0oooo0O0oooo
11340 20000 136-151 136

Mathematical Analysis of a Model in
Relativistic Quantum Electrodynamics

Asao Arai (HTHEARE)*

Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan

E-mail: arai@math.sci.hokudai.ac.jp

Abstract

Rigorous results are reported on a model of a Dirac particle — a relativistic
charged particle with spin 1/2 — minimally coupled to the quantized radiation
field.
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1 Introduction

We consider mathematically a model in relativistic quantum electrodynamics, which
describes a Dirac particle — a relativistic charged particle with spin 1/2 — coupled
to the quantized radiation field. The Hamiltonian of the model is given by the sum
of the Dirac operator with the minimal coupling to the quantized radiation field and
the free Hamiltonian of the quantized radiation field. An approximate version of
this model was discussed by Bloch and Nordsieck[5] in view of the infrared problem
of quantum electrodynamics. The Hamiltonian they treated is the one obtained by
replacing the anticommuting matrices contained in the Dirac operator by c-number
constants and is much easier to analyze than the original one.

Discussions using informal perturbation methods[7] suggest that the model may
have a physical meaning in a range of quantum electrodynamic phenomena such as
the Lamb shift of a hydrogen-like atom and the Compton scattering of the electron
where the effects of the quantized radiation field play essential roles. Besides this
point, we think that mathematical analysis of the model is interesting also in its own
right, because the Hamiltonian of the model belongs to a new class of Hamiltonians
on a Hilbert space of Fock type. Moreover the model may be regarded as a model
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for a quantum mechanical system unstable under the influence of the quantized
radiation field. To our best knowledge, no mathematically rigorous analysis has been
made on the model so far!. In the present note we report fundamental results on the
model concerning (essential) self-adjointness, spectral properties of the Hamiltonian
and existence of ground states with a fixed (deformed) total momentum. Proofs of
these results are given in [1, 2].

2 Description of the Model

For a linear operator T on ‘H, we denote its domain by D(T) and by o(T) the

spectrum of T. For two objects a = (a1,a2,a3) and b = (by,b;,b3) such that

products a;b; (7 = 1,2,3) and their sum can be defined, we set a-b := Y 0_; a;b;.
The free Dirac particle of mass m > 0 is described by the free Dirac operator

Hp:=a-(—tV)+mp ' (2.1)
acting in the Hilbert space
Hp = &*L*(R?) (2.2)

with domain D(Hp) := &*H*(R®) (H'(R?) is the Sobolev space of order 1), where
o; (j =1,2,3) and B are 4 x 4 Hermitian matrices satisfying

{a;, ar} =265, J,k=1,2,3, (2.3)
{aja ,B} - 07 ﬂz - 17 .7 = 172737 (24)

{A,B} = AB + BA, and V := (D1, Ds, D3), D; being the generalized partial
differential operator in the variable z; [x = (z1,%2,23) € R®|. The operator Hp
is self-adjoint and essentially self-adjoint on &*Cg° (R3\ {0}) ([11, p.11, Theorem
1.1}). Moreover, the spectrum o(Hp) of Hp is purely absolutely continuous and

o(Hp) = (—o0, —m] U fm, o0). | (2.5)

As for the radiation field, we use the Coulomb gauge in quantizing it. In general,
given a Hilbert space H, we have the Boson Fock space

Fio(H) 1= @72 (®7H) (2:6)

over H, where ®"H denotes the n-fold symmetric tensor product Hilbert space of H
with convention ®2H := C. For basic facts on the theory of the Boson Fock space,
we refer the reader to [9, §X.7]. :

The Hilbert.space of one-photon states in momentum representation is given by -

Hon = LA(R°) @ L*(R®), @

1prosser [8] discusses a modified version of the model with relatively much mathematical rigor.
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where R® := {k = (ky, ks, ks)|k; € R, j =1,2,3} physically means the momentum
space of photons. The Boson Fock space A
J:rad = fb(th) (28)
over Hyy, serves as a Hilbert space for the quantized radiation field in the Coulomb
gauge.
We denote by a(F') (F € Hyy) the annihilation operator with test vector F on

Fraa- By definition, a(F') is a densely defined closed linear operator and antilinear
in F'. The Segal field operator

o(F) + a(F)
V2

is self-adjoint, where, for a closable operator T', T denotes its closure.

We take a nonnegative Borel measurable function w on R to denote the one free
photon energy. We assume that, for almost everywhere (a.e.) k € R® with respect to
the Lebesgue measure on R?, 0 < w(k) < co. Then the function w defines uniquely
a multiplication operator on H,, which is nonnegative, self-adjoint and injective.
We denote it by the same symbol w also. The free Hamiltonian of the quantized
radiation field is then defined by

Os(F) := (2.9)

Hyg = dT(w), (2.10)

the second quantization of w. The operator H,.q is a nonnegative self-adjoint oper-
ator.

Remark 2.1 Usually w is taken to be of the form

wphys(k) = |k|, ke R?, (2.11)
but, in this note, for mathematical generality, we do not restrict ourselves to this
case.

There exist an R*-valued continuous function e (r = 1,2) on the non-simply
connected space

M, :=R?\ {(0,0, ks)|ks € R}. (2.12)
such that, for all k € M,,
e(k)-e®)(k) = 6, eM(k)-k=0, rs=12 (2.13)

These vector-valued functions (") are called the polarization vectors of one photon.
Let g € L*(R®). Then, each x € R® and j = 1,2, 3, we can define an element g¥
of Hyn by
g (k) = (9(k)ef” (k)e ™, g(k)elP (K)e %) € 2.
Then the quantized radiation field A9(x) := (AJ(x), A(x), A}(x)) with momentum
cutoff function g is defined by

Alx) =25 (gF), j=1,2,3. (2.14)



Remark 2.2 The case g = 1/4/(27)%w corresponds to the case without momentum
cutoff.

We now move to the Hilbert space
F :=Hp ® Fraa (2.15)

of state vectors for the coupled system of the Dirac particle and the quantized
radiation field. This Hilbert space can be identified as

@
F = DR 0" Fad) = || & Fruax (2.16)

the Hilbert space of @*Fraq-valued Lebesgue square integrable functions on R? [the
constant fibre direct integral with base space (R®, dz) and fibre ®*Faa (10, §XII1.6].

We freely use this identification.
Let 7 € R be a constant. Since the mapping:x — g7 from R? to H,y, is strongly
continuous, we can show that the decomposable operator

Agv'r . — ® Ag
i /R3 3 (Tx)dx (2.17)

acting on F is self-adjoint [10, Theorem XIII.85].

We denote by g € R\ {0} the charge of the Dirac particle. We consider the situ-
ation where the Dirac particle is in an external field described by a 4 x 4 Hermitian
matrix-valued Borel measurable function V = (V) p=1,..4 such that each Vg is in

L3(R®)c := {f : R® = C; Borel measurable| fx;<r |f(x)]2dx < oo for all R > 0}.
Then the Hamiltonian of the Dirac particle is given by
Hp(V):=Hp+V (2.18)

The minima) interaction between the Dirac particle and the quantized radiation
field with momentum cutoff g is given by

Hi (g) = —qa- A% (2.19)
Thus the total Hamiltonian of the coupled system is defined by
H.(V,g) := Hp(V) + Hraa + Hi-(9). | -~ (2:20)

Remark 2.3 The orignal Hamiltonian of the model is Hy(V,g) (the case T = 1).
On the other hand, Ho(V, g) (the case 7 = 0) is the Hamiltonian with the “dipole

approximation”.
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Remark 2.4 For a class of V, the essential spectrum oes(Hp(V)) of H. p(V) coin-
cides with that of Hp:

Oess(Hp(V)) = (=00, ~m] U [m, o), (2.21)

so that the discrete spectrum ogq(Hp(V')) of Hp(V) is a subset of the interval
(=m,m) if m is positive [11, p.116, Theorem 4.7]. Suppose that (2.21) holds with
oa(Hp(V)) = {E,.}X, (N < o or N is countably infinite) and that {w(k)|k €
R?} = [y, 00) with a constant v > 0. Then we have

Jess(HD(V) + Hra.d) =R

and each E, is an eigenvalue of Hp (V) + Hyaq embedded in its continuous spectrum.
Hence the spectral analysis of H,(V, ¢) includes a perturbation problem of embedded
eigenvalues.

Remark 2.5 We can not expect that H,(V,g) is bounded below. Hence the model
may be unphysical in view of stability of matter. From this point of view, we can
consider a modified version of the model: Let Ep be the spectral measure of Hp
and A := Ep((0,00)), the projection of Hp onto the positive spectral subspace of
the free Dirac operator Hp. Then the operator

HPM(V,g) == Ay Ho(V, 9)A4 (2.22)

may be a Hamiltonian for a quantum system of of a Dirac particle interacting
with the quantized radiation field. This operator is an extended version of the
Brown-Ravenhall Hamiltonian Ay Hp(V)A, [6]. As for certain aspects (e.g., self-
adjointness, boundedness from below), the operator HPR(V,g) is more tractable
than H,(V,g). The model discussed in [8] is in fact the one described by HER(V, g).

3 Self-Ajointness of the Total Hamiltonian

In what follows we fix 7 € R, unless otherwise stated.

3.1 Numerical range and a self-adjoint extension

For a linear operator T on a Hilbert space X , its numerical range is defined by

O(T) = {(u, Tu)xlu € DT, [Jullx =1}, (3.1)
where (-, - )x (resp. || - ||x) denotes the inner product (resp. norm) of X.
Proposition 3.1 Suppose that

g, —\79—5 € LA(R?). (3.2)



Then H,(V,g) is a symmetric operator with D(H,(V, g) = D(Hp)ND(V)YND(Hyaa)-

Moreover

O(Hp(V)) C O(H (V,9)). - 63)

Remark 3.1 It is well known that, for a wide class of V, Hp(V') is not semibounded
(i.e., neither bounded from below nor above) [11, Chapter 4, §4.3]. Hence, for such
a function V, (3.3) implies that H.(V,g) is not semibounded. In particular, in the
case of the Coulomb potential

VA
V(x) = Va(x) := —— (Z > 0: a constant),

I
which is a physically important case, one can show that H,(Vci,g) is not semi-
bounded.

By Pauli’s lemma [11, p.14 and p.74], there exists a 4 X 4 unitary matrix Ug such

that )
UalajUC = &j7 .7 = 172737 UalﬂUC = —,87 (34:)

where, for a matrix M, M denotes its complex conjugate.
Theorem 3.2 Assume (3.2). Suppose that g is real-valued and that

UV (x)Uc = V(—x). (3.5)
for a.e. x. Then H.(V,g) has a self-adjoint extension.

Remark 3.2 The Coulomb potential V = Vi (Remark 3.1) satisfies condition
(3.5).
3.2 Essential self-adjointness
We define
A:=> D} (3.6)

the Laplacian acting in Hp.
For a subspace D of Hpp, we define FI5(D) C Fraa to be the subspace alge-
braically spanned by Qo and all the vectors of the form

(I(F]_)*..-G,(Fn)*Qo, TLZ 1, FJ ED, j=1,~"',n.
If D is dense in Hyp, then F(D) is dense in Fona-

Theorem 3.3 Suppose that

9 Iklg _ ;2ps '
9 5 wyg, |klg, Jo € L*(R°). (3.7)

Assume the following (V;l) and (V.2):
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(V.1) V is —A-bounded.

(V.2) For each j =1,2,3 and a,b = 1,--,4, the distribution D;V,; i$ in L*(R3),.
and there exists a constant ¢ > 0 such that, for all f € ®*'CE(R?),

DV < ell(=A+1)Y2f)f, j=1,2,3.

Let D C Hyp be a core of the self-adjoint operator w. Then H.(V,g) is essentially
self-adjoint on [§*Cs°(R?)] Qag FI(D) (®a1g means algebraic tensor product) and
its closure is essentially self-adjoint on every core of —A + H.,.

Remark 3.3 Theorem 3.3 excludes the Coulomb potential case V = Va.
As a corollary to Theorem 3.3, we have the following,

Corollary 3.4 Let V be bounded. Assume (3.7). Let D be as in Theorem 8.3. Then
H.(V,g) is essnetially self-adjoint on [@*C5°(R?)] @ FI1(D).

4 Direct Integral Decomposition
We consider the total Hamiltonain without the external field V
H:,- = H«,-(O, g) = HD + Hrad + HI,T(g)- (41)

This is a Hamiltonian of a relativistic polaron with spin 1/2.
The momentum operator P™? := (Prd, Prad prad) of the quantized radiation
field is defined by
Prd .= dI(k;), (4.2)

the second quantization of the multiplication operator k; on My, while the momen-
tum operator of the Dirac particle is —:V. We define a deformed total momentum
operator P(7) := (Py(7), Py(7), Ps(1)) with parameter v € R is given by

P,(r) := =D, + r P/ (4.3)

on F (j = 1,2,3). Each Pj(7) is self-adjoint and its spectrum is purely absolutely
continuous with v

o(P;(7)) = R. (4.4)
Physically P;(7) is interpreted as the generator of a unitary representation of a
(deformed) translation to the j-th direction. It is not difficult to see that, for all
teRandj=1,2,3, '
eitPj('r)HT C HTeitPj('r).

This shows a translation invariance of H..



For all x € R3, the operator
-
Q(x) =) z;Pr (4.5)
J=1

acting in Fraq is self-adjoint. Since the mapping: x — €*?(®) is strongly continuous,
we can define a decomposable operator

o . .
W, = /R3 79() gx (4.6)

on F = &, @*Fraadx. It follows that W, is unitary.
The Fourier transform on Hp = ®*L?(R?) can be naturally extended to a unitary
operator on F by

(Ur¥)(p) := \/(—;”TT

We define a unitary operator on J by

/Ra e PXY(x)dx, aepcR3 UWeF.  (47)

UT = UFWT. ,(4.8)

Thern we have a direct integral decomposition
o,
UF = [ & Faadp. (9
We can show that, for j =1,2,3,
U.P;(r)U;" = /Rs p;dp. (4.10)

Thus the Hilbert space U, F carries a spectral representation of AP(T) and the index
parameter p in the decomposition (4.9) physically means an observed value of the
deformed total momentum P(7).

Let '

Hyw= "qi a;®s(g5) | (4.11)

J=1
and, for each p € R® and 7 € R,

hp(p) = a-p-+mp, (4.12)
L(r) = Hpq—To-Prd (4.13)

In terms of these operators, we define

H.(p) := hp(p) + L(7) + Hi (4.14)
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acting on ®*F,,q. Physically H,(p) is the polaron Hamiltonian of the Dirac partlcle
with a deformed total momentum p.

It should be noted that H.(p) is not in the class of the generalized spin-boson
model [3, 4] except for the case 7 = 0

We introduce a subspace of F,,q4:

0 = Fomy (C(R?) @ C°(R)). (4.15)

Theorem 4.1 Assume (8.7). Suppose that w € L*(R®)1,c. Then, for all p € R3,
H,(p) is essentially self-adjoint on &*F3,.

Theorem 4.2 Under the same assumption as in Theorem 4.1, H, is essentially
self-adjoint and

— &
UH U = /R H.(p)dp. (4.16)

wy(p) == 1/p? + m2, (4.17)

the energy of the free Dirac particle with momentum p. It is well known (or easy
to see) that

Remark 4.1 Let

o(hp(p) = ca(hp(p)) = {#w,(p)}, (4.18)

the multiplicity of each eigenvalue being two. Suppose that {w(k) — || k| |k €
R?} = [M,, 00) with some constant M, > 0. Then Oess(hp(P) + L(7)) = [~w, (p)+
M, 00). Hence, if 2w, (p) > M., then the eigenvalue w, (p) of hp(p)+ L(7) is em-
bedded in its continuous spectrum. Thus H,(p) gives rise to a preturbation problem
of embedded (degenerate) eigenvalues. This problem concerns the instability of the
Dirac particle with a positive energy under the influence of the quantized radiation

field.

5 The Ground-State Energy of the Polaron with
a Fixed Deformed Total Momentum

In this section we describe fundamental properties of the ground-state energy of
H,(p) defined by

[ ¢

E.(p) := inf o (H(p)), (5.1)

provided that H.(p) is essentially self-adjoint. At this stage, however, H,(p) is not
necessarily bounded below: It may happen that E.(p) = —



5.1 Self-adjointness and boundedness from below of H.(p)

Let
(k) = w(k) — [|Kl, k€ R (5.2)

We assume the following:
Hypothesis (H.1),

(i) p-(k) > 0 for a.e.k.
(i) g, g/\/Br € L*(R?).

Remark 5.1 Hypothesis (H.1), implies (3.2).

Remark 5.2 The physical case w = wpnys (Remark 2.1), which gives (k) = 0 for |

all k € R3, does not satisfy (H.1);-(i). On the other hand, if |7| < 1, then w = wphys
satisfies (H.1),-(i).

Hypothesis (H.2),-(i) may be regarded as a spectral condition for the photon
energy-momentum operator (w(k),k), implying that, for a.e. k€ R3 p.(k)?
exists and the Hermitian matrix '

v (k) i=w(k)—Ta -k | (5.3)

is nonnegative, invertible with

va(k) = w(k)™ fj:o I_’%)_‘;E (5.4)

It is easy to see that Hy,q and a - P2 are strongly commuting®. Hence L(7)
is self-adjoint. It follows from (H.1), that, for a.e.k, the matrix v.(k) is positive
definite, which implies that L(7) is nonnegative.

Theorem 5.1 Assume (Hl)T Then, for all p € R3?, H,(p) is self-adjoint with
D(H,(p)) = D(L(r)) and essentially self-adjoint on every core of L(t). Moreover,
H,(p) is bounded from below.

2Two self-adjoint operators on a Hilbert space are said to strongly commute if their spectral
measures commute.
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5.2 Bounds of the ground-state energy of H,(p)

Assume (H.1),. Then, by Theorem 5.1, the ground-state energy E.(p) is finite. We
introduce a 4 x 4 Hermitian matrix:

R(9)= 25 [, dka om0 MWW, (55)

which is positive semi-definite. We have

IR (9)ll < [ 'zil(‘li‘;dk. (5.6)

Proposition 5.2 Assume (H.1),. Suppose that w is in L*(R%)o.. Then, for all
p€R?,

H.(p) = kp(p) — ¢°R,(g) (5.7)

In particular,
E,(p) 2 —w,(p) — ¢[|R-(8)], (5.8)

where w, is defined by (4.17).
We next estimate E.(p) from above. For z € C* with llz]| = 1, we define
Eor(k) == w(k) — ru(2) - k, (5.9)

where
u(z) = ((2,12), (2, 22),(2,032)) € R>.

It is easy to see that

£r(k) 2 pr(k). (5.10)
By this fact, we can define ' '
k)|? u(z) - k|?
Co(2) := % . '69( (L’) (]u(z)[z - !——(lelzi’) dk > 0. (5.11)
- We set
B(z) := (z,B2)c:, z¢€ CL (5.12)

Proposition 5.3 Assume (H.1),. Then, for all p € R?3,
: 2
E;(p) < o, {u(z) -p+mp(z) — g Cr(2)} (5.13)

Remark 5.3 Let g # 0 as an element of L*(R®). Then (5.13) implies that, for all
p € R?, limyg) 00 E-(P) = —o0.



Remark 5.4 Estimates (5.8) and (5.13) give an order of ultraviolet divergence of
the ground-state energy. To be concrete, consider the case w = wphys, 0 < |7] <1,

and g = xa/y/(27)3wphy, Where xy is the characteristic function of the set {k €
R3| |k| < A} (A > 0 is a momentum cutoff parameter). We denote the ground-state
energy in this case by E*(p). Applying (5.8) and (5.13) to the present case, we have
for all p € R® and z € C* with ||z|| =1

2

q A 2
gt e () S BRR) S ue) P+ mA() ~ G (A,

where

1 R
Gr(2) = gralul2)] /.1 T ()

In particular, limp_,., E2(p) = —co.
a 1 o (p Ky
g 2 P 1
F(p) == [ dk - : 5.14
P53 e Mo + 25 S P D
Proposition 5.4 Assume (H.1);. Then, for all p € R?, _
E.(p) £ —w,(p) — ¢*F:(p). (5.15)

Proposition 5.5 Assume (H.1),. Suppose that w € L*(R3)1oc. Then:

(i)

iy B, (p) = ~,(p). (5.16)
(i) Ey(p)
. p) _ :
|I}[1£»noo (D) = ~1. (5.17)

5.3 Physical mass of the polaron

The physical mass of the polaron may be defined by
mi(q) = —Ex(0) (5.18)

Assume (H.1), and suppose that w € L*(R®)i,.. Then it follows from Propositions
5.2 and 5.4 that

sup  {¢°C,(2) —mB(2)} <mi(g) <m+R(g)l.  (519)

z€CH||z[|=1
In particular,
gii% mi(g) = m. (5.20)
If g # 0 as an element of L?(R?), then
lim m}(q) = oo. (5.21)

Jg|—c0

147



148

5.4 Properties of E.(p) as a function of p
Proposition 5.6 Assume (H.1),. Then, for all p,p’ € R3,
|E-(p) — E,(P")| < [p — P'|- (5.22)

Proposition 5.7 Assume (H.1),. Suppose that g is rotation invariant. Then the
function:p — E.(p) is rotation invariant.

Proposition 5.8 Assume (H.1),. ‘
(i) (concavity) For all p,p’ € R® and X € [0, 1],
AE(p)+ (1 - NE(p) < E-(Ap+ (1 - M\)p'). (5.23)
(ii) For allp,p’ € R® and ¢, X € [0,1],
E,(p+ (1= NP') < eBy(p) + (1 - £)B(p') + (¢ + A — 26\)p — p'|. (5.24)

6 Existence of a Ground State of H,(p)

A ground state of H,(p) is, by definition, a non-zero vector of ker(H.(p) — E.(p)).

6.1 The Massive Case

We define
M, := ess.infycgsp, (k), (6.1)

where ess.inf means essential infimum. We assume the following two conditions

(H.2), and (H.3).
Hypothesis (H.2), M, > 0.
Hypothesis (H.3)
6) g € I2(R?)
(ii) The function w is uniformly continuous on R3.
Note that (H.2), and (H.3)-(i) imply (H.1), with :
oK) > M,, (62)

which physically means that the photon is “massive” or has a “low energy cutoff”.
We introduce

A(p)i=inf inf {E (p - ; Tkﬂ) ; iw(kj)} ~E(p).  (6.3)

'nZl kly"'sknERa

Using Proposition 5.6, we see that



Theorem 6.1 Assume (H.2), and (H.3). Suppose that

|k1|i_n:1oo pr(k) = 0. (6.5)

Then, for all p € R®, H,(p) has purely discrete spectrum in [E.(p), E-(P)+A-(p))-
In particular, H.(p) has a ground state.

6.2 The Massless Case
We next consider the case where Hypothesis (H.2), does not necessarily hold. We

define
:ZJ/RSI—:%(l——I%F)dk (6.6)

J=1

g

for

Theorem 6.2 Assume (H.1),, (H.8)-(ii) and (6.5). Suppose that g/u. € L*(R?)
with
al) =
Yr

Then, for all p € R3, H.(p) has a ground state U, (p) with ||¥.(p)|| = 1. Moreover,
V. (p) € D(NY?) and

< V2. (6.7)

9

N2 (p)) < 4L :

V2

Remark 6.1. Theorem 6.2 does not cover the original physical case: w = Wphys and
7 = 1. But, for |r| < 1, Theorem 6.1 can be applied to the case w = wphys.

u (6.8)

7 Spectral Properties

7.1 Essential spectrum of H,(p)

Theorem 7.1 Assume (H.1),, Suppose that w is continuous on R®. Then, for all
peR’,

{E-(p — 7k) + w(k)|k € R?} C 0ess(H-(p))- (7.1)
We define |
6.(p) = jnd {Bo(p —7K) + w(k)} — Ex(p). (12
It follows that
M, < §:(p) < A-(p) < w(0). (7.3)

Corollary 7.2 Let the same assumption as in Theorem 7.1 be satisfied. Assume

(6.5). Then:
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(i) For all p € R?,
[E-(P) + 6:(P), 00) C 0ess(H,(p)). (7.4)

(ii) If w(0) =0, then
o(H:(p)) = [E.(p), o). ' (7.5)

Corollary 7.2(ii) shows that the (essential) spectrum of H.(p) in the massless
case 1s completely located under a weaker condition than in Theorem 6.1. If we
impose stronger conditions than in Theorem 7.1, then we can completely locate the
essential spectrum of H,(p) in the massive case too:

Theorem 7.3 Let the same assumption as in Theorem 6.1 be satisfied. Suppose
that, for all k, k' € R3,
wk + k) <w(k) + w(k'). (7.6)

Then
Tess(H;(P)) = [E,(p) + 6,(p), 0). (7.7)

7.2 Spectrum of H,

Theorem 7.4 Assume (3.7), (H.1), and (6.5). Suppose that w is continuous on
R3. Then o
o(TT;) =R (78)
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