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A fuzzy treatment of uncertain Markov decision processes: Average case
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Abstract

In this paper, the uncertain transition matrices for inhomogeneous Markov decision
processes are described by use of fuzzy sets. Introducing a v-step contractive property,
called a minorization condition, for the average case, we find a Pareto optimal policy
maximizing the average expected fuzzy rewards under some partial order. The Pareto
optimal policies are characterized by maximal solutions of an optimality equation
including efficient set-functions. As a numerical example, the machine maintenance
problem is considered.

1. Introduction and notation

In modeling in terms of Markov decision processes (MDPs for short, cf. [1, 7, 9, 16, 20]),
we often encounter the following two cases: (i) The information on the state-transition
probabilities includes imprecision or ambiguity. (ii) The state-transition matrix fluctuates
at each step in time and its fluctuation is unknown or unobservable. In order to deal with
uncertain data and flexible requirements, we can use a fuzzy set representation (cf. [21]).

In our previous paper [14], we have developed a fuzzy treatment for inhomogeneous
MDPs with uncertain transition matrices. The transition matrices are described by the use
of fuzzy sets and a Pareto optimal policy for the discounted reward problem has found and
characterized by an optimality equation.

In this paper, the average case is considered in the same framework as that in our
previous work [14]. That is, a Pareto optimal policy maximizing the average expected fuzzy
reward(AEFR) under some partial order is found. In order to insure the ergodicity of the
process, we introduce a v-step contractive property for the average case (cf. [6, 10]), called
a minorization condition, which is often used in the study of Markov chains (ch. [19]). By
use of this property, a Pareto optimal periodic stationary policies are characterized as a
maximal solution of optimality equation including efficient set functions. As a numerical
example, the machine maintenance problem is considered.

Recently, applying Hartfiel’s[4, 5] interval method for Markov chains, Kurano et al.[12]
have introduced a decision model, called a controlled Markov set-chain, which is robust for
rough approximation of transition matrices in MDPs. Also, under a contractive property
for the average case, Hosaka et al.[8] treated the average reward problem for a controlled
Markov set-chain. Another approach to the average case has been given in [13].

Our fuzzy decision model examined in this paper includes a controlled Markov set-chain
as a special case. So, the results obtained here can be thought of as a fuzzy extension of
those in [8]. For the optimization of fuzzy dynamic system, refer to [11, 23].

In the remainder of this section, we shall give some notations and preliminary lemmas
on fuzzy sets and interval arithmetics. In Section 2, we describe a nonhomogeneous MDPs
by the use of fuzzy sets and specify the optimization problem under average reward criteria.
In Section 3, the AEFR from a periodic stationary policy is characterized by a fixed point
of a corresponding operator, whose results are applied to derive the optimality equation in
Section 4. ’
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We adopt the notation in [4, 5, 14, 17]. Let R, R™ and R™*" b= set of real numbers, real
n-dimensional column vectors and real n x n matrices, respectively. Also denote by R, R"
and R™ ", the subsets of entrywise non-negative elements in R, R" and R™*" respectlvely
We prov1de R, R”* and R™*™ with the componentwise relation < and <. For any set X, we
will denote a fuzzy set @ on X by its membership function @ : X — [0,1]. Denote by F(X)
the set of all fuzzy sets on X. For the theory of fuzzy sets, refer to Zadeh[24] and Nov4k([18].
The a-cut (o € [0,1]) of the fuzzy set @ € F(X) is defined as

Ge:={reX|a(z)>a}(@>0) and G:=cl{z € X |a(z) > 0},

where cl denotes the closure of the set. For any interval Y in R, @ € F(Y) is called a fuzzy
number on Y if @ has the following properties (i) — (iv): (i) @ is normal, i.e., there exists an
zo € Y with @(zo) = 1; (ii) a is convex, i.e., alaz + (1 — a)y) > a(z) Aa(y) forall z,y € Y
and o € [0, 1], where a Ab = min{a, b}; (iii) @ is upper semi-continuous; (iv) g is a compact
subset of Y.

Denote by F.(Y) the set of all fuzzy numbers on Y. Let C(Y) be the set of all closed
and bounded intervals in Y. We note that @ € F,(Y) means @, € C(Y) for all a € [0,1].
Let F,(Y)" be the set of all n-dimensional column vectors whose elements are in F(Y), ie.,

F ()" :={u=(t,Ug... ,0) | T € F(Y) (1<i<n)},

where d’ denotes the transpose of a vector d.
Let S:={1,2,...,n} and P(S) the set of all probability distributions on S, that is,

P(S) = {p=(pr, P2 1Pa) | p; 20 (1 <G <n), Y pj=1}
—
From any p = (1, D2, .- - »Pn) € Fe([0,1])", we will construct the fuzzy set [p] = [p1, P2, . - . ,Pn]
on P(S) by the following:
(1.1) [p(p) = min {p;(p;)} for any p= (p1,p2- .- ,Pa) € P(5).

1<j<n

The above definition will be extended to the case of stochastic matrices. Let P(S/S) be the
set of all stochastic matrices on S, that is, '

P(S/S) = Q= as) |85 20,3y =10 < i S )

For any ¢ = (@i, %2, --- »Gin) € Fe([0,1])" f < i < n), we define the fuzzy set Q=
[G1,G2; - -+ »qn) on P(S/S) as follows:

(12) QQ) = min {[@)()},

where Q@ = (g1,42,--- ,q2) € P(S/S), ¢ = (a1, i, - - - ,Gin) € P(S) and [g;] is the fuzzy set
on P(S) defined by (1.1).

In order to describe the structural properties on the fuzzy sets defined in (1.1) and (1.2),
we need the concept of intervals of matrices. For the detail, refer to [5, 12, 17]. For any
nonnegative vector g = (ql, 9ys - - ,gn) and § = (41,75, ... ,T,) € R} with ¢ <7, we define
the interval (g;3) C P(S) by

Simlilarly, for @ = (gij),@ = (g;;) € RY™ with @ < Q,

- (14) Q@) ={QeP(S5/9)1Q<Q<Q}
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For any @ € F([0,1]), noting @, € C([0,1]) (0 £ o < 1), it will be denoted by G, =
[min @y, max d,]. The structural property of the fuzzy sets defined in (2.1) and (2.2) is given,
whose propf is done by using the following Lemma 1.1.

Lemma 1.1 ([5, 14]). ’
(i) For any Q,Q € RY*" with Q < @ and (Q,Q) # 0, (Q, Q) is a polyhedral convex set
in the vector space R™*™. :
(i) For any 3 € 7(0,1])" (1< <n), ley
defined by (1.2). Then, the a-cut of Q)
P(S/S) and given by

= [q1, G2, - - - ,Gn)' be a fuzzy set on P(S/S)
< a < 1) is a polyhedral convex subset of

Q
(0

(1.5) @a = (_Q_a,@a>, where Q_a = (min(lz}j)a) and Q, = (ma,x(%)a)
If u = ([a1, 1], a2, b2], . - - , [@n, b)) € C(R4)"™, u will be denoted by u = [a,b], where
[a,

a = (a1,09,...,0n)", b = (b1, by,...,b,) and [a,b] = {z € R} | a < z < b}. For any
u € C(RL)™ and Q Q € RY" with Q < Q and (Q Q) # 0, we define their product by

(1.6) (@Q,Q)u={Qu| Qe (Q,Q),u € u}.

The following arithmetical notation is used in the sequel. Let Q= [G1,G2,-.. ,Gn) be a
fuzzy set on P(S/S) with g € F([0,1])" (1 < i < n). Then, for & = (U, Uy, ... ,Un)’ €
Fe(Ry)™, Qu € F(R%) is defined as follows:

(1.7) (Qu)(z)= max {Q@Q)Au(w)}, for z€R?, where

rz=Qu

QE’P(S/S).uER:‘_

(1.8) | u(u) = glfgnn{a'(“’)} with o= ('LL},U:Q, oo, Ug) € REL

Lemma 1.2([14]). For any @ = (U1, Uy, . .. ,Un)’ € Fo(R4)"
(i) (QU)s = Qulle for a€[0,1); (i) Qu € F.(R)™

The addition and the scalar multiplication on F(R) are defined as follows: For @b e
F.(R) and X € Ry, define

(a+?5)(x)»;: sup {a(z1) Ab(z2)},

m1,12€R+
z1tr9=z

~ v faz/x) ifA>0
Aa(z) = { Loy(@) A=0 (x € Ry),

where I is the indicator of a set A. It is easily shown that, for a € [0, 1],
(@+D)a=0a+by and (N3)a = Adg,

where the operation on sets is defined ordinary as A+ B :={z+y |z € A,y € B} and

M = {)z | z € A} for A,B C R. The above operations are extended to those on F.(R)"

as follows: For u = (U, Us, ... ,Un)', 0 = (V1,02,...,0s) € Fe(R)",

B+D = (U400, 8+ Ty U +Tn) and NG = (Niy, Mg, ... , Min)'-

For a = (ai,a,. .. ,‘an.)" € R, Itay = (i} L{an}s - - - > Lan}) € Fe(R)" and writing I, simply
by a, Its) + W is described by a4+ . Also, u — Iy, is defined by %+ I{_s), whose arithmetic
is used in the sequel. The Hausdorff metric on C(R) is denoted by 4, i.e.,

d([a,b],[c,d]) :=|a—c|V|b—d| for [a,b],[c,d] € C(R),
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where £V y = max{z,y} for z,y € R. This metric can be extended to F.(R)" by

i(w,v) = max sel[lp]‘s((uz)a;(vz)a)
for & = (Uy, Uz, ... ,Un), 0= (1, 02,... ,0s) € F(R)™. Then, it is known(c.f.[15]) that the
metric space (F.(R)", ) is complete.

2. The model with fuzziness

In this section, we formulate a fuzzy model for nonhomogenuous MDPs with uncertain
transition matrices.

Let S and A be finite sets denoted by S = {1,2,...,n} and A = {1,2,... ,k}. Our
sequential decision model consists of four objects: '

(8,4, {@i;(a) € Fe((0,1]), 4,5 € 5, a € A}y7),

where r = r(i,a) is a function on S x A with r > 0. We interpret S as the set of states of
some system and A as the set of actions available at each state. We denote by F' the set
of all functions from S to A. For any f € F, we define the fuzzy set Q(f) on P(S/S) as
follows:

(2.1) Q) = @ (), &(f), - ,@(f)] where
(22) () = (@), & @),... . @(f()) (1 <i<n).

Note that the basic notations of (2.1) and (2.2) are defined in (1.1) and (1.2).

A policy 7 is a sequence (fi, fa, . .. ) of functions with f; € F' (¢t =1,2,...). Let Il denote
the class of policies. For an integer v(v > 1), a policy 7 = (fi, f2,...) is called v-periodic
stationary or simply v-periodic (cf. [10]) if fu1+k = fx foreach t =1,2,... and k(1 < k <
v — 1). Such a policy will be denote by f* simply by f, where f = (fi, fo,..., f,) € F".
Let II, denote the class of v-periodic policies. Any 7 = (f, f,...) € II; is called stationary.

For any f € F, let 7(f) be an n-dimensional column vector whose i-th element is
(i, f(i)). Applying Zadeh’s extension principle(cf.[18]), the fuzzy expected total reward up
to time T from a policy 7 is a element of F(R,)™ and defined as follows:

(2.3) ér(n) = (br(l,7), $r(2,7), ... ,ér(n, 7))’ and
(3.4) or(i, 7)(z) = max{lgﬁiélTé(ft)(Qt)} forall zeRy, 1<i<n,

where the maximum is taken over

(2.5) {@1,Q2,...,Qr |z = (r(f1) + Qur(fa) + - + Q1Q2 - Q17 (fr+1))is
Q: € P(S/S) (1<t <T)}

Then, for any policy 7 € II, it holds from Lemma 3.1 in [14] that
br(m) € Fo(Ry)™ for all T > 1.

Here, applying the definition of the supremum of fuzzy numbers in Congxin and Cong
[2], we will define the average expected reward for the decision process operatlng over a long
time horizon. For each e € [0,1] and i € S let

. S E
(2.6) 0o (i, ) = llqg?_}gf —:l—_,ng,a(Z,?T), ,
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where ¢1.4(i,7) is the a-cut of ér(i,m) and for a sequence {D¢} C C(Ry), lilin inf Dy, =
—00
{z e Ry | limsup 6(z,D;) =0} and 6(z,D) = inf |z —y| for D€ C(R,).

Now, let qﬁa(z ) ﬂ @ (i, 7) for each a € (0,1]. Then, since @, (i, 7) € C(Ry) and

0<a'<a
Ga(6,m) C G (i, ) for o < @, the following holds obviously.

Lemma 2.1 Fori € S and 7 € II, we have:
(i) Gali,7) € C(R4).
(i) @a(i,7) C P(i,7) for 0< o' <a<1.
(i) it dor (5, 7) = Ga(iy 7).
Using the representative theorem (cf. [18]), we can define a fuzzy number

(2.7) 9(i,7)(2) = sup {@ A Iy, im(2)}, © € Ry

a€l0,1]

Note 5(71) = ((Z(l,ﬂ), é(2,7),... P(n,m)) € Fo(Ry)™. We call ¢(r) an AEFR vector from
a policy .
Here, we will give a partial order < on C(R) by the definition: For [a,d], [c,d] € C(R..),

[a,b] X [¢,d] if a<cand b<d,
[a,b] < [c,d] if [a,b] < [c,d] and [a,b] # [c, d].

This partial order 5 on C(R,), called a fuzzy max order, is extended to F,(R,) as follows:
For u, 7 € F.(R,),
u<v if Uy <7, foral ael0,1],

u=<v if uxvand uw#7.
Also, the partial order on F.(R;)" is given by the definition: For & = (Uy, %y, ... ,u,)’
v = (V1,02,... ,0n) € Fe(Ry)™,

?

usv if gyxyforall i1=1,2,...,n
u<v if uvand u#7.
The following lemma is used in the sequel whose proof is easily done.

Lemma 2.2 Let a sequence{un} C F,(R;)"™ be such that %, < Uy < -+, and limy_, o, U =
u for some u € F,(Ry)". Then, it holds that %, < u.

In order to insure the ergodicity of the process, we introduce the minorization condition
(Ly) which is assumed to remain operative throughout this paper.

Minorization Condition (L,)(cf. [6, 10])
There exists an integer v(v > 1) and € > 0 such that

Q(fl) (fV)>EE for all f19f27 “3fVeFa

where _C_)Q_(f) = (min(gi;(f))o), Q(f) = (@y(f)) for f € F and E = (e;;) with e; = 1(1 <
1,7 <n).

Our problem is to maximize the a(w) over all 7 € II with respect to the partial order <
under the minorization condition (L,).



226

3. Periodic policies and operators

In this section, under the minorization condition (L,) the AEFR vector from a v-periodic

policy will be characterized by the use of a unique fixed point of a corresponding operator.
‘Associated with each function f € F is a corresponding operator U(f) : F.(Ry)" —

F.(R,)" defined as follows: For u € F(R,)" and f € F,

(3.1) U(f)u =r(f) +Q(f)g,

where the arithmetics in (3.1) are defined in (1.7). Note that from Lemma 1.2 U(f) is
well-defined. The following holds obviously.

Lemma 3.1 For u € F,(R,)" and v € F,(Ry), it holds

U(f)(u +7ve) =U(f)u +ve, wheree=(1,1,...,1) e R}.

__ For any policy 7 = (f1, f2,.-.), let 77° = (fir1, fiso, ... ) for each [ > 1. The sequence
{¢r(m)}$2, is recursively described, whose proof is the same as that of Lemma 4.1 in [14].

Lemma 3.2 For any policy = = (f1, f2,- .. ), it holds
(3.2) br(n) = U(Ff)U(fa) - U(f))¢r—i(r") for each 1> 1.
From Lemma 3.2, we have that for f = (f1, f2,...,f,) € F¥,

(33) Su(F) =UH*0 (k>1)
where 0 means Ifo) € F(R4)™ and

(3.4) ) = U U,

Applying the minorization condition (L,), for each v-periodic policy f = (f1, fo,- .-, fu)
€ F¥ we introduce the corresponding operator V(f) : F.(Ry)® — Fc(R4)™ defined as
follows: For @ = (uy, Ua, ... ,Un)' € F(R4)™, :

(35) V($ila) = max{min QF)(Q) AE@)} (= € RY),

where the maximum is taken over

(3.6) {@1,Qa,. .. Qryu |z =1(f1) + Qur(fo) - + Q1+ Quaar(fu-1)
+ (@1 Qv —eBE)u, Qe P(S/S) (1<t<v), ueRL}

and

(3.7) u(u) = lréliiélnﬁi(ui) for u= (u,us,...,un) €RY.

Obviously, V(F)u € F.(Ry)™ for w € F(R4)", so that V(f) is well-defined.
Here are some basic properties of V(f).
Lemma 3.3. Let f € F”. Then we have:
(i) V(f) is a contraction with modulus 1 — ne.

o~

(i) V(f) is monotone, i.e., u < v implies V(f)u < V(f)v.
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For any f € F, let h(f) € F.(R.)" be a unique fixed point of V(f), that is,
(39) - h(f) = V(DA
Then, by (3.1), (3.4) and (3.5) to (3.7),

(V(PR()a ~lmin(U(FR(F))o — min(eER()a
, max(U(f)h(f))a — max(eER(f))a]-

Noting [a — ¢,b — d] + [¢, d] = [a, b], we get from (3.9)
(3.10) h(f) +eEh(f) = U(HR(S).
Theorem 3.1. For any v-periodic policy f = (fi, fa,- .., fu) € F”,

we observe that

(311) 8(F) = ZER(F) = Z(3_y(£))e

where h(f) = (b (), ha(F)s - - - , ha(F)) is a unique fixed point of V(f).
As a simple example, we consider a fuzzy treatment for a machine maintenance problem
dealt with in ([16], p.1, p.17-18).

An example (a machine maintenance problem). A machine can be operated synchronously,
say, once an hour. At each period there are two states; one is operating(state 1), and the
other is in failure(state 2). If the machine fails, it can be restored to perfect functioning by
repair. At each period, if the machine is running, we earn the return of $ 3.00 per period;
the fuzzy set of probability of being in state 1 at the next step is (0.6, 0.7, 0.8) and that of
the probability of moving to state 2 is (0.2, 0.3, 0.4), where for any 0 < a < b < ¢ < 1, the
fuzzy number (a, b, c) on [0,1] is defined by

z—a)/(b—a)ve if 0 <z <b,
(2,0 ¢)(z) = { E:z: - c));((b - c))v 0 if b<z<1.
If the machine is in failure, we have two actions to repair the failed machine; one is a rapid
repair, denoted by 1, that yields the cost of § 2.00(that is, a return of —$2.00) with the
fuzzy set (0.5, 0.6, 0.7) of the probability moving in state 1 and the fuzzy set (0.3, 0.4, 0.5)
of the probability being in state 2; another is a usual repair, denoted by 2, that requires the
cost of $1.00(that is, a return of —$1.00) with the fuzzy set (0.3, 0.4, 0.5) of the probability
moving in state 1 and the fuzzy set (0.5, 0.6, 0.7) of the probability being in state 2.
For the model considered, S = {1,2} and there exists two stationary policies, F =
{f1, fo} with f1(2) = 1 and f»(2) = 2, where f; denotes a policy of the rapid repair and f;
a policy of the usual repair. We easily observe that

(3 ~ .\ _ ((06,0.7,0.8) (0.2,0.3,0.4)
rifi) = (—-2) and Q(f1) = ((0.5, 0.6,0.7) (0.3,0.4,0.5) )
Applying Theorem 3.1, we can obtain the AEFR, J( f1). After some calculations, we find

~ 85+ 250 135 — 25, . —15 + 25 35 — 25\ /
h(fl)““([ 18 ' 18 b 18 18 ])’

R(f) = ((

which leads to
| 5 10 135, 15 10 %,y

18’ 187 18 77" 18 718’18

By (3.11),

7 12 17, 7 12 17)'

a(fl) = (('év "9"" '§')7 (5) 'é': ‘9—)
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4. Pareto optimal policy

Here, we confine our attention to the class of v-periodic stationary policies, which simplifies
our discussion under the minorization condition (L,). A policy f* € II, is called Pareto
optimal if there is no f € II, such that q~5( ff) < q?( f)- In this section, we derive the
optimality equation, by which Pareto optimal policies are characterized.

The following important result is crucial to the development in the characterization of

Pareto optimality.

Lemma 4.1. Forany f,g €11, let I~z(f) and ﬁ(g) be the fixed points of the corresponding
operators V(f) and V(g). Suppose that

(41) ) {3} viehs).
Then, it holds that
(42) R {3} B

Let D be an arbitrary subset of F,(Ry)". A point u € D is called an efficient element
of D with respect to < on F.(R;)" if and only if it holds that there does not exist v € D
such that % < ©. We denote by eff(D) the set of all elements of D efficient with respect
to < on F(Ry)" For any & € F(Ry)" let V(u) := ef{V(f)a | f € F*}). Note
that V(u) C F.(R;)™. Here, we consider the following fuzzy equation including efficient
set-functions V(-) on F.(R4)™

(4.3) GeV@), @eF(R)™

The equation (4.3) is called an optimality equation, by which Pareto optimal policies are
characterized. A solution of (4.3), u, is called maximal if there does not exist any solution
@ of (4.3) such that E% < Eu'. Pareto optimal policies are characterized by maximal
solutions of the optimality equation (4.3).

Theorem 4.1. A policy f € II, is Pareto optimal if and only if the fixed point of the -
corresponding V (), h(f), is a maximal solution to the optimal equation (4.3).

Remark. For vector-valued discounted MDPs, Furukawa[3] and White[22] had derived the
optimality equation including efficient set-function on R", by which Pareto optimal policies
are characterized. The form of the optimal equation (4.3) is corresponding to the average
case of MDPs with fuzziness.

For the machine maintenance problem in Section 3, we find that

55 10 135, 17 8 3
18" 18’ 1877 18 18718’/

7 -~ 85 110 135, ,—15 10 35.\/
VR =m0 = (G5 5 35 (G5 18 18)

which satisfies V(f2)h(f1) < ﬁ(fl). Thus, h(f;) € V(ﬁ(fl)), so that from Theorem 4.1 f;
is Pareto optimal in II;. In fact, we can find, by solving (3.9) for f;, that

V(f)h(f) = ((
Recall that

~ ((5913 59 13

8 = (G320 (52, ))  and 8(£2) < B(50).
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