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Correlation Dimensions of Quasi-Periodic Trajectories
for Evolution Equations

REARF: « L8 PR 35 —HB (Koichiro Naito)

1. Introduction

In our previous papers ([4], [5], [6]) we have estimated dimensions for quasi peri-
odic orbits by using Diophantine approximations. In the present paper, for a Banach
space valued 1-periodic function ¢ : R — X, and for an irrational number 7, we con-
sider a discrete quasi-periodic orbit

% ={p(n):p(n) =g(nt), n€ N} CX.

Our purpose is to estimate its correlation dimension in the following cases, which
are classified by the algebraic properties of the frequency 7.
(i) Constant type; there exists a constant co > 0 such that

r Co

lr— =] > —= (1.1)
¢

for every positive integers r, q.

(ii) quasi Roth number type; there exists a constant o > 0 such that for every

o > oy there exists a constant ¢, > 0 which satisfies

=L > =2
q — ¢*te

(1.2)

for every positive integers r, q.
(iii) Roth number type; for every € > 0, there exists a constant c. > 0 which satisfies

Ce

.
-z o (1.3)

for every positive integers r,q.

Definition of correlation dimension. Let S = {z;,z,,...,%,,...} be an infinte
sequence of elements in X and, for a small number € > 0, define

L1 &
N(e) = ll,ggf;i;lﬂ(e—llxi—wj!l%
N() = hmsupEZH(e—-Hxi—xjH),
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where H(-) is a Heaviside function:

and if ihe limit exits, N, := N(¢) = 7\7—(5) The upper and lower correlation dimension
of S, C(S),C(S), are defined as follows: . '

[

i log N(e)
C(9) n, hrrelfoup Té_e_’
C(S)y = liminf lo_g.w. :

0 loge

If N, exists and C(S) = C(S), we say that S has the correlation dimension C(S) =
C(8) = C(S).

Assuming Holder’s continuity on the function g(-), we estimate the dimensions
by using Holder’s exponents.

(G1) There exist constants &;,¢; : 0 < §; < 1,¢; > 0:

9(8) —g() S alt =1, ¢ eR

Since we try to estimate the correlation dimension from below, we also need the
following Holder conditions.

(G2) There exist constants d3, ¢y : 0 < &5 < 1,¢0 > 0:

lg(t) —g()| > et —¢'|2, t, ' eR:[t—1|<1/2.

The plan of this paper is as follows; In section 2 we estimate the correlation di-
mensions of the quasi Roth numbers. In section 3, we give some examples of Roth
numbers and quasi Roth numbers. In section 4, as an application, we study q.p. at-
tractors given by an abstract evolution equation with a quasi periodic perturbations,
which is given by a Weierstrass type function. :
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2. Roth numbers case

Consider the following continued fraction of the number 7:

- L (a; € N) (2.1)

al+—1-——
a2+03+_

and take the rational approximation as follows. Let mg = 1,n0 =0,m_; =0,n_; =1
and define the pair of sequences of natural numbers

mi; = a;mi—1 + m;_g, (2.2)
n; = a;ni_1 +ni_g, 1>1, (2.3)

then the elementary number theory gives the Diophantine approximation

< —. (2.4)

First we consider the case of quasi-Roth number type. Then we can obtain the
following estimate:

Co

llp(m) — ()] 2 e ), Va>ag (2.5)

|m — n|ite
for every m,n € N : m # n. In fact, since we can find an integer n':

1

!
mT —n —n <_
| Tonl<3

(in case m > n), Hypothesis (G2) and the periodicity of g yield the following

estimates.

nt)]

|
—g(n7)|
> ¢|(m —n)T —n'|%.

lp(m) = @)l = llg(mT) -
= llg(mr —n

(
)

Thus (1.2) yields (2.5).
In order to estimate the correlation dimension from below, we need the following
condition on the sequence {m;} in the rational approximations.



(B) There exist constants 8, K > 0:
mip < KmitP, vy (2.6)
We can show the following lemmas.

Lemma 1. If the condition (B) is satisfied for an irrational number 7, then 7 is a
quasi Roth number for the constant

= B(8 +3). (2.7)

Proof. For every positive integer [, there exists a number j:
m;_y < 1 <mj < Kmit < KIFH. (2.8)
Since nj/m; is a best approximation of 7, we have

T n;,
|T*7l > IT—#K

> 1
(Mjp1 + mj)m;
S 1 c
2mjpm; ~ mit
C
> [(B+1){(B+2)

where we denote by ¢ a suitable constant in each term. Thus for every rational

number r/l we have
r c

7> e (2.9)

7 —

Lemma 2. If 7 is a quasi Roth number, then for every ,8 > ap, there exists Kz >0
which satisfies (B): .
my < Kgmi™, Vi | (2.10)

Proof. It follows from the definition of quasi Roth numbers that for every ,8 > ayp,
there exists Kz > 0:

Kt , 1
Lo <l Dl —o (2.11)
i myo My

Thus we obtain the conclusion. 0
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For the quasi periodic sequence ¥ = {p(n) : n € N}, we can estimate its corre-
lation dimension from below.

Theorem 1. Assume Hypotheses (ii) and (G2). Then we have

1
c(x) > m-

Proof. Let k,7 : k£ < 1 be sufficiently large numbers and consider a small constant
€k, given by

It follows from Lemma 2 that

1

)‘52 > K"‘ss,lc+a°
Migy2

Ere1 = (

where we can assume that K’ < 1. In fact, for every 8 : 8 > ap, from Lemma 2 we
obtain
V> g (2.12)

mjp < (A,m?oo—ﬁ)m] ’

for some j5. Then K — K m;;”_ﬁ . Following the argument below, we can obtain the
conclusion for every G : 8 > ay.
Let oy > 0; a1 > ao, be a constant, which satisfies

ar+1> (14 ap), , (2.13)

and, take a small constant € : 5,1:_?0 <e < bt
Then, since we have :

611;1?0 S (A’_52)1+a055€1+a0)2 > (A’—52)1+a0€]1¢+a17 (214)

do : ap < a < ay, which satisfies
e = (K~%)ltaoglta (2.15)

Now, consider an e-neighborhood B, := B.(¢(1)).
Then, for a large integer n € N and
lel,={1,..,n}, define

M,(e) :=#{p(l) € B.: L€ L,}.



Assume that ¢(n;) € B, for some n; € I,.
Then, for any m € I,,, m # ny, we can estimate

le(m) =Wl 2 lle(m) = e(r)ll = llp(na) = (1)l

1
2 () - Vaza

It follows that, if

02052(;)(1“’"‘)52 > 2
* |m—n1|
— Z(K—52)1+aoallc+a'
— 2(](—52)1+a0( 1 )52(1+oz),
M1
that is, if

1

[m —ny| < Ccly“(%)m(—[{_&)_ﬁ%mkﬂ

then (m) ¢ B.. Thus we have

1 14+a
Mn(E) < eq 1+a(62_2)_(1+<11562 (A’-52)11+a562 ml:—ilzln

-1
< Mymyyn,

1

Mo= sup ca ™ ()70 (K~ 03 milyn,

apg<a<a)

Following the argument above for each ¢(1),{ € I, we have

J 1 M, (e
L3 Hie— o) — plm)l) < Sna(e) = 22,
l,m=1
Thus we have
1 & 1
— H(e — D —olm < M,
R
1
= M()Ezz
= My((K~5) teole)y s
< MDK'5(1+;1)52 .

It follows that

n

N(e) = limsup — Y He — flpll) = p(m)]]) < e

n—oo Jm=1
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for every € > 0. From the definition we obtain

-
C®) = limint 28 NE)
el0 loge

1
.. log ce®(t+ar)
> hmmf—g—-—————
elo loge

1
= m, Va1 >(1+O[0)2—1. O

3. Examples of quasi-Roth numbers

Lemma 3. Let {a;} be the partial quotients in the continued fraction expansion of
7. Assume that, for some ¢ > 0, there exists a constant C. > 0;

aj_l.la? < Ce(aj-1aj-2---a1)%, V. - (3.1)
Then we have , .
'T - ‘Z‘l Z 12?, \Vll,’l' € N (32)

where ¢, = 1/(16C.).
Proof. Let [ € N, then 37 : m;_; <[ < m; and we have
m;—1 < [ < m; < (a]- + l)mj_l < (aj -+ 1)l (33)

Since n;/m; is the best rational approximation, it follows that we have
; 1
r—2l 2 =tz
! m; (M1 +mi)m;
1 1
7 2 22
2aj41+ 1)mi 7 2(ajp1 + 1)(a; +1)%

for every r € N. Since
(aj01 +1)(a; +1)* < 8ajpaaj,
it follows from Hypothesis that
(@41 + 1)(a; +1)* < 8C.(aj-1aj—2- - a1)".
On the other hand, we can estimate

[>m;_, aj_1Mmj_g 2> -

(AVARAYS

A;_1Q5-2 " A1Mg

il

a;-105-2°°-0a1.
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Thus we obtain the conclusion. O
For two sequences {a;},{b;}, we write a; ~ b;

if there exist constants ¢;,cs > 0 :

C14; < b] < C2a;.

Example 1. If a; ~ 7%, o > 0, then 7 is a Roth number.
In fact, for every € > 0 there exists d.:

. 3 2 it . .
(J+Deegee, = <d(j—-1)!, Vi (3.4)

It follows that _

GG+ 1> <d{q7(G -1
and we have

a?H < d(aj-1a;-2--a1)°.
Thus we can apply Lemma 3 for every € > 0.
Example 2. If a; ~ K/, K > 1, then 7 is also a Roth number
In fact, for every € > 0 there exists j,: :

logel © .
C{;K(B-FTglK—)Js"rl —e[{-(ie——l)—zi

Put .
loge; ° .
d. = SK G+ Togi )i+l

then we have .
KT < ds(c’ Ki-t KPKY)E VY,
which yields Hypothesis of Lemma 3.

Example 3. If aj41 ~ mJ , B> 0, then Hypothesis (B) is satisfied. Thus it follows
from Lemma 1 that 7 is a quasi Roth number: o9 = B(6 + 3).

Example 4. Here we consider the case that the growth rate of a; has the order
M*, M,k > 1.
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Theorem 2. For constants ¢;,¢;, M,k,a: M,k >1, a>1, assume that {a;} the
partial quotients in the continued fraction expansion of 7 satisfies

aM” < a; < cg(Ma)"j. (3.5)
Then 7 is a quasi-Roth number:

ap = (k —1)(k + 2)a.

Proof. First we consider the case ¢; > 1.
Let € > (k — 1)(k + 2), then we have
—f—(ﬁj_l — e+

k—1
>

K

€
k—1

i—1
K" e

k—1
> ke’ K+ 2)a

It follows that v ' _
(My?* (M) < MY
Thus we can apply Lemma 3, since we have
alaju < M) (M)
< MY
< Coaaz---aj-1)°.
Next we consider the case 0 < ¢; < 1.
Take a constant r : 0 < r < 1 and put M’ = Mr.

Then, for a large jo, we have _
a(r ) >1

and ' ‘ _
a(r )M < a; < ;M

alog M/(lo og 7
M—M' g /(1 g M+log )7

it follows from the above argument that 3C:
ajpaj < Caaz -~ aj_1)°
for every 7 > jo. Put

C. = max {C.,aj41a}/(a1az---aj1)}.
]=1)-"v]0



Then we can apply Lemma 3 for every ¢, which satisfies

log M
> (5~ 2)(k — 1)+ —2
ez (x )(K o log M + logr
Since the above inequality holds for every r : 0 < r < 1, we can conclude that
ap = (k —2)(k — 1) O

4. Example of quasi periodic attractor

In this section we study an abstract evolution equation with a perturbation given
by a Weierstrass type function. First we investigate the Holder continuity of the
Weierstrass type function. o

Let H be a separable Hilbert space with its norm also denoted by || - || and {¢;}
be a complete orthonormal system in H. We consider a H-valued W-type function
h: R — H defined by ‘ '

h(t) = SO () e, (4.1)

for some constants A > 1, 0 < é < 1.

Lemma 4. The function h(t) satisfies
1A(t) = ()| < dit = ¢, :
1h(t) = A > daft = ¢]° (4.3)
fort,t' € R: |t —t| < (207! and di = d1(),8),d2 = da(), 6).

h(
h(

Proof. Since |t — /| < (2X)7}, there exists an integer N such that

)\—(N+1) A~N
<t -t <= (4.4)

Using the above inequality and
oAVt —t'| <7, e’ =1 < |9, for |9| <,
we obtain

h) =A@ = SR e e 1

k=1
N )

< Z(/\2k)-5(2ﬂ_)\k)2|t_t/|2+ Z 4()\2k)—5
k=1 k=N+1
471.2/\2N(1—5) o 4)\—2(N+1)5

< 1__)\2(5—1)““” - 1 — A28 °
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It follows from (4.4) that

, 71.2225 4. 225 .
”h(t) - h(t )H2 < [1 — )2(6-1) + 1 — /\_gg]lt —t 126
< &R -t

Next, assume that ¢,t' € R satisfy(4.4), then, applying an elementary inequality
; .V 2
e —1| > 2|sin=| > =|9|, —-w <<,
2 T - ‘
we obtain

N
”h(t)— h(t/)”.z > Z(A%)—sleizm\k(t—t,) N 1|2
k=1
/\—2N5|6i27r/\N(t—t’)‘_ 1]2

v

A-ZN“(%QWAN@ —t'))?

Z 4 . 225/\2(5—1)It _ t/|26. O

Vv

Now we consider a linear abstract equation on the Hilbert space H:

du
— 4+ = f* t
di +Au=f (t)’ >0,

u(0) = uo. (4.5)

We assume that A is a selfadjoint positive definite operator with dense domain D(A)
in H, and that A™! exists and is compact. Then it is well known that there exist
eigenvalues ); and corresponding eigenfunctions ¢; of the operator A satisfying the
following conditions:
0< A <A <o <A< eee h_)m)\j:oo,
700
AS‘OJ' = )‘j‘ph ] =1,2,---,

{¢;(-)} forms a complete orthonormal system in H.

Here we assume that the perturbation f*(¢) takes values in D(A)*. Thus we
consider (4.5) in the distribution sense. (In [3] we can find the various examples
in the control theory where the perturbations or the control functions are given in
the distribution sense.) Denote the inner product in H by (-,-) and the dual pair
between D(A) and D(A)* by < -,- >. Define a W-type function f: R — H by

f(t) — Z(u—-&)keﬂwukﬂ@jk 4+ Z(V_&Z)kei%wk‘rt@lk



where p, v are positive integers and the subsequences {ji}, {lx} : {jx} N {lx} = 0 will
be determined later. We consider a D(A*)-valued functions f* given by

o0

—61 k z27ru Tt k i2nvkrt
Z )‘Jk Pix + Z )‘ x€ Pl
k=0 k=0

which means that, for u = 352, u;p; € D(A),

[e.e] [e o]
< Fryusm SN T, 4 SN (46)
k=0
Taking the dual pairs with ¢, , ¢y, in (4.5) and applying elementary calculations, we
can show that the solution u(t) converges to the following W-type function ue,(¢) in
Hast—

)‘J'k ’\lk

107

o ~
l;) ,Lf51 o " eiz"“k"tcpjk + kgo(u—sz )k Sy — iZWVth{Plk
= g1(7t) + g2(72).
In fact, for the ordinary differential equations
W, (£) = =Njyug () + p7 0N P,
uj, (0) = uj, 0,
u, (t) = = A ug, () + z/_‘szk)qkeﬂ"”k”,
u, (0) = uy, 0, k=0,1,2,...
where u(t) = 3; uk(t)pk, we have
u; () = e—Ajktujk’O_*_ %{ iompkrt —,\,-kt},
=t —Jzk/\lk i2nvkrt —A, t
u () = e Mty o + m{ — et}
It follows that
—61k —b2k
) = uF < (e~ ﬁ! R e C §
+ Y | 02e” 2t — 0
J#{ayo{lc}

as t — oo.
Next we show that ue,(t) = g1(7t) + g2(7t) satisfies the Holder conditions. Define
a 1/u-periodic function »

> A;
——51 Ik eszuk+1t

k:g /\Jk + 127ru

Tk
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then it follows from Lemma 4 that h;(t) satisfies the Holder conditions for ¢, :
|t —t'| < 1/2u. In fact, choose a subsequence jx, which satisfies

e | (4.7)

for some constant C' > 0. Then, applying the proof of Lemma 4 with the following
estimate

1 P

_ <1, 4.8
1+ (27C)? ~ A +z27ru’“| B (438)

we can show Holder continuity of hy(t). Since ¢;(¢) = hy(t/1), 91(t) is 1-periodic and
g1(t) satisfies the Holder conditions for t,¢' : [t — ¢'| < 1/2. For the second function
92(t), by assuming ‘ '

, VP <O\, (4.9)

and considering the estimate

S — ) (1.10)
1+ (27C)? A, + 2wk

we can show the Holder continuity of ga(t)-
Thus, by applying Theorem 1 with

(Sl = rnin{191, 192}, 52 = max{ﬂl, ’192},

according to the algebraic properties of the frequency 7, we can obtain the estimates
of the correlation dimensions for the q.p. attractor.

£ = {p(n) : ¢(n) = uw(rn),n € N},
as those in the previous sections.

Remark. Instead of (4.7) and (4.9) it is sufficient to assume that

uk iy
limsup — < C < oo, limsup— < C < oo,

k—o0 Ik k—o0 Ik

since we can also obtain (4.8) andk(4.10).
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