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Interacting Brownian Particles in Multi-Dimensions

Kohei UCHIYAMA (PYILI$})
TokyQ Institute of Technology

1. Introduction

A system of Brownian particles interacting through 2-body-potential drift terms is
one of the simplest natural models that are thought to exhibit a mathematical structure.
of how a macroscopic evolution equation comes out from microscopic dynamics of a
statistically large system regulated by conservation laws. While the model is interesting
as a physical system of small particles suspended in a fluid (see [4: Part I1] for physical
interpretation as well as recent developments of the sub ject), apart from such interests
in the model its hydrodynamic scaliﬁg limit has long been studied from Mathematical
point of view, through which it has been well understood that under the hypothesis
of the local equilibrium a non-linear diffusion equation for the limiting density of a
suitably scaled distribution of particles must be derived and its diffusion coefficient be
determined as a function of the density which reflects the microscopic structure of the
interactions (cf., eg., [2]). The argument for the derivation is convincing but had been
lacking in any mathematical vindication until Varadhan [6] gave a rigorous derivation in
one-dimensional case of smooth repulsive potential. In this talk we primarily consider
multidimensional models, for which the method of [6] does not (at least directly) apply:
there arises a serious Vdifﬁculty. Roughly speaking we can modify the method under
a certain uniform bound of the space-time average of the p-th moment of a scaled
empirical density, E fOT dt f[pN(8,t)]Pd#, for some p > 3, or something like it, but such
a bound, though convincingly plausible, is difficult to verify.

2. The model and the results
Let T? be the d-dimensional unit torus represented by the hyper-cube [0,1)¢, and
(z1(t), ...,z n(¢)) a system of interacting Brownian particles evolving on T¢ according

to the following system of stochastic differential equations:

doi(t) = -2 3 vr (M> dt + dBi(t), i=1,2,..,N.
.3( ) € Jz;é:l ; € | Z( )7 ? =y ?
Here € is a small positive parameter (répresenting the size of the particles in a macro-
scopic scale), B, Bs,... are independent standard Brownian motions moving on T¢
defined on some probability space (Q, F,P); U(z) is a radial function on R?, namely
it is given in the form U(z) = V(|z|). We shall suppose that V is a twice continu-
ously differentiable function of r > 0 that is non-increasing in a neighborhood of 0 and
satisfies the following conditions: |
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(i) for some constant ¢, > 0, V(r) =0 for r > co;
(ii) either (a) V > 0 or (b) fol' V(r)réldr = oo;
(i) if V is bounded, then it can be extended to a twice continuously differentiable
function of r > 0 and V(0) := lim,_,o V(r) > 0; if V is unbounded, then

tim sup [r2[V'(r)[2 + r2|V ()| |72 < oo

r—0

The process xI¥ := (z1(t), ...,z n(t)) is a diffusion process on (T%)¥ whose infini-

tesimal generator is given by

d
Ly A(N)———ZZVU< - )8%

=1 j#2

where AMN) denotes the Laplace operator on (T4)Y and 8/0z; the gradient operator

with respect to z; € T¢. The process xY is ergodic. The invariant probability law is

Z/N(clx)—~——-—exp[ > U( f)]dml--.dx,v,

4,5 (#)
relative to which Ly is symmetric. Let €N be the empirical distribution of the particles

given by

z1(t), ...,z N(t), namely ¢l is the counting measure on T¢ defined by

N
/I‘d J(a:)ftN(dw) = Edz J(:c,-(t)), Je Coo(Td)

Our main concern here is to determine the limit of £ as N — oo and € | 0 in such
a way that the average density N % remains (asymptotically) constant. The limit
measure is expected to have a density (relative to the Lebesgue measure on T4) which

solves the non-linear diffusion equation
' 1
(2.1) -%u(@,t) = aAP(u(Q,t)), (6,t) € T* x (0, 00),

where A is the Laplace operator on T¢ and the function P(u),u = 0, is the pressure
at density u in the Gibbs formulation of thermodynamics on RY associated with the
pair potential function U(z). It may be defined as follows.

For a d-tuple £ = (£4,...,£4) with positive entries £; > 0, let A(£) denote a hyper—
interval (d-dimensional interval) [—£1,£;] X - - - X [—£4, £4]. The canonical partition func-

tion for n particles in A(€) with the empty-boundary condition is defined by

, .
Zg,o =1 and Zg,n = / exp { Z U(gi — q;) } I for n >1
| @ ) &

‘where q = (g1, .-, gn) € [A(£)]" is an n-particle configuration. Let min{, ey} — 00



and n — oo in such a way that n/[A(ﬁ){ —p (p > 0). Then there exists a limit

(2.2) @(p) = lim ——log Z; ,;

|A(£)l
®(p), called Helmholtz’ free energy, is convex and.<1>(0+) = 0. The pressure (or Gibbs’
free énergy) as a function of chemical potential A is given by F(\) = sup serlAp—2(p)]:
The function & is differentiable and ®(p)p~! — 0o as p — oo; the derivative ®'(p) is
necessarily non-decreasing and continuous; hence F(\) may be regarded as a continuous
function of p > 0, which defines our pressure P(p), or, what amounts to the same thing,

(2.3) P(p) = 2'(p)p — &(p).

For the derivation of (2.1) it is crucial that P(p) — p can be represented as a
limit of averages of —(¢; — ¢;) - VU(qi — ¢;)/d over configurations q = (g;) in the
box A(£) distributed according to a canonical Gibbs measure e n(dq) of n particles
with a boundary configuration w. In multi-dimensions there may occur some kind of
phase transitions: we know of the validity neither of equivalence of ensembles nor of
uniqueness of grand-canonical Gibbs measures, which however does not cause essential
difficulty for the verification of the representation. In fact we obtain

Theorém 2.1. For eachr >0, n>1 and cach pair of indices 1 < a,8 < d

sup suP/—-—- Yas(gi — ¢;) = [P(ne) — poe)bap|pss »(dq) —> 0
fw<exp (L) p<r |A(€)] q“q%(e) ( J) (Pnt) = patlbap ;e( )

as £, = min{ly,...,¢5} — co, where Pt = n/]A(n@)!, gbaﬁ(z) = —2gVU(2).

If d =1 and V is bounded, the assertion of Theorem 2.1 is proved in [G]Iba,sed on

the uniqueness for grand canonical Gibbs measures.

103

We return to the problem of the empirical measure ¢Y. We suppose that the

diffusion process x starts from an initial law which has a density, denoted by f&', -

relative to vyy. The evolution of the process may be analytically characterized by the
forward equation
of¢
ot

where f} is the density relative to vy of the law of x¥. On the family of initial

= LthN7

densities {f'} we impose the following growth condition of their entropies
(2.4) / f3 log fldvy = o(N1+2/4) as N — oo.

We will regard ¢l as a stochastic process taking values in the space of all finite
measures M(T?), which is viewed as a metric space whose topology agrees with that
of weak convergence of finite measures.
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For any T > 0 and a non-random element u, € M(T%) we shall concern weak
solutions of (2.2) on the time interval (0,T') that satisfy the initial condition

(2.5) u(0,t)df — u,(df) as t—0

as well as the integrability condition

(2.6) /0 " /T P(u(8,1))d6 < co.

It is known [5] that such a solution if any is unique if d = 1; in the case d 2 2 it is
unique at least if u, is absolutely continuous and its density is square integrable.
We put
Y(ry=—rV'(r) r>0.

In one-dimension the method of [6] may be adapted to the case of unbounded V' to

deduce from Theorem 2.1 the next theorem.

Theorem 2.2. Letd = 1. Suppose, in addition to (1) to (111), that either 1(r) > 0 for
all > 0; or fol V(r)dr = oo and fol[d)’(r) V 0]dr < co. (Here a V b = max{a,b}.) Also
suppose that (2.4) 1s satisfied and ¢ converges in probability to a non-random element
u, € M(T?). Then the random trajectory ¢N(dB),t > 0, converges in probability to
a single trajectory u(6,t)d6,t > 0 in the topology of locally uniform convergence of
continuous trajectories in M(TY) and the limit function u(8,t) is a (unique) solution
of the non-linear diffusion equation (2.2) satisfying (2.5) and (2.6).

We derive a corresponding result in multi-dimensions under a hypothetical postu-

late. Let h be a smooth non-negative function having a compact support such that

/ B89 =1 and A(0)> 0

')

0= 500 = 5w (B2 ) 0 (27)

i j#i
where ||(r) = |1(r)|. Our third result, Theorem 3, reduces the problem to the follow-

ing condition:

put

- g0 - S (55

and

e

T
GO /0 dt /T B[(S(6,x))P + (p(6,%1))7] 8 < 0 for some p > 3/2.

It may be noticed that if ¥(0+) < oo, then p(6) > C"lw/S(AO) for some positive
constants A and C; if ¥(0+) > 0, then p(8) < C+/S5(0) + 1.



Theorem 2.3. Suppose that (H) holds, (2.4) is satisfied and &€ converges in proba-
bility to a non-random element u, € M(T?) and the sequence of initial configurations

x{¥ satisfies

(2.7) ‘ A}h_’r)loos%pP [/rd [p(8,x)]?d6 > M| = 0.

Then the same conclusion as in Theorem 2 holds with obvious modification.

The conditions (H) measures the degree of non-concentration of particles in aver-
age: they would be violated only if excessively many particles accumulate in a small
region. It should be verified for non-trivial initial conditions, but the present author
do not know how to prove it whether V' is bounded or not. If we start the process with

the invariant measure vy, it holds that for all p > 0

(2.8) | Sl}pr[/ont/rd ([S(G,va)]f’+‘ [p(H,xf’)PP)chJ < 00,

which with p > 3/2 of course implies (H). (2.8) is also valid for independent Brownian
motions starting from initial distributions subject to a certain mild condition if 4 is
replaced by any function ¢ such that [ |p|?dz < co. The validity of (H) is plausible
for a wide class of initial distributions since the evolution law governed by Ly does not
seem to develop accumulation of particles, our potential being essentially repulsive so
that it must exercise a dispersing effect on the particle configurations, although we do

not know of any effective argument that approves such plausibility.

3. The representation of the pressure P(p) by means of virial

In this section the proof of Theorem 2.1 is outlined in the case when V > 0,
which will be assumed in the rest of this talk. (Its proof in the other case is somewhat
involved.) We introduce some notations. Let ¢, be the smallest positive constant
such that V(r) = 0if r > ¢,. Given £ = (L1, ...,24), £; > c,, we take a configuration,
w = (wg) say, on the outer shell A(£+ c,) \ A(£), where ¢, = (¢o,...,¢,) and £+ ¢, =
(€1 + Copry Ly + o). Put

Ua)= > Ulai—g3), Wlalw) =23 Ulgi —wy),

4,3(#)
H¥(q) = U(q) + W(qlw),
Zn(l,w) =/ Vexp{—H“’(‘q)}é%l- if n>1, and Zy(4,w)=0.
[Aa@)n &
The canonical Gibbs measure /¢ n is then a measure on [A(£)]", the n-fold Cartesian

product of A({), given by

w 1 ) W dq
b a(dq) = mexp{—-?i (Q)}"ﬁ!"- ‘

105
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Throughout this section we shall write

pe = n/|A(D)].

We state several lemmas without proof.

Lemma 3.1. Let §(p) =271 (2vap) Y/ and

Clp) = 2+ pexp {2d+2p/

U+(:c)d:c},
|z|>6(p)

where a4 = max{a,0} and vy stands for the volume of d-dimensional unit ball. Then
forn>1 and £y > 2c,,

(3.1) %Tﬁ—f) < Cpe).

Lemma 3.2. Let ¢ be a positive constant such that £; > ¢+ co,1 = 1,...,d, and define
m; = [(26; — co)/(2c+¢,)| and m=my---my.

Then, Zn(L,w) > (2¢)4™ for n < m; and

(3.2) Zn(lyw) > [min{Zg,Ln/mJ,ZS,Ln/mJ+1}} " for n>m.

Here ¢ = (¢, ...,¢) and |a] denotes the integral part of a.

Let Nx = Nx(q) denote the number of points ¢; contained in a set K. Put
Hila)= Y > Ulgi—q5)-
. g €K jH#i
Lemma 3.3. There ezist positive constants A and B (depending only on U) such that

if a Borel set K is covered by m hyper-cubes of edge length c, and £y > 2co, then for
0 <~ <1 and for every positive integer k,

s e(l—'y)A k
explrHic(@ugo(da) < LTI o1 - ppmipiy,

v {NK =k}

where C(p) is the same as in Lemma 8.1 and |K| denotes the volume of K.

Lemma 3.4. If o Borel set K is covered by m hyper-cubes of edge length ¢, and
L, > 2¢,, then

(Clpo)l K|
k!

PN = k) < exp{—m ™' Bk®}.

Lemma 3.5. For p > 1 there exists a continuous function My(p) of p 2 0 depending
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only on U and p such that if a function x(q),q € R? \ {0}, satisfies
(3.3) x(g) < Al(lg] < c,)eV @/
for some positive constant A, then for any hyper-interval K with all its sides > ¢Co
[ 3 okt ap) i alda) < 1K P 47y )
D@ "igex _
Lemma 3.6. There egists a continuous function C1(p) on [0,00) such that for every

point wi from the outer configuration w

Zn(L,w \ {wi}) ,
zn(zz,w)lc < Cailpe).

Lemma 3.7. There exists a continuous function Co(p) of p > 0 depending only on U
such that if x(q) < I(|q] < ¢,)eV@) | then

(3.4) /M S x(ai — wn)pgn(da) < Calpe) (k=1,2,...).
" =1

Lemma 3.8. Ifn,{, — oo so that n/|A(£)| — p, then

1

uniformly with respect to w and p < r, where r may be an arbitrary positive constant.

Lemma 3.9. For each triplet of numbers r > 0, 0 < § < 1 and a > 0 there exist
positive constants n and L such that if p, < r; £, > L and K is a hyper-interval
included in A(L) and if |[K| > §|A(£)], then h

Hen (

Define

Plpg) — P(pg), >'oz) < e'”]A(e)‘_', where- PK = |K|*1NK.

p(r) =—-rV'(r),

bap(z) = —25VoU(2) = T"f{"wu 20),

Vip=Tos(a)= D> taplti—g)-
4,5 (#):4i,45 EA (L)
- Using Lemmas 3.1 through 3.9 we now prove the following theorem, which obviously

implies Theorem 2.1.

Theorem 3.1. For each r >0 and each pair of indices 1 < a,8 < d

2
:UZ n(dQ) - 0

im sup sup /lf/\(f)l — [P(pe) - P£]5a/3

b= w ngr|A )
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where pg = n/|A(€)] and the first sup 13 taken over all configurations w in A(L+c,)\A(D).

Let 6§ > 0 and w and £ be as above. For 1 < s <1+ 6 put
= (wf: tk=1, am) € Rde’ Wi = (ka,17wk,2) "'7wk,d) € Rd’
0 = (Sél,ﬁz, ...,Ed)
in analogy of the proof given in [6] to the corresponding result in one-dimension. Then
; 146 d
(3.5) log Zn(£2F% w't?) —log Z,(4,w) = / = log Z,(£°,w®)ds.
1 3
Changing variables of integration from g; to ¢; = (8¢i,1, 3,25 > Qi,a), We have

Zn(£°,w°) = 8" Zn,ew(s),

where g
w8 q
Zneal®) = [ expl-H @)
(A @] n
Hence
d n | Zpau(s)
. —log Z (0%, w®) = — + ==L
(3.6) 7 log Zn(£,0%) = < + Zneol®)
Here Z,, , w(s) denotes the derivative relative to s, and is given by

! s K] 8 Wiy 8 d
Zn0u(8) = /A(g)] [Z $11(gi — ¢5) +22¢11(Qi _wk)} exp{—H" (q )}73

(Recall ¥11(z) = —21V1U(2) = —(22/]2))V'(|#]), = € R%.) [At this point it may be
worth making a comment. We are going to identify the limit of |A|7™! [> " ¢11(qi —
g5)dpg, (as pe — p) with P(p) — p. Changing the variable back in the integral above

we getb

n E w( ) 1 / [ : :

- P11(gs — g5) +2 ¢1Q'—W§-}N°§ dq).
Basl) L[ (S onlarm 2 o] e
The identification is easily deduced from this relation together with (3.5,6) if d = 1
since then we have the uniqueness for grand canonical Gibbs measures (accordingly the
nice ergodicity), while, with such uniqueness unabailable, we need grope some suitable
device if d > 1.] One calculates the derivative of s™'1;1(2°) relative to s to see that if

xll(z>=[1—(|%)2] (B I) V' (J2l) - (, ,) 2PV (la)),

d
Zl;(%%bn(zs)) = ;%Xll(zs)-

then
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An elementary calculus and changing the variable back show
(8.7) ~

n l w(s)
dS Zn A w(S)

= E—the variance of { Z Y1(g: — g5) + 22 Y11(gi — wk)}

2
s 5,5 (#)
with respect to pf n(dq)

+ { > x11(q1~q3)+22x11 "—w’i)}#f:,n(dQ)-
(A i "

By the hypothesis (iii) on U we can choose a positive number A so that Ix11(9)] <
AI(lg] < co)eV(@ for every ¢ € R%. Applying Lemmas 3.5 and 3.7 we therefore obtain

- (38) /[Aw)]n{ > le(qz—qJ)H?Zan(qz—wk)l}um n(dq)

45(#)
< AMy(po)|A(O)] + 24C:(pe)(Juw),

where jw stands for the number of wy’s (presupposed to be contained in A(L4c,)\A(L)).
Finally, by (3.5) through (3.8),

(3.9)
log Z,(£'1°,w %) — log Z,(¢,w)
. 146 Z; 0.,
C=nlog(l+6)+6f(1) + / ds/ f'(t)dt (f(s) = ——-—————:j:ési)

> nlog(l + 6) + 6/A(g) {Z ¢11(Qz - QJ) + 2 ZT/)(Q: - wk)} He n(dq)
2716 [AO)] + o] Co(p0)
for all § small enough, where C3(p) = A(M(p) V 2C2(p)). In the same way we get

(3.10)

log Zn (€', w'=?%) — log Z,.(¢,w)

> nlog(l ~ 5) —_ 5/,\(() {Z ’,bll((h - QJ) + 2Z¢(Qz - wk)} K, n(dq)
152 [IA(E)] + f] C3(pe).-

Thebre‘m 3.2. Let p be a non-negative constant. Then
1 / y N
AT Vii(@pen(da) — P(p)—p
IA(E)I (A 11( ) £ ( ) (

as n, L, — 0o in such o way that n/IA(£)| — p, provided that w, configurations on
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AL + ¢,) \ A(£), are subject to the condition that jw/|A(£)] — 0. For each constant
r > 0 and each positive function v(£) approaching 0 as €. — oo, the convergence 13
uniform with respect to (p,w) such that p <r and fw < y(£)|A(L)].

Proof. We pass to the limit as £, — oo in (3.9). Observe that the boundary terms are
negligible. In fact, an application of Lemma 3.7 with the help of the hypothesis (iii)

shows

(3.11) l /A() Zgbu(q,—wk)uf n(dq)’ < const Cz(p)ﬂw

Recalling that |A(£*F8)| = (1 + §)|A(£)]|, we then obtain
1
~ £+ 8)2(5/(1 +8) - 2(7)]
> pttmeup o [ Wh(@pda(da) +0(6)
IAO)] Jiacenm

We deduce from (3.10) a similar inequality (but in the opposite direction) with &
replaced by —8 and limsup by liminf. By introducing the variable n determined by
(14 6)(1 —n) = 1 these two inequalities may be written as

—[o(@ =) - 2] + (1)
>®(p)+p+ lim sup m%zﬁ /[A(Z)]" ‘1’51@)#2",7»(‘1@

> ®(p)+ p+ liminf —— T (q)ps (dq
( ) lA(E)l A" 11( ) 4, ( )
1 ,
> —[2((1 +0)p) - #(7)] + (D),
where o(1) — 0 as n | 0 ( we have made use of the fact that ® is continuous). Noticing

that the derivative of ® from the right is larger than or equal to that from the left

since ®(p) is convex, we conclude that @ is continuously differentiable and

1
5%'(7) = ®(p) + s+ lim — Ui (@nt (da).
P = ( a £, —+00 IA(E)I A 11t £n

The asserted uniformity is automatical from the very fact that there exists a limit which
is independent of w. The relation of Theorem 3.2 then follows from p®'(p) — ®(p) =
F()). O

Theorem 3.3. In the same sense of convergence as in Theorem 8.2,

(312) T facer W utnlda) —  (P()- Do
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- Proof. Let Top be a limit point of the left-hand side of (3.12). Let a = (as, ..., aq) be
a unit vector in R%. We have >a,p9abapas = —(z - a)?|z| 72y (|2|). Taking a small
‘positive mimber 6, we cover A({) by identical and disjoint hyper-cubes of edge length
£,6 whose edges are parallel or perpendicular to the vector a. Theorem 3.2 may be
applied to U’s corresponding to these hyper-cubes. The error that arises from the
interaction between neighboring hyper-cubes and that from the contribution of those
sitting on the border of A(¢) are estimated from above, respectively, by

the total vc;il(rzl)el of corrxdors < const Mi(pe)| 5£,*]—1

A]\f1(pg‘) X

and by

the total volume of hyper-cubes on the border

|A(0)]

AM;(pg) X < const M;(p,)é

as is deduced from Lemma 3.5 and the hypothesis (iii) on V. These bounds for errors
vanish in the limit as £ — oo and § — 0 in this order. We can therefore conclude that

Y aaTapag = P(5) - j,
o

proving that T is a constant times the identity matrix. The proof of Theorem 3.3 is

complete. [

Proof of Theorem §.1. The proof is carried out only in the case @ = 8 = 1 since the
other case can be similarly dealt with. For a large positive integer m we partition
A(€—c,) into m? hyper-intervals which are shifts of A((¢— ¢,)/m). Then we may write
‘ £—c,

m

\I’til = ZTy(z)\Ilfl + R!,m) ¢ =
g : .

where y(i) denotes the center of the i-th hyper-interval, 7, the translation operator and
R%™ the remainder term, which consists of the contribution to ¥4, of the interaction
across the borders and that of the configurations on A(€)\ A(£ —c,). We are going to
take limit as £, — co and m — co in this order. From Lemma 3.5 it follows that

[ IR Pz, < OMy(r) (miBAE))?,

where [OA| denotes the surface area of A and C some constant so that the contribution
. of R®™ vanishes in the limit. We have to prove

2 .
1 ,
lim sup su /'—-———-—- T,,'\I’[-—-.P ¢) — pe)| dug, = 0.
te=o0 st lA(ﬁ)l-‘\:-: (o Vi = [Plee) = pel| diif
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According to Lemma 3.9 we may replace P(pg) — pe by
1 1
— > [Plpk@) — Pr@), wh iy = T VK G
—3 Zi:[ (Pr(@) — Pr(@),  where Pk () II\,(z)’NI&( )
and K(7) denote the i-th hyper-interval. By Lemma 3.5 again
Y\ 2 '
supsup  sup /[(lA(f')rlTy(i)‘I’ﬁ) + [P(px(s)) —pl{'(i)]z} dug n < o0.
ti w n<riA@) |

Hence it suffices to show that for each m,

Ty(i)‘I’g; _ R Ty(j)\lffll B R ‘ y
/( A(D] [Ppx (i) PIi(z)]) (——————IA(M [P(pxiy) — prci)] | disn — 0

as £, — oo uniformly in w and n < r|A(€)] as well as in 4,7 such that K(z) and K(j)
are separated by a distance more than ¢, from each other. By the DLR equation and

the Schwarz inequality this follows if we show that, uniformly with respect to ¢, w and
n < r|A(0)],

———1 ! 7(—y(e wl
/(|A(El)| A \I!fl(q)%(’kJ( ) (dq)

(w' is a random configuration in the shifted shell 7,¢;)[A(€' +¢,) \ A(£')]), which in turn
follows from Theorem 3.2. The proof of Theorem 3.1 is complete. O

’ 2
—[Ploxe) = PK(i)l) dpgn — 0

k=N (i)

4. Local Gibbs States.

In this section we state the local equilibrium result (Theorem 4.1 below), which
is essentially the same as that given in [6] for the one-dimensional model, and then a
consequence of it combined with Theorem 2.1. The entropy bound (2.4) is supposed
to hold in what follows.

Let h be a smooth, non-negative and radial function on R? such that h(#) = 0
if 6] > 1, [h(6)d6 = 1 and 9 - Vh(f) < 0if 0 < [§] < 1. Put; for A > 0 and a
configuration x = (z1,...,zn) € (THY,

€

N ) _
) = pa(85) = 3 (257) (ha(8) = AH(A"19)).

Let x% be the configuration viewed from § € T? : x? = (z; - 6,...,zn — 0) and define

N _l g N (b
f(x)_T/O dt[rdft( )db.

Theorem 4.1. For each ¢ > 0, any limit point, as N — oo, of the law of the point
process {e~1z;: e 1x; € A(c)} induced from FN(x)vn(dx) is a convex combination of
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canonical Gibbs measures g, of average particle density not greater than limsup e? N
over varying particle numbers n and boundary configurations w.

Proof. The proof given for Lemma 7.5 of [6] in one dimension may be followed word
for word. O |

Putfor A >1

(41) sV = s<*><ex)—pm<e)+2iz/)l(l?’lm")h(m’: )

;.7(75)

and with the microscopic variables q = (g;)

\Il*(z\)( ) — Z hk(qz)'ﬁbaﬂ (QI - ‘ZJ)
4,7(#)

Theorem 4.2. Let ¥) X) = TV (e=1x%). Then for eachr >0 and1<a,8<d
af afB

= [P(pA(0)) — pa(0)]éug

hm hmsupE'f { ; SM(0) < r] =0.

A—00 N—co

Proof. Since the integrand is uniformly bounded due to the truncation by S, it
suffices, in view of Theorem 4.1, to prove that for each r > 0 and for some § > 1

(4.2) lim sup sup/
A0 4, e nrAd [A(B]

where A = (},...,A), fw denotes the number of particles constituting w and px(q) ==
pa(0,eq) = Efil h(gi). For very large A the function k) being locally almost constant

20 (q) — [P(p3(a) — p5(a)]8ap| 6y n(da) = 0,

in the sense that

C
sup |hx (g —¢) — ha(gi)] < Chy P (¢i/2)
lg|<e ,

for ¢ < A/4, the relation (4.2) is easily deduced from Theorem 1.1 with the help of
Lemmas 3.4 and 3.9 by partitioning the support of Ay into small blocks as in the proof
of Theorem 2.1. O

5. Strong convergence of P(py(4,x})).

Let pa(8) = pa(f,x) be as in the previous section. We wish to compare the
microscopic density py(6) with the macroscopic one py *hy(6) where X is taken large and
n small. Under the possibility of phase transition and without knowledge of growth rate
of P(p) for large p we consider f(P(py)) — f(P(px * hy,)) for each bounded contlnuous
f instead of px — py xR, itself.

Theorem 5.1. Sup’pose that the hypothesis (H) as well as (2.4) holds. For any
subsequence of N = 1,2,.... there exists its subsequence {N'} such that the law of
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{eN .0 <t < T} is convergent and that for each boiunded continuous function w(p) of
the form o(p) = f(P(p)) with some bounded continuous function f on [0, 00),

: T
i imsuplimsupE [ dt [ [o(oa () = ploa (6l ) ¢ ba(@)|d8 = 0,
0 Td .

70 rA—ooo N/'—oo

where px(-,xN' ) * hy(8) denotes the convolution [ px(8 — ', xN ), (6)d6'.

Let G = G(6) be a smooth function on T%. Put

(5.1) R RNOCRYN O
where G*p)(0) = [1. G(6—6')px(6')d6". Then, after carrying out integration by parts,
we obtain
0 z; — 6
2 F(x) = :
Ba, (x) 2/1"1 ha ( - )VG*/)A(Q)CZG
and

LnF = /P,\(H)AG*PA(‘Q)CZG

+Z//h,\( )Aa(e'we)zu(
WQ/pA(G')dG'/VG(G'mG) 3 m( 9) VU( : ‘”f) i

i,j(#)

9/

> dbde’

Here the domain T¢ is omitted from the integration sign. Since VU(—z) = —VU(z),
in the last integral 2h)((z; — §)/€) may be replaced by

ha ("”’"6“9> ~ ha (‘”i _9> — /01 eV (hne) (@i — 8(xi — 2;) — 0)ds - (;,- —z;).

€

Substituting the right-hand side expression and performing integration by parts once

more, we arrive at

(52)  LyF= /r ox(B)AG * px(6)d8 + Y

+22/ INCGA )cza'/ VaVsG(8' = 6) - T35(8)de.

a=1 f=1

where

\iiﬂ(Gj 53,0 = Z/ ( ._,s(m,E zj) = a) ds s (a: :xj)

1,3(#)
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and

=Y M (x) = E:[/m(' )AGw—ﬁmA( gddmm

The difficulty we encounter in the multidimensions is caused by the cross terms (i.e.,
the terms with @ # $) on the right-hand side of (5.2). Defining G by

. pb
G@z&@sz@&

where p;(y—z),z,y € T%t > 0,is the fundamental solution for the heat equation Q,u =
2Au on T¢, we proceed as in [5] and [6]. The actual proof is somewhat involved. It is
only noted that the cross terms must vanish in the limit because of the local equilibrium
once a relevant uniform integrability is established, and for the latter purpose we cannot
help employing some bound of SN () like (H) along with the following lemma.

Lemma 5.1. For each p > 1 there exzists a constant Ap independent of b (< 1) and e
such that for any LP-function f on T? and for 1 <a,B <d,

”vavﬂGb * fllp < 4pllfllp

where | fll, = ([ 1flrdz)""" (p > 1).

6. Proof of Theorem 2.3.

The proof of Theorem 2.3 is based on Theorems 4.2 and 5.1 and the uniqueness
result for weak solutions of (2.2) as stated in Section 2. It is not hard to prove that the
set of random quantities X V:* = (pMA(.,¢),0 < ¢ < T') where pN(,1) = pA(6,x1)
is tight as a family of measure-valued continuous processes taking values in the space
- of finite measures M(T?). Let QN)‘ be the probability law induced by X¥:* and Q-
any limit point of {Q™*} as N — 00 and A — oo in this order. We can show that

(6.1) Q UOTdt/Td dG/OOOp(G,t)P(p(G,t)) < ooJ —1

Suppose that £ converges to u, € M(T%). Let J be a smooth function on the torus
T¢. We write ¢N(J) for the integral [, J(6)&N(d6). In view of the trivial bound

N () - / TO)pa(6,x1)d8) < [V T s,

it suffices to prove that the (potentially random) function p(6,1) is a weak solutlon of
(2.2) (with this p(0,1) in place of u(8,t)) satisfying the initial condition (2.5) a.s. (@)
since the integrability condition (2.6) is valid by virtue of (6.1). As in the previous



116

section (see (5.2)) we obtain

(62) |
/ 7(8)px(6,xN)d6 - / 7(8)px(6, x)d6
Té Td
1 t d d . :
_ 5/ dsy Z/vavﬂJ(e) [53(6, %) + (6, s 8 +
0 a=1 =1
where

¢ z; — 0
= déh ! vJ(8)-dB;.
o= [ 5 [ (20) vio

A simple computation yields that E[jm,|*] < [[VJ||ZN te2?. We decompose the integral
on the right side of (6.2) by dividing the domain of integration according as

(6.3) pa(8,xN)y <M or px(6,xN) > M.

The contribution of the second part can be easily shown to be negligible by using (H ).
For the first part in (6.3) we may replace \if(’},ﬂ(ﬁ, xN) by [P(p2(8,xY)) — (6, %260
since the error arising by the replacement converges to zero in probability according

to Theorem 4.2. Therefore we can write
1 t
64) ) - =3 [ ds [ ATE) Pulpa(8,x2Nd8+ RYM,
0 Td

where Pyr(p) = P(p)g(P(p)/M) and the error term RN:AM converges to zero in the
sense that for every 6 > 0

lim limsuplimsup P [IRN’A’MI > 5} =0.

M—00 yx—oo N—oo

Now we apply Theorem 5.1 to deduce from (6.4) the relation

t
/ 7(6)p(8, )d6 — / 7(8)uo(d6) = / ds / AJ(6) P(p(8,5))d8 a.s. (Q).
Td Td 2 0 Td

Thus Theorem 2.3 has been proved. O
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