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Defining reflection positive random fields with interactions by
polynomials of generalized Euclidean free fields

EXJ@RER¥  HH 2 (Minoru W. Yoshida)*
September 19, 1999

0 Introduction

In section 1 the generalized Euclidean free fields are expressed as &’'-valued random variables by
making use of multiple stochastic integrals.

Using this expression, for space time dimension d < 3 it is shown that Euclidean random fields
defined by Wick powers of the generalized Euclidean free fields satisfy reflection positivity. This main
result is stated in Theorem 7 of section 2. In Proposition 9 it .is shown (unfortunately) that the reflection
positive Euclidean random field defined by Wick power of generalized Euclidean free field has no analytic
continuation to any Wightman distribution when d = 3.

Section 3 is an appendix.

1 Fundamental lemmas

Let A be the d-dimensional Laplacian, andzdenpte J® =(-A+ mz)-% for some fixed m > 0. Then,
for the pseudo-differential operator (|£[> +m )‘% the Green kernels J%(z) can be given explicitly by
modified Bessel functions. Precisly, J* has the following integral representation (cf. [Rg]):

1 oo !(Z'lz —d—24a
J%(z) = ——-———-/ exp{——— — m2s}s ds, z € R 1.1
) = Gytrg ot g - i a1
In the sequel for o =1 we denote
J? =J

Let S (Rd) be the Schwartz space of rapidly decreasing test functions equipped with usual topology,
as a consequence, it is a Fréchet space: Let S'(R?) be the topological dual space of S(R?). For each .
a, b, d > 0, we define a linear subspace B;’b of 8'(R?) as follows:

By = {(lz]* + )iJ°F : fe L}(R%NY). | (1.2)

Then B;'"b becomes a separable Hilbert space with the scalar product

<uly >= /Rd Jo((1+ |2?)~%u(z)) J2((1 + 2%~ %u(z))dz, w,ve Ba®, (1.3)
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Let Bx be the Kolmogorov o-field of C(R? — R):

By = the smallest o-field of C’(Rd — R) by which 7, T € R are measurable,
Whefe
7z : C(R* — R) > f — f(z) € R.
We obviously have the following (Proposition 1 of Yn:

Proposition 1 Let C(R® — R) be the space of real valued continuous functions defined on R? equipped
with the uniform convergence topology, C’O(Rd — R) be the LF-space of real valued continuous functions
defined on R? with compact supports equipped with the canonical LF -topology (cf. for eg. [Tr]), and
B(C(R* — R)), B(Co(R* — R)), Bx and B(B2?) be the Borel o-fields of C(R* — R), Co(R? — R),
the Kolmogorov o-field of C(R? — R) and the Borel -field of Bg’b respectively. Then, for any a, b>0
the following identity holds:

B(Cy(R: — R)) = {A ACo(R* — R) : AeB(C(R* — R))}
={ANCyR' = R) : Ac BK} = {ADCO(Rd ~R): AeB(B")}. (1. 4)
By this, the next Proposition 2 follows:

Proposition 2 Any C’o(Rd — R)-valued measurable function defined on a measurable space can be
regarded as a B;"b-valued measurable function for any a, b > 0.

We denote the Fourier and Fourier inverse transform of a function ¢ respectively by Fly] and F~1[g],
which are defined by

FIE) = [ e o),

F©O = @m) [ T pl)ds o g & S(RY:

We sometimes denote Flp] = @. Let m € C§°(Rd) be such that

1 gl €1
0<miz) L1 and m(z) = { 0 2| > 2 (1. 5)

and let ni(z) =m(§) € Cg°(Rd), k=1,2,.... Also define p € C3°(R?) as follows:

1
o) = { C’exp(——lfi—x-l—z) lz] <1
0 x| >1

where the constant C is taken to satisfy
/R“ p(z)de = 1. (1. 6)

Define
pi(z) = k*p(kz). 1.7



125

For a > 0 we define J* € S(RY), k=1,2,... by

Je(z) = fR T (9)e(z — y)dy

and ,
Fe @y 0p) = ()P I (@ —v1) - 2 (z — gp), (1. 8)
also let
F"‘(z;yl,...,yp)=J°‘(m—-»y1)---J"(m—yp), p=12,.... (1.9
Then we see that the function FZ and F* are symmetric in the last p variables (y, ... +Yp) and

p+l

FEeS(RN™),  F(myi,...,yp) =0 for |z|> 2. (1. 10)

The convolution py* defines a mollifier. Let us recall the following important properties:

peCREY, m@ =),  BOI<L  AO=1 Gyas). (1

Hence, py(£) converges to 1 uniformly on compact sets: For any M < oo and any € > 0 there exists an
N < 00 and .
0<1-pp(8) <e V&€ such that [¢|<M and Vn> N. (1. 12)
Now, suppose that on a complete probability space (2, F, P) we are given an isonormal Gaussian
process W = {W(h), h € L*(R% X%)}, where A% denotes the Lebesgue measure on R? :
W is a centered Gaussian family of random variables such that

EW W) = [ ha)g@n(de), b ge L2(RY

To be precise, 2 would be the complete separable metric space R™ equipped with the metric

o0
d(m')y) = ZQ—nmin{lxn '_y‘n!)l}’ Tr= (xl)x27"')) Yy= (yl,y27"')$

n=1
P = Ng3, F = the completion of the Borel g-field of  with respect to P .

Then for every F/B(T)-measurable mapping f :  — T the measure v = g o f~! becomes a regular
probability measure on T, where T is a topological space having a countable open base and B(T') is the
Borel o-field of T. )

In order to give the expressions of multiple stochastic integrals for random variables on L?((, P), we
regard the Gaussian process W as L?(, P)-valued Gaussian measure on the parameter space (RY, B(Rd))
(cf. section 1.1.2 of [Nu]):  For A € B(R?) such that A4(A4) < oo we denote W(4) =W (x,;),lwhere
XA is the indicator function. Now, for h € L?(R% A%) the random variable W(h) can be regarded as a
stochastic integral, and is denoted by W(h) = [ R hdW.

For expectations of multiple stochastic integrals the following holds:

E[{/f(yl,..-,yp)W(dyl)---W(yp)}z] =plflZ:  for fe L¥(RH;(1%). (1. 13)

Foreach @ >0, p>1 and k>1 we define a random variable 'k Ph, ¢ as follows:

th P b (T) = /{R")" F(@y1, . yp)Wo(dyr) - - - W, (dyy). (1. 14)
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We can take 3 @5, @ as a Co(Rd — R)-valued random variable, indeed since there exists a bounded
open set Dy = {z||z] < 2k} C R? and

gl (2)=0 for ze€R}\Dp VweQ.

Also by the Kolmogorov’s continuity criterion the stochastic process {ik 45, ¢ (2)},ge admits a con-
tinuous modification, we also denote it by :x ¢% , : (z). Hence,

Gk #h,: () ECHRY)  YweQ.
The following Proposition 3 is the restatement of Proposition 3 of [Y]:
Proposition 3 Letg € L*(R%) and K € L2((R%P*Y). Suppose that K satisfies the following:
K (.i; Yls-- s Yp) is symmetric in the last p variables (y1,... 2 Yp)s

there exists a compact set D C R% and K(z;y1,.--,Yp) =0 for (x,v1,...,Yp) € D° x (Rd)”;
the map R:>z+— K(z;') € Lz((Rd)p) is continuous.

Then, f( RY K(z;y1,- - -+ Yp) Waldys) - - Wes(dyp) has a measurable modification I,(K;)(w) which is

measurable with respect to two variables (w,z) such that for allx € R?
/(R“)” K@y, - Yp) Waldyr) - - Woldyp) = L(K;)(w) P-aswell
And the following Fubini type formula holds:

[ 9@ ) d = /( oy [0 K 1p) ) Woldn) - Wally) P = s €

Proposition 4  For each k € N and r > 1 there exists My, and
[ [l 82 @ daP@) < M - (1. 15)
Also for each k and 1 let

Ukl (zy,...,m) = E[(x 65, (21)) - Gk €5, (@)],

then
Ukt e Co((RY)! — R). (1. 16)

Proof.  (1.15) follows from Lemma 10 in Appendix.
(1.16) can be shown as follows: For symmetric functions Flyi,- - ¥p) € L'z((Rd)p; )\dP) and
9(y1,. -1 Yq) € LZ((R‘i)q; 294 the multiple stochastic integrals

L(f)= f(R‘z)p Flyss. . yp)W{dwn) - - W(dyp) and I(g) = f(R.:.)u g1, -+ Y)W (dyr) - - - W(dy,) satisfy

L(f)I(9) = g\fr! (i) (g)IP+q—2r(f®r9)7 (1. 17)

=0
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0 p#q
ElI,(f)I(9)] = | ; (1. 18)
p< f?g >L2((Rd)7’) bp=gq
where
(F®9)(W1s- -, Yptg-2r) = /( R F - o, ¥)9¥pt1s -+ s Yprg—r, ¥)dy
(cf. sectionl.1 of [Nu]). By (1.14) for each z since 3, #% 2 (z) = L,(Fg(z;-)), using (1.17) and (1.18) over
again, then we see that U*!(x;,..., 2;) is a linear combination of
(B (@13 )0 B (@03-))@ra FE (223 ) @0 F (23 -+~ ) @0y, B (m1s-) € Col(RY) — R),
where ihtegers 71,...,71—1 satisfy
0<r <p, O0<re<pA(kp—2r1—---—2r,_1), k=2,...,1—1.
Hence
Ukt € Co((RY — R).
]

Statements i), ii) and iii) of the following Proposition 5 are the results of Theorem 1 in [Y], of which
proof is given in Appendix.

Proposition 5  Suppose that a positive integer p and positive real numbers a, b and o satisfy

2
min (1, 7“) 4 p X min (1, %%) > p, b>d, (1. 19)

and let {: %, :} be the sequence of Co(R® — R)-valued random variables defined by (1.14). Then the
following hold:
)

lim /s:z”k Pt~ tm Ph 7]

k,m—o00

2
g P(dw) = 0. (1. 20)

i)  There exists a P-null set N, a subsequence {:, b0 i} of {5, 1} and a Bg’b-'ualued random
variable : ¢, , : such that

klim | ik, BBt = DB i I gas =0, Yw e Q\N. (1. 21)
4 —+00 d

i) For p € S(RY) there exists a P-niull set N, which may depend on v and
< P HP>ss =lol(p) YweQ\N, (1. 22)

and
klgf’lo | < @3, 5 9>s1,8~ <t 85 5, 0>s sllL2(0,p) =0, (1. 23)

where

lpulp) = /( sy e P2 TE = 1) T (@ — ) A )W) - W),

w)  There exists a constant C and

i ,
{E“<: ¢g ‘P >S’,Slr]} < C(’I’ - 1)}2_“90“[_,2(}2";)\.1) VQO € S(Rd) vr > 2. (1' 24)
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Proof.  Since i)-iii) are the results in Theorem 1 of [Y], we only show iv) roughly. By (1.22)
<: 8 , Hp>s,s has an expression of multiple stochastic integral lp,., (), for this applying (1.18) and a
standard multiple convolution argument (cf. Theorem V.2 of [Si] and (1.22) of [Y]) we have

E[l<:¢%: ¢ >s 5] = /(Rd ,,(/ Q@) (@391, yp)da) “dys - dyp

CI“WIIL'z(Rd;M) forall ¢e S(Rd)_

IA

By this and Theorem 1.22 of [Si] (cf. also (1.17) and (1.18)) (1.24) follows. |
In the seque we shall denote : :,ba w:ond: ¢a w by kPaw and Po . respectively. Recall that for each
z € R nip(z)J2(z — ) € Np>1 LP(R% W), and

enl®) = [ (@)@~ )Wolds) € L@ )

Also we have to recall that by Theorem 1.1.2 of [Nu] for each z € R? the real valued random variable
k 9B, + (z) defined by (1.14), which satisfies (1.20) and (1.21), is the p-th Wick power of the L2(§; P)-
random variable p@q . {(Z):

k ¢g,w t(x) = /( 4y ("7"("1;)']1?(3" - yl)) T ('f)k(l‘)-],?(x - yp))vvw(dyl) st Ww(dyp)

(5] m
1 —2m 1
= iy oyt (e @) ("ib“,ku)) : (1. 25)

where

bak(z) = (m(f‘?) / (J¢ (- 2))’dz

2 Main results

In this section we shall show that the Euclidean random field : ¢% , : defined by (1.21) has the property
of reflection positivity by making use of the propositions given in the preceding section. We adopt
the definition of reflection positivity for Euclidean random fields given in section 5 of [AGW], and use
same terminologies: RS t=1{ze Rz = (2°,7) € Rx R 2°>0}, 8 ((Rd) ) be the real Schwartz-
functions on R with supports in (R }*and a tlme reflection operator 6 is defined by 8(z°, &) = (—2°, ).

Proposition 6 For o € (0,1} and d € N let ¢on be S'(R* — R)-valued random variable defined
by (1.21) for p = 1. Then for af € R, o € S(R‘fr —R),r=1,...,N,, l=1,...,n, n=
.,N (N,, N € N) and a € R, the following holds:

N Ny,

!Z Za < 0P by > - < Bl a>)+a¥

nlr—
N N,

{Z O ar <¢lga > <7, c,>)+a}]zo. @ 1)

n=1 r=1

Proof.  The Euclidean random field defined by ¢q,. is a generalized Euclidean free field, and the
corresponding sequence of Schwinger functions S7 satisfy the following:

Sﬁ(%@“'@%)EEKW,%>"'<<Pm¢a >]1 (2- 2)
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S§ =1, <p,~eS(Rd——>R), r=1,...,n.

ZZ nim(0fa ® fn) 20 forall fo€ R, foeS(RL)"),n=1,...,N. (2. 3)

n=0m=0

If we take f, = E,{Ll atel” ® - ® 7 and fo = a in (2.3), then by (2.2) the desired result follows. B

Theorem 7 Leta € (0,1) andd € N. Also let p be a positive integer satisfying min(1, 2% 7)) > P——

Then the S'(R® — R)-valued random variable : : defined by (1.21) satisfies the property of reﬂectwn
positivity:  for o' € S(Rd — R), r = 1,...,Nn, l=1,...,n, n=1,...,N (N,, N€ N) and
a€ R,

N N,
[{Z O <0pm,: 42 :>---<6<pgvr,:¢g:>)+a}

n=1 r=1.
N Nn

{Z Z <ppT @R > e <ol BB :>)+a}] >0. (2. 4)

n=1 r=1
Proof.  Since C°(R? — R) is dense in S(R* — R), by (1.24) and Hélder’s inequality it suffices to
prove (2.4) for D, = CP(R® —» R)NS(R% — R).
By Proposition 5 (from (1.23) similar to the proof of (1.24) we also have L" convergence of < , % oL >
to < @,: @& :> for all r > 2) we see that

N N
lim{ {{Z(Z<0g@1 vk BB > e < BT BP ;>)+a}

k—o00 el 1

N N,

X{Z(Z<<p1 ik O > <¢§;’T,:k¢g:>)+a}]}

n=1 r=1

N N,
_E[{Z(Z<0<p : - <9<p2"",:¢g:>)+a}

n=1 r=1

N N,

X{ZZ<"D Ty B> < opT L R ) 4+ }J (2. 5)

n=1 r=1

Also by (1.15) and Hélder’s inequality we have

H ] i‘(/ 10677 (0) 8 @lde) - ([0 100R7(2) 1 822 0)d) + ol

n=1 r=1

{ZN: NZ(/ NPT (@) 2k 85 : (2)ldz) - (/ lon ™ () k¢p‘($)|dw))+|af}}<oo (2. 6)

nlr*‘

Since for other p, N and N, the proofs can be carried out similarly, in order to clarify the discussion and
notations we only prove (2.4) for N =1, N; = 1 and p = 2. By (1.14) and (1.18) since EJ:; ¢ (z)] =
by (2.6) and Fubini’s lemma we have

E[{<0p,:k ¢ > +a}{< @, #5 > +a}]
= E[{ R p(0z) i @5 : (z)dz + a}{/R" p(z) % ¢h : (z)dz + a}

- /R"’" P@)p(2)E[(in 45 (@) (i 4 : (6a") | deda’ + a2 @ 7)
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By (2.5) it suffices to prove that the right hand side of (2.7) is not less than 0 for ¢ € D, when k is
large enough. For ¢ € D, let & be the distance between supp|p] and the boundary of Ri. For each
M € N we take {DM},_;  ,,, a covering of supp|¢], such that distance between D} and the boundary
of RY is not less than 6 — 77, U;\il DM is compact, UJNLIA?;"’ > supply), DM DY =00 # i)
(Isupple]| — 1) /M < |DM| < (jsupplell + 1) /M5 Niz=1 Uj=y D = supplyl.

For each M and j we denote a:;‘” as a point in the partition DJM . By (1.16) we know that U k2 ¢

C’o((R“l)2 — R), and the RHS of (2.7) is the limit of a Riemann sum:
/ N np(:c)tp(m')E[(:k ¢ (2)) (o 45 ¢ (Hx’))]da:dx' +a= lim &(M)+a?,
E M —o00

where
M M

E:(M) =Y (@i )e(a) U (6023, =)\ D} DY),

j=1i=1

It can be seen that if % + ﬁ < 6, then
(M) +a® > 0. (2. 8)

Indeed since E[:j ¢2, : (1:;"’)] =0 (cf. (1.14) and (1.18)), by Proposition 4 we see that

M ’ M
() +a? = B[{30lal)x 4 : G )IDY| + aHY_ o@!) e 84 @IDY | +a}].  (2.9)

j=1

And for p = 2 by (1.25) we have

M M
S ol 625 @NIDY +a = 3 (@) (ea(@l)’ - bas(t) DY+
i=1 i=1

M
S @) (< (@ )pe(al = ), 8a >)* = bas(at) } DM +a
=1

M
= Zai < @b, pa >< Ph, o > +a, (2. 10)
i=1
where
’ _ M
ai = o(@)mENIDY, i) =) = — ), d=a- 3 (@ Yoo, ()| DM,
i=1
Also since bq (02) = ba k() and p(fz — y) = p(z — 6y) we have
M M ‘
3 @) 6% e NIDM | +a =) 0 < 09, $a >< Oh, da > +a. (2. 11)
i=1 i=1

For ¢ € D, since py(zM —-) € Dy foralli=1,...,M when 14 & <6 (cf (1.7)), by (2.10) and (2:11)
from Proposition 6 the RHS of (2.9) is non-negative for such k and M, and (2.4) has been proved for
N =1, N; =1 and p = 2. By the above proof, it is obvious that the other cases can be proved by a
similar way.
n
The following Corollary 8 is a direct consequence of Theorem 7:
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Corollary 8 Leta € (0,1] and d € N. Also let p be a positive integer satisfying min(1, 22) > 3";%.
Then, the sequence of Schwinger functions S%? defined by

SpPlo1® - @] = E[< 01,: 48 > -+ < g, : ¢8>,
Sy? =1, (pTES(RdeR), r=1,...,n
satisfy the property of reflection positivity (2.3).

It is interesting whetherS2® can be analytically continued to some Wightman distribution or not. In
order to define Wightman distribution corresponding to the Schwinger function SP (if it is possible),
roughly speaking we have to consider Laplace Fourier inverse transform of SpoP (cf [AGW]). In the cases
when p > 2, the inverse image of S2? involves convolutions of inverse image of S5 1, By this consideration
we have the following Proposition 9, which is a result in [Y2].

Proposition 9 By Corollary 8, ford = 3,a =1 and p = 2 the Schwinger functions {SL?} satisy
reflection positivity. But they can not be analytically continued to some Wightman distributions.

Proof.(cf. [Y2])  The inverse image of Laplace Fourier transform T of S! for d = 3 does not admit
convolution T" + T even in any sense of distributions. By the above mentioned considerations, the result
follows. |

Remarks and Notes 1 i) In the early 70th multiple stochastic integrals were applied for the con-
sideration of the Free Markov field by [Ne].

i)  Considerations about Banach spaces in which ¢y ., takes values were made in [Re].

i) In [Y] continuous maps F : 8' — S’ such that F($aw) = J (s : ¢2,, :) are considered, and for
p =2 it is shown that the map is H — C* (c¢f. [UZ] and [Ku]).

i) Ford=3,p=2 anda =1 the Euclidean random field : ¢? : is reflection positive by Theorem 7.
It may be interesting to consider the so called stochastic quantization (¢f. [AR]) for this random field.
v)  The result derived here and the results in a expository paper [Y] can be applied to considerations
of various types of Schwinger functions, for eg. convoluted generalized white noise discussed in [AGW].
These applications will be made in future work.

3 Appendix

Lemma 10  Suppose that a positive integer p and positive real numbers a, b and o salisfy

2 4
mina,gd‘l) +pmin(, =) >p  b>d. @3 1)
Let
b
Glun--rthin) = [+ )~ )P i, )i,
Gr(y1, - Upsy) = /R“(l +[e?) 2 (@ — y) F(zs 9, ., yp)dr,
_b
Gen(ys, .-, Ypiy) = Rd(1+lwi2) n (@~ Y)FQ (@591, yp)da.
Then

k}:l.;rgo ”G - Gk”Lz((R“)p“;(,\d)p“) =0, 3. 2)
nl_l_{go IGx ~ Gk,‘n”L2((»Rd)p+l;(,\d)p+1) =0. (3. 3)
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Proof. Since
/(R")”“,{ R 9(z)J%(x — y)F(z; 91, - - ,Yp)dx}ody = /R‘i /R"' J?(z — 2)(J?*(z — z))Pg(2)g(z)dzdz,

by Theorem V.2 (cf. also Theorem V.3) in [Si], we see that under the assumption (3.1) for p, a and «
there exists a constant C and

2
/(R.l),.+1 {/ ., g(z)J*(z — y)F*(z; 91, - -- ,yp)drz:} dy < Cllg|i2. forall ge L*R4AY. (3. 4)
In (3.4) if we set g(x) = (1 + |z|2)~% (1 — (nx(z))P) and denote

Gryr, - YpiY) = /R“(l + lez)’%J“(z — ) (@)PI*(x — 1) - - T*(z — yp)dz,

then
/(R"-)”“ Gt > Upi V) = G (¥1, -, ¥pi 9)Pdy S C g k(l + |z[2)~ 5 da. (3. 5)
z|>
Also for g such that
o<l 3.6
-<3 3. 6)

there exists a constant C and the following holds:
/(R“)”“ Gy, 953 Y) — Gi(¥1- - Yps )Py

P P

= (2m) /(R«y.ﬂ )+ FOO & + O TTm? + 162711 = (&) P(m? + 617
q=1 i=1
xd€y -~ d&pdE
1

< Clim)? FliZ2 (/R‘,(livl2 +m?)71 - ﬁk(m)lzqd-r> , where f(z) = (1+z[*)7%. (3. 7)

Since b > d, by (3.5), (3.6), (3.7), (1.11) and (1.12) we see that (3.2) holds.
Similar to (3.7), since

1

,.<

Gk ~ Gk,"l”iz((R'l)y-+1;(>\:t)1»+1) < Cll(mk)PFIIe (/Rd(|$|2 +m?) 7L ~ /fn(x)|28dﬁ)
holds for s such that 0 < 1 < 2%, (3.3) can be proved. n

Lemma 11  Suppose that p, a, b and o satisfy (8.1) and let {: ¢% , :} be the continuous modification
of (1.14) and Ii(w,z) be a measurable modification of

[ (et = 04 )4 Bl ) W) el

that is measurable with respect to two variables (w,2), then for each k there exists a measurable set
Oy € F @ B(R?) such that P ® X%(Ox) = 0 and

/Rd Jo(e— )1+ 2t sk BB (@) do=Te(w,7)  V(w,2) € (2x R\ Ok 3. 8)
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Proof.  Let J2(x) = (pn*J®)(z), then for each z € R* J2(z—-)(1+|-]2)~% € L2. Also, note that the
function F satisfies the condition for K in Proposition 3. Hence, if we let I,(K.)(w) be the measurable
version of f(Rd)p Fg(ziy1,- -, Yp) W (dyr) - - - W, (dyp), which is an element of L2(R% x ;M4 ® P), and
for each fixed z let g(z) = J¢(z—z)(1+|z[>)~%, then we can apply Proposition 3. On the other hand, the
continuous modification :x ¢% , : is an equivalent process of f( RY” F2(x;y1,. ., yp)Wo(dyr) -+ W (dyp)
that satisfies :; 42, , :€ Co(R® —» R) Vw € Q, and it is also a B(R?%) ® F-measurable function. Thus,
ik $h. ¢ (z) can play the roll of I,(K;)(w) in Proposition 3 and we see the following:  for each 2z € R

Rl.]“x—z)(1+[m| iR, (@)de = Lin(w,z) P-aswe (3. 9)

where
Ipn(w,z) = / o (/R" Jo(z - 2)(1+ !x{z)”%Fﬁ‘(m;yl, e ,y,,)dx) W (dy1) - - W, (dyp).

By' Kolmogorov’s continuity criterion we can assume I} ,(w, ) to be a continuous process:
I k(w,") € Co(R* — R).

Then, since 3 ¢F, , :€ Co (R% — R) the equality (3.9) holds storonger sense:  for each n there exists a
P-null set N,, and

/R" Ji(x — z)(1 + lx[z)'% ke Dot (@) de = I p(w, 2) Vz € R, Vw € Q\ N,. (3. 10)

Next, by (1.1), since J* € L!, applying Lebesgue’s convergence theorem we see that for each z € R%

n—o0

lim /R J3(z — 2)(1 + |z)? )" % Phw t (2)dz “./ J¥z — 2)(1 + |z )—% ik $h  (x)dr Yw e Q.
Then by (3.10)

lim Iy n(w, 2) = / TNz —2)(L+ 2?7 g8, (2)de Yz € R, Vw € Q\ (UnN,). (3. 11)

n-—00

On the other hand, by (1.13), (1.1) and Lemma 10 from Bochner Von Neumann measurability theorem,
we can take a measurable modification Iy(w, z) of

/ 2y ( R Ja(z - Z)(l + lez)%Fka(x; Y1, .- '7yp)dm) Ww(dyl) T Ww(dyp),
then by Fubini’s lemma, and again by (1.13) and Lemma 1 we have

lim ./R" (Ten(w, 2) — In(w, 2)} dz P(dw)

n—oo 0

= lim p! / ) /( . { /Rd(.zg(z—z)—Ja(x-z))(1+;x|2)—%p,g(m;y1,...,y,,)d:c}2dydz:

n—0o0

Hence, for each k there exists a subsequence {Iic,n (W, 2)} =12, Of {Ipn(w, z)},.zzl,g,_,_ and a measurable
set Oy, satisfying P ® A\%(0},) = 0 and the following holds:

lim Ipp,(w,2) = Ig(w,2)  VY(w,z) € (Qx R\ O
j—oo T
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Now, by this and (3.11) we obtain (3.8). n

Proof of Proposition 5-i), 1), iii). By making use of the expression (3.8) given by Lemma 11, noting
(1.1), by (1.13) and Fubini’s lemma we then have the following:

/Q / o 7@ =D 1) B @) im B ()PP ()

2
2\—4/ pa o3 ’
=p'./Rd/( d)v( R2 Ja(m_z)(1+|xl ) 4(F'k: (zayla-"ayp)"'Fm(xaylv-'-syp))dx>
xdyy - - - dypdz. (3. 12)

By Lemma 10 the right hand side of (3.12) vanishes as k, m — oo

k,m—o00

lim /Q / N - Tz ~ 2)(1+ |2?) 4 Gk d2 ¢ (@) m Bh, ¢ (2))dz|’dzP(dw) =0. (3. 13)

This proves (1.20). Hence, by Proposition 2 the sequence {ik 20 : Yr=1,2,... forms a Cauchy sequence in
the Banach space

L¥(Q — B3, P) = {f |f: Q3 f(w) € By’ / | F(@)|%0n Pdw) < oo} :
Q 4
and there exists a : ¢h,. :€ L?(Q — B%"; P) such that

lim L”:k Db = Phw :N'2B:1L'b P(dw) = 0. (3. 14)

k—o0

By this, (1.21) holds for some subsequence {:x; ¢% ., :}.
For ¢ € S(R%), using the similar expression as (3.8) for <:p @8, :,¢>s.s, passing the similar
discussion for (3.12) we have

im | | <k B, ne>ss —lp ()2 P(dw) = 0. (3. 15)

k—oo Jo

Thus, there exists a P-null set N, that may depend on ¢ and for some subsequence {:,-cj o8, i} of
{:r; #%., :} the following holds: :

lim < Bhahe >es=l(p)  VweQ\N,. (3. 16)

kj—o00

On the other hand, obviously the convergence of :; ¢% , : to: ¢f, : with respect to Bg‘b-norm implies
the weak convergence:

<, e >es= lim <y b, e >ss  Poaewel (3. 17)
500
Hence, by (3.15), (3.16) and (3.17) we see that
< b, nhe>ss = lpw(®) Vw € Q\ N,

and
klinolo/ | <k $hw hP>s s~ < e 5 >s0 52 P(dw) = 0.
i—o0 J
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