}^{S}f_{Y}(n)+c_{1}\sum_{+n=S1}^{1}fY(n)\overline{G}x(n-S)\tau_{-}$

$+c_{2}\overline{F}_{Y}(\tau-1)\overline{G}x(T-S)+c_{3}$
$\sum T\overline{F}_{Y}(n-1)gx(n-^{s})$, (7)

$n=S+1$

$B_{5}(T)$ $=$ $c_{1} \sum_{n=0}^{s}f_{Y}(n)+c_{1}\sum_{+n=s1}^{T}fY(n)\overline{G}_{x}(n-1-S)$

$+c_{2} \overline{F}_{Y}(\tau)\overline{G}_{x()}T-s+c_{3}\sum_{Sn=+1}^{T}\overline{F}Y(n)gX(n-S)$ (8)

and

$B_{6}(T)$ $=$ $c_{1} \sum_{n=0}^{s}f_{Y}(n)+c_{1}\sum_{n=s+1}^{\tau}f_{Y(n})\overline{G}_{x}(n-s)$

$arrow+c_{2}\overline{p}_{Y(\tau)\overline{G}}.\cdot x(T-S)+c_{3}\sum_{sn=+1}^{T}\overline{F}_{Y}(n-1)gX(n-s)$ , (9)

respectively.
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Then the expected costs per unit time in the steady-state $C_{j}(T)$ for Model $j(j=1,2, \cdots , 6)$

are, from the familiar renewal reward argument,

$C_{j}(T)$ $=$ $\lim_{narrow\infty}\frac{\mathrm{E}[\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}_{0}\mathrm{n}(0,n]]}{n}$

$=$ $B_{j}(T)/A_{j}(T)(j=1, \cdots , 6)$ , (10)

and the problem is to determine the optimal preventive replacement time $T^{*}$ which minimizes
the expected cost $C_{j}(T)$ for a fixed $S$ .

Remark: When the scheduled maintenance problem for electric switching devices is considered,
it is meaning to assume that the variable $S$ is determined in advance. Because the threshold age
to start the opportunistic replacement should be estimated from the efficiency and price of an
electric switching device. Hence, throughout the paper, we suppose that the variable $S$ is fixed
from any physical or economical reason.

3. Optimal Replacement Policies

In this section, we consider six models, Model $1\sim \mathrm{M}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}6$ , and derive the respective optimal
preventive replacement policies which minimize the expected costs per unit time in the steady-
state. Define the non-linear functions;

$q1(T)$ $\equiv$ $\frac{1}{1-p}\{(c_{1}-c2)RY(\tau)+p(c_{32}-c)\}A1(\tau)-B_{1}(\tau)$ , (11)

$q2(T)$ $\equiv$ $\{(c_{1}-c_{2})r_{Y(}T+1)+\frac{p(c_{3}-c_{2})}{1-p}\}A_{2}(T)-B2(T)$ , (12)

$q3(T)$ $\equiv$ $\{[(c_{1}-c_{2})+\frac{p}{1-p}(c_{3^{-C}}2)]R_{Y}(\tau)+\frac{p}{1-p}(c3-C2)\}A_{3}(\tau)-B3(\tau)$, (13)

$q4(T)$ $\equiv$ $\{(c_{1}-c_{2})R_{Y}(T)+p(c_{3}-c_{2})\}\dot{A}_{4}(T)-B4(T)$ , (14)

$q5(T)$ $\equiv$ $\{[(c_{1}-c_{2})+p(c_{2}-c_{3})]r_{Y}(\tau+1)+p(c_{3}-C_{2})\}A5(T)-B_{5(T)}$ (15)

and

$q6(T)$ $\equiv$ $\{(1-p)(c_{1}-c2)r_{Y}(T+1)+p(c_{3^{-c_{2}}})\}A_{6}(T)-B6(T^{\backslash }J’$ (16)

where

$R_{\mathrm{Y}}(T)\equiv f_{Y}(\tau)/\overline{F}_{Y}(T)$ . (17)

Lemma 3.1: The function $R_{Y}(T)$ is strictly increasing [decreasing] if the failure time distribu-
tion is strictly IFR (Increasing Failure Rate) [DFR (Deceasing Failure Rate)].

Theorem 3.2: (1) For Model $j(j=1,2,3)$ , suppose that the failure time distribution is strictly
IFR and the assumption (A-1) holds.
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(i) If $q_{j}(S+1)<0$ and $q_{j}(\infty)>0(j=1,2,3)$ , then there exists a finite and unique optimal
preventive replacement time $T^{*}(S+1<T^{*}<\infty)$ which satisfies $qj(T^{*}-1)<0$ and
$q_{j}(T^{*})\geq 0$ .

(ii) If $q_{j}(\infty)\leq 0(j=1,2,3)$ , then the optimal preventive replacement time is $T^{*}arrow\infty$ and it
is optimal to carry out either the failure replacement or the opportunistic one.

(iii)
.

$S\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}\mathrm{o}\mathrm{n}+1$

(2) For Models $j(j=4,5,6)$ , suppose that the failure time distribution is DFR and the as-
sumption (A-1) holds. Then the optimal preventive replacement time is $T^{*}arrow\infty$ or $\tau*=S+1$ .

Theorem 3.3: (1) For Models 4, 5 and 6, suppose that the failure time distribution is strictly
IFR and the assumption (A-2) holds.
(i) If $q_{j}(S+1)<0$ and $q_{j}(\infty)>0(j=4,5,6)$ , then there exists a finite and unique optimal

preventive replacement time $T^{*}(S+1<\tau*<\infty)$ which satisfies $qj(T^{*}-1)<0$ and
$q_{j}(T^{*})\geq 0$ .

(ii) If $q_{j}(\infty)\leq 0(j=4,5,6)$ , then the optimal preventive replacement time is $T^{*}arrow\infty$ .

(iii) If $q_{j}(S+1)\geq 0(j=4,5,6)$ , then the optimal preventive replacement time is $T^{*}=S+1$ .

$\{$

2) For Models 4, 5 and 6, suppose that the failure time distribution is DFR and the assumption
A-2) holds. Then the optimal preventive replacement time is $T^{*}arrow\infty$ or $T^{*}=S+1$ .

Rom these results, it is found that the optimal preventive replacement schedule for each model
should be generated under different $\mathrm{c}o\mathrm{s}\mathrm{t}$ assumptions.

4. The Unified Model with Probabilistic Priority

In this section, we unify six replacement models proposed in Section 2. Now suppose that
the multiple maintenance options at any time may be selected with random priority. Under the
assumption (A-1), define the probabilities $p_{a},$ $p_{b}$ and $p_{c}$ to select the priorities $\mathrm{S}_{\mathrm{c}}\succ \mathrm{F}_{\mathrm{a}}\succ \mathrm{O}_{\mathrm{p}}$,
$\mathrm{F}_{\mathrm{a}}\succ \mathrm{S}_{\mathrm{c}}\succ \mathrm{O}_{\mathrm{p}}$ and $\mathrm{S}_{\mathrm{c}}\succ \mathrm{O}_{\mathrm{p}}\succ \mathrm{F}_{\mathrm{a}}$ , respectively, where $0\leq p_{a}\leq 1,0\leq p_{b}\leq 1,0\leq p_{c}\leq 1$

and $p_{a}+p_{b}+p_{c}=1$ . Also, under the assumption (A-2), we define $p_{d},$ $p_{e}$ and $p_{f}$ to select the
’

For Model 7 and Model 8, the probabilities that the system is replaced at time $n(n=$
$0,1,2,$ $\cdots)$ are

$h_{7}(n)=\{$

$f_{Y}(n)$ $(0\leq n\leq S)$

$(p_{a}+pb)\{fY(n)\overline{G}x(n-s-1)+g_{X}(n-S)\overline{F}_{Y}(n)\}$

$+p_{C}\{fY(n)\overline{c}x(n-S)+gx(n-S)\overline{p}_{Y}(n-1)\}$

$(S+1\leq n\leq\tau-1)$

$\overline{F}_{Y}(T-1)\overline{G}X(T-1-s)$ $(n=T)$
$0$ $(n\geq T+1)$

(18)

and

$h_{8}(n)=\{$

$f_{Y}(n)$ $(0\leq n\leq S)$

$(p_{d}+p_{f})\{fY(n)\overline{G}x(n-S)+gx(n-S)\overline{F}_{Y}(n-1)\}$

$+p_{e}\{fY(n)\overline{G}x(n-1-s)+g_{X}(n-^{s)\overline{F}(n)}Y\}$

$J(S+1\leq n\leq\tau-1)$

$\overline{F}_{Y}(T-1)\overline{G}X(T-1-s)$ $(n=T)$
$0$ $(n\geq T+1)$ ,

(19)
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where $\sum_{n=0^{h_{7(n)}}}^{\infty}=p_{a}+p_{b}+p_{c}=1$ and $\sum_{n=0}^{\infty}h\epsilon(n)=p_{d}+p_{e}+p_{f}=1$ .
The mean time lengthes of one cycle and the total expected costs during one cycle for Models

7 and 8 are

$A_{7}(T)=A_{8}(T)= \sum_{j=1}\overline{F}sY(j-1)+\sum_{j=S+1}^{T}\overline{p}Y(j-1)\overline{c}X(j-S-1)$ , (20)

$B_{7}(T)$ $=$ $c_{1} \sum_{n=0}^{s}f_{Y}(n)+p_{a}\{c_{1}\sum_{+n=S1}^{1}fY(n)\overline{c}_{x}\tau-(n-S-1)$

$+c_{2} \overline{F}_{Y}(T-1)\overline{G}x(\tau-s-1)+c_{3}\sum_{n=\mathit{8}+1}^{1}\overline{F}Y(n)g_{X(-s)\}}T-n$

$+p_{b} \{C_{1}\sum_{=nS+1}f_{Y}(n)\overline{G}x(n-S-1)\tau+c_{2}\overline{F}_{Y}(T)\overline{G}X(T-s-1)$

$+c_{3} \sum_{sn=+1}^{1}\overline{F}_{\mathrm{Y}}(nT-)gX(n-s)\}+p_{\mathrm{C}}\{c_{1}\sum^{T-}fY(n)\overline{G}X(n-S)n=S+11$

$+c_{2} \overline{F}_{Y}(T-1)\overline{G}x(\tau-s-1)+c_{3}\sum_{n=S+1}^{1}\overline{F}Y(n-1)g_{X}(nT--s)\}$ (21)

and

$B_{8}(T)$ $=$ $c_{1} \sum_{n=0}^{s}f_{Y}(n)+p_{d}\mathrm{t}c_{1}\sum^{\tau-}fY(n)\overline{G}x(n-S)n=S+11$

$+c_{2} \overline{F}_{Y}(\tau-1)\overline{G}_{X}(T-s)+c_{3}\sum_{+n=s1}^{\tau}\overline{F}_{Y}(n-1)g_{X(}n-s)\}$

$+p_{e} \{c_{1}\sum_{S+1}f_{Y(}n)\overline{c}X(n-Sn=\tau 1-)+c_{2}\overline{F}_{\mathrm{Y}}(\tau)\overline{G}x(T-s)$

$+C_{3} \sum_{n=s+1}^{\tau}\overline{F}Y(n)gx(n-s)\}+p_{f}\{c_{1}\sum_{+n=s1}^{\tau}f_{Y}(n)\overline{G}x(n-s)$

$+c2 \overline{F}_{Y}(T)\overline{G}x(\tau-s)+c_{3}\sum_{n=s+1}^{\tau}\overline{F}_{Y()x}n-1g(n-s)\}$ , (22)

respectively.
Then the problem is to determine the optimal preventive replacement time $T^{*}$ which minimizes

the expected cost $TC_{j}(T)(j\wedge=7,8)$ for a fixed $S$ , where

$TC_{j}(T)=B_{j}(T)/A_{j}(T)(j=7,8)$ . (23)

Define the following non-linear functions;

$q7(T)$ $\equiv$ $\{[p_{a}(c_{1}-c2)/(1-p)+pc\{(c_{1}-c2)+p(c_{3}-C_{2})/(1-p)\}]R\mathrm{Y}(T)$

$+p_{b}(C_{1}-c_{2})r_{Y}(T+1)+p(c_{3}-c2)/(1-p)\}A7(T)-B_{7}(\tau)$ (24)

and

$q8(T)$ $\equiv$ $\{pd(C1-c2)RY(\tau)+[p_{e}\{(c_{1}-C2)+p(c_{2}-c3)\}+pf(1-p)(C1-C_{2})]\Gamma_{Y(T}+1)$
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$+p(c_{3}-C2)\}A8(T)-B_{8}(\tau)$ . (25)

Theorem 4.1: (1) For Models 7 and 8, suppose that the failure time distribution is strictly
IFR and the assumptions (A-1) and (A-2) hold, respectively.

(i) If $q_{j}(S+1)<0$ and $q_{j}(\infty)>0(j=7,8)$ , then there exists a finite and unique optimal
preventive replacement time $T^{*}(S+1<T^{*}<\infty)$ which satisfies $q_{j}(T^{*}-1)<0$ and
$q_{j}(T^{*})\geq 0$ .

(ii) If $q_{j}(\infty)\leq 0(j=7,8)$ , then the optimal preven.tive r.eplacement time $\mathrm{i}\mathrm{S}T^{*}’arrow\infty$ .

(iii) If $q_{j}(S+1)\geq 0(j=7,8)$ , then the optimal preventive replacement time is $T^{*}=S+1$ .

$\mathrm{o}\{$

2) For Models 7 and 8, suppose that the failure time distribution is DFR and the assumptions
A-l) and (A-2) hold, respectively. Then the optimal preventive replacemen.t time is $T^{*}arrow\infty$

$\mathrm{r}T^{*}=S+1$ .

From Theorem 4.1, the models with probabilistic priority involve the deterministic priority
models as special cases. For instance, it is seen that Model 7 is reduced to Model 1 if $(p_{a},p_{b},pc)=$

$(1,0,0)$ . Although the earlier models in the literature [11-18] assumed the priority unconsciously
in accordance with the order of costs, the rigorous treatment for modeling will be needed if the
priority is uncertain.
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