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DIRICHLET METHOD OF SUMMABILITY AND NONLINEAR
ERGODIC THEOREMS IN HILBERT SPACE

TAKESHI YOSHIMOTO

Department of Mathematics, Toyo University
Kawagoe, Saitama 350-8585, Japan

My purpose in this exposé is to give a brief summary of some recent
results concerning the summation method of Dirichlet’s type and nonlinear
ergodic theorems of Dirichlet’s type in Hilbert spaces. The exposé is mainly
a report on the author’s personal work on the subject, by a general survey,
Most of the results mentioned below were discussed in [ 6] and [ 7 ].

Let X be a complex Banach space and let B[X] be the Banach algebra of
bounded linear operators from X to itself. For a given TeB[X], the resolvent
set of T denoted by p(T) is the set of AeC for which ()\I—T)-1 exists as an
operator in B[XJ] with domain X. The spectrum of T is the complement of p(T)
and denoted by o(T). p(T) is an open subset of C and o(T) is a nonempty
bounded closed subset of C. So, the spectral radius y(T) of T is well-defined:
in fact, y(T)==sup|o(T)h=%iglhﬁwf/n. The function R(A;T) defined by R(A;T)=
()\I—T)_l for Aep(T) is called the resolvent of T. It is well known [ 3 ] that
R(A3T) is analytic in p(T) and if TeB[X] and | A]>y(T) then Aep(T) and

R(A;T) = (AI-T) " != § Ay (At e
n=g

the series converging in the uniform operator topology. It is also known that
if d(X) denotes the distance from AeC to o(T), then lIR(A;T)II 2 Y/d(A). If we
take A =e?, z=gs+it (s,te R), then |A]| >vy(T) implies s> log y(T) whenever
Y(T) >0. This characterization is a matter of great interest in connection
with the question of what is the abscissa of uniform convergence of R(A;T) as
a series.

Given T e B[X] let ®(T) denote the class of all functions of complex
variables which are analytic in some open set containing o(T). The following

theorem is fundamental in the theory of linear ergodic theorems.

THEOREM 1 (Dunford [ 2 ]). Let T e B[X]and let f,e ®(T) satisfy lim £ (1)=1
: N>
and (so)%im(I—T)fn(T)==6 (the null operator). Then the following statements
>0
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are equivalent. -

(1) (so)limf (T) =E, E*=E, EX=Ker(I-T).
>0
(2) {fn(T)x} is weakly sequentially compact for each xeX.

(3) X=Rer(I-D)@ (I-DX, supll £, (D]l < .

Suppose f_,f e B[X], where T ¢ B[X]. If f_(T) converges strongly (or uni-
formly) then f(T)fn(T) converges strongly (or uniformly). We are interested
in the converse problem. Under what conditions on f, f and T does the con-
vergence of f(T)fn(T) imply the convergence of fn(T)? Theorems describing
this situation are in the nature of Tauberian theorems. The condition
(so)lim.(I—T)fn(T) =0 appearing in Theorem 1 is just the case f(T) =I-T. Such
TaubZZian conditions are indispensable in discussing ergodic theorems. It
should be noted that the strong regularity of summation methods has a very
close connection with Tauberian conditions.

‘Now we consider the Dirichlet series of the following type

DLE,p;21(T) = | e ™ £.(D),

where ze C, f={f }Co(T) and w={uy}, 0<py<u <eer <y > as nro.

THEOREM 2 ([ 6 J). Let T e B[X] and f_ € (T) be such that sup]| zﬁ JE (DI>0
n =

and define n
logll T £ (D]
- k=0

a (f; T) = 1im sup
u n+>w I

with £={f_} and p={u,}. Then the following statements hold.
- (1) ‘If s>0 and D[f,u; z](T) converges in the uniform operator topology
for any z € C with z=st+it, teR, then s2 au(f;T).
(2) The Dirichlet series D[f,u; z](T) converges in the uniform operator

topology for any z e C with Re(z) > max(0, au(f;T)) when au(f;T) < o,

If 0< au(f;T) <® in Theorem 2, we say that the number au(f;T) is the
abscissa of uniform convergence of the Dirichlet series DLf,u; z](T). This
theorem plays a fundamental role in investigating ergodic theorems of

Dirichlet’s type.

COROLLARY 3. Let T e B[X] satisfy the conditions supIIZ o k||>0 and
(uo)llm T%/n%=6 for some 0 <wsl.Let £={f }, f (T)—Tn(n>0) and u={p },
un-n+l (n20). Then a, (£3T) €0 and R(A3T) = Zn OA-(n+1)Tn converges in the
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uniform operator topology for AeC with log|A|>0.

Proof. In view of Theorem 2, all that is required is to show that
au(f;T) <0. For a sufficiently small € >0, t.hei'e exists by assumption an
integer N2 1 such that

“NITR) <en® for all n>N.

Then we have
logll T TX|
ol

& k=0

a (f';T) = 1im sup
H > o n+1l

log(n+l) + log{ max ITE |l + e n¥)

< lim sup ‘ 0<k<N =0,

n > n+1

as desired.

Let u={u,} (n20) be a sequence of real numbers satisfying the following

conditions :
(1) OSU‘O<u1<---<un+°° as n-o }
(ii) inf {un+1—un}=6 for some 6 >0 ;
n0
(iii) ]].‘-liga} {ugpr /gt =1s
(iv) lim g(s) = + =«

s>0+

o]

< ®©,

) sup

. _u s _.]J S
n{e ns_ . n+l }
s>0 g(s) n=0

where g(s) = Z:=O e_uns which convérges for s>0. Such a sequence pu'= {un} de-
termines a stfongly regular method of summability. This new summation method
will be called the (D,p)-method (Dirichlet method of summability). Let H be
a real Hilbert space and let C be a nonempty bounded closed convex subset
of H. A mapping T: C>C is called asymptotically nonexpansive with Lipschitz

constants {an} if

| TR - T || < (1+o) lx-y Il for all n20 and all x,;yeC,

where 0p 2 0 for all n20 and an*>0 as n+>x (see Goebel and Kirk [ 4]). In
particular, if ozn=0 for all n20 then T is said to be nonexpansive. If T is
an asymptotically nonexpansive mapping on.C, then for:any xeC
ptq ptq
S —U.S , -U_s
l—— ] & P rix|sM (—— J e )0

as p,q >», where MC =sup(||x]|: x € C). This means that for any xeC,
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[o 0] .
e V-
e I oTHx

D(u)[T]x=
s g(s) n=0

is well defined for s > 0. Furthermore, for each x € C there exists a unique

point xoe:C such that
lim sup ||Tnx—x0 | =inf [ limsup [Tk -y || 1.
n > YEC n->oc

Such a point x, is called the asymptotic center of the sequence {T%x} (see

0
Lim [ 5] and Brézis and Browder [ 1]). We are particularly interested in the

weak and strong convergence of D§U)[T]x when s~ 0+.

THEOREM 4 ([ 71). Let C be a nonempty bounded closed convex subset of
H and let T be an asymptotically nonexpansive mapping of C into itself. Let
11={un} be the (D,u)-method. Then for any xeC, DéU)[T]x converges weakly to

the asymptotic center of {T"x} as s -0+.

Following the idea of Brézis and Browder [ 1], we say that the (D,u)-
method is proper if for each {B(n)} e 27 with B(*) 20, [g(s)]_1 Z:=Oe—un88(n)
converges to some § as s- 0+, then

% —(uptu)s
lim ( 1 2 e n "k B
s>0+ g(s) n=0 k=0

(In-k|) =86.

For example, the (D,u)-method u=={un} given by un==an+b,where a>0andb >0,

satisfies the properness condition just mentioned.

THEOREM 5 ([ 71). Let C be a nonempty bounded closed convex subset of
H and let T be a nonexpansive nonlinear mapping of C into itself.Letu={un}
be the proper (D,u)-method. Suppose that

(i) 0eC and T(0) =0

(ii) For some c >0, T satisfies for all u,veC the inequality

2 2 2 2
| <Tu, Tv>-<u,v>|< c{llull®= I Tull®+ vl =Nl Tvil ™ } ;

(iii) there is an element {B(n)} e £° with B(*) 20 such that for any
xeC

I<TPX, TqX>‘_ - < . ’
BCIP=41) 1S Yo30 0 q)

where Yo © as min(p,q)> ®.

R ->
in(p,q)
Then for each xeC, DéU)[T]x converges strongly as s> 0+ to the asymp-

totic center of {TMx}.
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Next we consider the convergence of the sequences {xn}C:C generated by
the iteration procedures (called Mann’s type and Halpern-Wittmann’s type )

by the Dirichlet method.

THEOREM 6 ([ 71). Let C be a nonempty bounded closed convex subset of H
and let T be a nonexpansive nonlinear mapping of C into itself. Let w={u,}
be the (D,u)-method. Define (the Mann’s type sequence)

Xl=}(€C

- (W)
Xn+1"unxnfk(l'an)Dsn [T]xn for n21,

where {an} is a sequence in [0, a] for some 0<a<1 and s_~ O+ as n-o . Then

n
the sequence {x_ } so defined converges weakly to the asymptotic center of

{T"%}.

THEOREM 7. Let C be a nonempty bounded closed convex subset of H and
let T be a nonexpansive nonlinear mapping of C into itself. Let p={u,} be
the (D,u)-method. Define (the Halpern-Wittmann’s type sequence)

x0 =xeC

Xogy = Bx+ (l_Bn)Déi) [T]xn for n20,

where s >0+ as n+o and {B,} is a sequence in [0, 1] satisfying the condi-

tions

<]
11 =0 d =00,
nigo} Bn an n"—ZO Bn

Then the sequence {xn} so defined converges strongly to Px, where P is the
metric projection of H onto Fix(T). Moreover, Px coincides with the’asymp—

totic center of {T™x}.

Proof. Note that Fix(T) # ¢ by Theorem 4 and let z e Fix(T). Then
I 2=z || = [ Bjx + (1-8,) Déz)[T]X—z Il
S B llx=z || + (1-8) | Dé;l)[']?]x—z I
SByllx-z || + (1-B,) I x-z ||
=l x=z |,

and so, by the induction argument, Hxn—sz||x—z[|for all n2>0. This implies

that {xn} and {D§U)[T]Xn} are both bounded. Next we claim that
n
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lim sup < x - Px, DéU)[T]xn— Px > < 0.
> n .

Since {DéU) [Tlx,} is bounded, there exists a subsequence {n;} of {n} such

n
that
lim sup < x - Px, D(U) [T]x_ -Px>=1lim< x - Px, D(u) [Tix_, -Px~>.
n->ow Sn n i-»>o0 Sni ni
We may assume that (w)lim D§U)[T]xn =z _ for some z, ¢ C (through a subse-
i>o ny i 0 0

quence of {n;}, if necessary). Using Lemma 2 in [ 7] we have

lim nné“)[ﬂ:]xni -T DéU) [TIx, Il =0,

>0 .
1 nl nl 1

and thus, the demiclosedness of I-T at 0 yields z,€ Fix(T). Hence

lim < x - Px, DQU)[T]xn -Px>=<x-Px, z_-Px> <0.
n

. . 0
->00 .
1 i 1

Now, given € >0 sufficiently small, we can choose an integer n,2 1, nomatter

how large, such that for all nZnO

2 € . : M . €
Bull x = Px|| S 5 and 2 <x-Px, Dén)[T]xn-Px>s—2—.
Therefore

HXp41= Px | = | Byx + (1—Bn)D§i) [TIx, - Px|| 2
= 82y1x - Px||® + (1-8)? uné? [Tlx, - Px|f
+28,(1-8,) <x - Px, Dérl)['r]xn - Px >
< B e+ (1-8 ) Ix, - Px|’,
and ir‘ld.uct‘:i‘v‘elyr

2<{1- 1 b+ T 2
X , =-Px|I“<{1- II (1-B;)te+ I (1-B))|lx., -Px
I %+ i 1=n, i 1=, ol ng I

n
se+exp{- ] 8; iz, -Px[°.
i=n, 0

. (o]
= o0
Hence since Z _, B8, we have
: 2
limsup || x,-Px || < €.
n - oo n

The final stage of the proof is to show that Px coincides with the asymptot-

ic center of the sequence {T™x}. From the definition of the sequence {xn} it

follqws that

Px e Fix(T) N (ﬂ o {Tkx : k2n}].
nzg
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Let u be the asymptotic center of {Tnx,}_. Then u e Fix(T) (cf. Brézis and
Browder [ 1]). We claim that Px =u. Suppose, for acontradiction, that Px # u.
We define

p(x: 2) = lim inf ||Tnx-z]]
n >

N

for zeC. Then there exists a subsequence {n;} of {n} for which lim||T 1x~Px||=
i->co

p(x:Px). So, for any € >0 we can find an integer io==io(x,Px,€), no matter

Nz
how large, such that ||T %)x-—PxH <p(x:Px)+e. Therefore, since T is nonex-

pansive, we have

| T Ox-Px||<|I|T Ox-Px| <p(x:Px)+ce

foralln20. This gives lim||T™x - Px|| =p(x : Px). Similarly we get
n->oo
lim ||T®x -u || =p(x : u). Hence
T1->c0
p(x:u) =lim|IT?x - u ||

N0

inf [ limsuplIT™x -yl : yeC ]

n-> oo
< lim sup |l Tx - Px ||
n- o

=1im T -Px || =p(x: Px).
N->co

Taking into account that H is a Hilbert space, let K be the closed convex

set of all zeH such that |[|[z-u|| < |/z-Px||. Then one can find an integer mg

for which {T%x : nsz}C K, and hence
co {T"x : nsz}C K.

Whereas K does not contain Px, in reality Px belongs to co {T"x : n2myl.

This is a contradiction and Px=wu. This completes the proof of the theorem.
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