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Abstract

Here we present the way to make a prediction of discrete multiple time series. Our
prediction method is easy to implement on Personal Computers and has a flexibility
in applying to the real world data. It admit us to take into consideration some
circumstances which can’t be incorporated in ordinary discrete multiple time series
prediction.

Subject areas: Prediction, Planning and Forecasting

1 Introduction

In Odanaka and Iwamura[9], we developed P;‘ediction Theory of Discrete Multiple Time
Series. . We rewrite here definitions. Let ag)(l <1 £ n) be the given n messages with
a discrete time index k, let b,(:)(l < i < n) be the signals and (bg) - ag))(l <i<n)be

noises. Define the auto-correlation functions
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We assumed here that all these auto-correlation functions exist and that

P (v) = e (v)

holds for any v,%,j to derive a DP type algorithm to solve
the minimization problem
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, where A;(7)(1 <1< n,0 <71 < M) are variables to be determined.We easily see that
for a stationary multiple time series assumptions (1),(2), (3) hold, whereas assumption
(4) doesn’t always.

Although there are some algorithms as for the prediction of a single time series in
the books such as J.D.Hamilton[5], H.Tong({11], we don’t have so much ones as for a
multiple time series. Yet, we think that the existence of the functions in (1),(2),(3) and
the symmetric condition (4) are not so trivial. If we use Carayannis, Kalouptsidis and
Manolakis Algorithm(3] then we can drop condition(4). Still we are restricted to treat
just only discrete multiple time series satisfying assumptions (1),(2),(3). We think that
the DP algorithm in [9] will be useful for predicting in a long range for almost stationary
multiple time series with symmetric condition.

Here we consider a multiple time series which is neither stationary nor symmetric.
Hence, generally speaking, we can’t make a prediction in a long range, because such a long
range predicton will be proved incorrect in the future by a real data. For a bad natured
multiple time series, we think that our Prediction Method is more useful in practice. So,
we are dealing with a multiple time series for which AIC[1] is not applicable.We can find
that there are some other results which were obtained in a similar spirit like ours. The
reader can consult Kitagawa and Akaike[6], Chang and Lee[4], Zhao and Iwamura and
Liu[13] for this purpose. ’

2  Prediction Problem of Discrete Multiple Time Series

On the contrary to Odanaka and Iwamura[9], we don’t assume the existence of the
autocorrelation functions. So, we deal with signals bg)(l < 1 < n) only.We don't care for
a%)(l <4 < n). Let’s predict signal j at time ¢+ 1 and so let’s write the predicted value

Bg_)l.Consider a linear combination of b;ﬁT(l <i<ns<k<tl1<T<M),ie,

ZZ%& (6)
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for a positive integer M .Then let

t 2
=3 (bg’) Z Z‘ airb) ) (7)

k=s i=17=1

, where s < t and we have signal observations b(,:)(l <i<mn,s—M<k<t). Let Mpbea
given positive integer. For each M =1,2,---, Mo, calculate a;r = dir(1 S'i <n,1<7<
M) at which I(M) takes its minimum. Then plot the predicted value Eg_)l(M ) for each
M,1 < M < My. We call this prediction model Short Range Fuzzy Prediction Model-
Combined Model of Autoregressive type Prediction Model and Bellman Model, because
we get My predicted values for b,gj ) using full information of b( (1<i<n,s—My<k<
t). We use the term Fuzzy because we get Mo predicted values w1th different resudials
I(M),M =1,2,---, Mo.

If we take a linear combination of b(z) A1 L4 < ni# j,s<k<tl < T < M),
then we get a Bellman Model in Bellman[2] Lastly, if we take a linear combination
of b(J ) (1 <7 < M), then we get a traditional Autoregression type Model, which uses
only information of itself. Let’s consider the situation where two persons are disputing
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each other what will be the most likely value for b3, at time t. One predicts A

t+1 41
based on the observation b\ , while the other predicts 3&31 based on the observation bg)

because he thinks that bg) dominates b;” and so insists that his predicted value be better
with different pedicted value. In case their values differ largely nobody can determine
the predicted value. Futhermore, as is the case for time series data which come from
ecomomy, it is sometimes very difficult to determine from which time point to- which
time point should we take information in multiple time series data. In such situation, the
two are advised to make compromize first on time interval from which the two should
take information. Then go into the Short Range Fuzzy Prediction-Combined Model of
Autoregressive type Prediction Model and Bellman Model.

3 An Example

We take two Japanese land price indexes b;cl) and bg) for 20 years (1 < k < 20). b,(cl) is

a land price index of down town Utsunomiya(merchant use), where bg) is a land price
indexof Suginami ward Tokyo(residential use). Hence n =2. Set 1 < s < ¢t <20 and My
so that 1 < s — My holds.In this case, Mayor of Utsunomiya city and its resident living
in down town Utsnoi:niya are disputing on the predicted land price index. Then what
model would be the best and what is its predicted value? Writing

ot _
xir = 36068 (8)
k=8
t » .
ii(r,0) =S b b9 (1<i,j<21<70< M) 9)
k=s T
we have to maximize
X 2 M 2 M
Ey = 22 Z Qir Xar — Z }: airaja(Pij(T ,0) (10)
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, where a;-(1 <1 < 2;1 <7 < M) are variables whose values should be determined.
Differetiating (10) by aiyr,, We get

M
> ((p11(7,70) + @11(r0, 7))arr + (p21(7, 70) + pr2(70, 7))agr) = 2x1m, (1)

T=1

y |
> ((pralr, 10) + w21(70,7))arr + (p22(7, 10) + p22(70,7))a2r) = 2x2me  (12)

T=1

Here, we have 2M equations with 2M unkowns (ayr,ag,),1 < 7 < M. In order to
successively predict lﬁ?l for M = 1,2,-++, My ,ie., in a fuzzy sense, we use Carayan-
nis,Kalouptsidis and Manolakis algorithm[3]. Computational results would be shown at

the end of the paper.

167



168

4 Acknowledgment

This research was financially supported by President of Josai University. Computational
works was carried out by the author’s student Mr.T.Shibahara. Although the author
invented Short Range Fuzzy Prediction Model by his own thinking, Prof. Odanaka of
Hokkaido Information University let me know the result of R.Bellman[2]. The author
would like to express his hearty thanks to all of them. :

References

(1] H.Akaike,Information Theory and an Extension of the Mazimum Likelihood
Principle,in S.Kotz and N.L.Johnson(eds.),”Breakthroughs in statistics”,610-
624(1992),Springer

[2] R.Bellman,Introduction to Matriz Analysis,page 154, McGRAW-Hill, 1960

(3] G.Carayannis,N.Kalouptsidis and D.G.Manolakis, Fast Recuesive Algorithms for a
class of Linear EquationsIEEE Transactions on Acoustic, Speech, and Signal
Processing,vol. ASSP-30,No.2,227-239(1982)

[4] P-T. Chang and E.S.Lee, A generalized fuzzy weighted least-squares regression,Fuzzy
Sets and Systems 82(1996)289-298

(5] J.D.Hamilton, Time Series Analysis,Princeton University Press, 1994

[6] G.Kitégawa and H.Akaike, A Procedure for the Modeling of Non-Stationary time
series,Ann.Inst.Statist.Math.,30(1978),Part B, 351-363

[7] B.Liu and K.Iwamura, Chance constrained programming with fuzzy parameters,Fuzzy
Sets and Systems 94(1998)227-237

(8] T.Odanaka, An Atitude in Prediction Theory(in Japanese) Hokkaido Information
University, Research Report vol.8 No.2(1997)65-87

[9] T.Odanaka and K.Iwamura,Prediction Theory of Discrete Multiple Time Se-
ries,presented at IEEE ICIPS’97, Beijing(1997)

[10] X.Tang and J.Gu, Soft System Approach to Management Support System Devel-
opment , A lecture given at the Department of Mathematics, Josai University,
Japan,1998

[11] H.Tong, Non-linear Time Series—-A Dynamical System Approach, Oxford University
Press, 1990

[12] T.Yahagi, Theory of Digital Signal Processing vol.1(in Japanese),Corona Publishing
Co., Ltd., Japan, 1993

[13] R.Zhao,K.Iwamura and B.Liu, A Genetic Algorithm for Multivariate Isotonic Re-
gression , Journal of Information and Optimization Sciences, vol.19 No.2(1998)273-
284

[14] H.-J.Zimmermann, Fuzzy Set Theory and Its Applications Kluwer Academic Pub-
lishers, 1991 '



BHAT [M],
al1]
al[2]

BHAT[M],

_al1]
a[2]
al3]

BHAT [M],
a[1]
al2]
a[3]
al4]

BHAT [M],

Autoregression type Model

Input data s
b(1, 1) =
b(1, 2) =
b(1, 8) =
b(1, 4) =
b(1, 5) =
b(1, 6) =
b(1, 7) =
b(1, 8) =
b(1, 9) =
b(1, 10) =
b(1, 11) =
b(1, 12) =
b(1, 13) =
b(1, 14) =
b(1, 15) =
b(1, 16) =
b(1, 17) =
b(1, 18) =
b(1, 19) =
i[Ml, for m
c 1.18118
;0. 257021
iM], for m
: 1.30016
: ~0. 486685
. 0.13196
iM], form
: 1.49012
. —=0. 843548
: 0.476912
. —0. 190382
i[M], for m
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Beliman Model
Input data S =

B(1
B(1
B(1
B(1
B(1
B(1
B(1

B(1,
B(1,
B(1,
B(1,
B(1,
B(1,
B(1,
B(1,
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Proposed Method

Input data S= 16 T= 19 MO=
B(1, 1= 1.3B(2, 1= 1.0
B(1, 2)= 1.3 B(2, 2)= 1.1
B(1, 3)= 1.3B(2, 3= 1.3
B(1, 4)= 1.3B(2, 4)= 1.5
B(1, 5)= 1.4 B(2, 5)= 1.8
B(1, 6)= 1.5B(2, 6)= 2.5
B(1, 7)= 1.6 B(2, 7= 2.7
B(1, 8= 1.7B(2, 8= 2.8
B(1, 9= 1.8B(2, 9= 2.9
B(1, 10)= 1.8 B(2, 10)= 3.2
B(1, 11)= 1.8B(2, t1)= 7.7
B(1, t2)= 2.4 B(2, 12)= 9.5
B(1, 13)= 2.5 B(2, 13)= 8.6
B(1, 14)= 3.4 B(2, 14)= 8.3
B(1, 15)= 4.4 B(2, 15)= 8.2
B(1, 16)= 4.4 B(2, 16)= 7.2 -
B(1, 1= 4.0B(2, 17)= 5.4
B(1, 18)= 3.7 B(2, 18)= 4.6
B(1, 19)= 3.4 B(2, 19)= 4.2
R= 0. 1368200D+03 0. 2127600D+03
R= 0.1192400D+03 0.2676000D+03
R= 0.2127600D+03 0. 3388000D+03 .
R= 0.1771400D0+03 0. 4153600D+03
R= 0.1334400D+03 0.2034400D+03
R= 0.1205000D+03 0.2612800D+03
R= 0.24276000+03 0. 3816400D+03
R= 0.2073100D+03 0. 47472000+03
R= 0.1192400D+03 0. 1771400D+03
R= 0.1125650D0+03 0. 2341000D+03
R= 0.2676000D+03 0. 4153600D+03
R= 0.2341000D+03 0.5238600D+03
R= 0. 1024400D+03 0. 1518400D+03
R= 0. 9706000D+02 -0.2010700D+03
R= 0.2863600D+03 0.4447200D+03
R= 0.2502300D0+03 0.5603600D+03

0. 1334400D+03
0. 10244000+03
0. 2034400D+03
0. 1518400D+03
0. 13256000+03
0. 1030000D+03
0. 2351600D+03
0. 1765000D+03
0. 1205000D+03
0. 9706000D+02
0. 2612800D+03
0. 2010700D+03
0. 1030000D+03
0. 85365000+02
0. 2789200D+03
0. 2163400D+03

d=-0. 1280+03-0. 201D+03-0. 125D+03-0. 229D+03
d=-0. 111D+03-0. 252D+03-0. 958D+02-0. 270D+03

BHAT(M), 1 (M) FOR M= 1
BHAT(M), (M) FOR M= 2
BHAT(M), | (M) FOR M= 3
BHAT(M), 1 (M) FOR M= 4

0. 30749D+01
0. 30552D+01"
0. 30552D+01
0. 30552D+01

hIGURE 3

0. 2427600D+03
0. 2863600D+03
0. 3816400D+03
0. 4447200D+03
0. 2351600D+03
0.-2789200D+03
0. 43426000+03
0. 5068200D+03
0. 20731000+03
0. 2502300D+03
0. 4747200D+03
0. 56036000+03
0. 1765000D+03
0. 2163400D+03
0. 5068200D+03
0. 6006800D+03

0. 47146D-01

0.42970D-23
0. 43409D-23
0. 43370D0-23
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