DIRICHLET METHOD OF SUMMABILITY AND NONLINEAR ERGODIC THEOREMS IN HILBERT SPACE

TAKESHI YOSHIMOTO

Department of Mathematics, Toyo University Kawagoe, Saitama 350-8585, Japan

My purpose in this exposé is to give a brief summary of some recent results concerning the summation method of Dirichlet's type and nonlinear ergodic theorems of Dirichlet's type in Hilbert spaces. The exposé is mainly a report on the author's personal work on the subject, by a general survey. Most of the results mentioned below were discussed in [6] and [7].

Let X be a complex Banach space and let B[X] be the Banach algebra of bounded linear operators from X to itself. For a given TeB[X], the resolvent set of T denoted by $\rho(T)$ is the set of $\lambda \epsilon C$ for which $(\lambda I-T)^{-1}$ exists as an operator in B[X] with domain X. The spectrum of T is the complement of $\rho(T)$ and denoted by $\sigma(T)$. $\rho(T)$ is an open subset of C and $\sigma(T)$ is a nonempty bounded closed subset of C. So, the spectral radius $\gamma(T)$ of T is well-defined: in fact, $\gamma(T) = \sup_{T \in \mathcal{A}} |\sigma(T)| = \lim_{T \to \infty} ||T^T||^{1/T}$. The function $R(\lambda;T)$ defined by $R(\lambda;T) = (\lambda I-T)^{-1}$ for $\lambda \epsilon \rho(T)$ is called the resolvent of T. It is well known [3] that $R(\lambda;T)$ is analytic in $\rho(T)$ and if $T\epsilon B[X]$ and $|\lambda| > \gamma(T)$ then $\lambda \epsilon \rho(T)$ and

$$R(\lambda;T) = (\lambda I - T)^{-1} = \sum_{n=0}^{\infty} \lambda^{-(n+1)} T^{n},$$

the series converging in the uniform operator topology. It is also known that if $d(\lambda)$ denotes the distance from $\lambda \epsilon C$ to $\sigma(T)$, then $\|R(\lambda;T)\| \geq \frac{1}{d}(\lambda)$. If we take $\lambda = e^Z$, z = s + it (s,t ϵ R), then $|\lambda| > \gamma(T)$ implies $s > \log \gamma(T)$ whenever $\gamma(T) > 0$. This characterization is a matter of great interest in connection with the question of what is the abscissa of uniform convergence of $R(\lambda;T)$ as a series.

Given $T \in B[X]$ let $\Phi(T)$ denote the class of all functions of complex variables which are analytic in some open set containing $\sigma(T)$. The following theorem is fundamental in the theory of linear ergodic theorems.

THEOREM 1 (Dunford [2]). Let $T \in B[X]$ and let $f_n \in \Phi(T)$ satisfy $\lim_{n \to \infty} f_n(1) = 1$ and (so) $\lim_{n \to \infty} (I-T) f_n(T) = \theta$ (the null operator). Then the following statements

¹⁹⁹¹ Mathematics Subject Classification. 47H09, 47H10.

are equivalent.

- (1) (so) $\lim_{n \to \infty} f_n(T) = E$, $E^2 = E$, EX = Ker(I-T).
- (2) $\{f_n(T)x\}$ is weakly sequentially compact for each $x \in X$.
- (3) $X = Ker(I-T) \bigoplus \overline{(I-T)X}$, $\sup_{n} ||f_n(T)|| < \infty$.

Suppose f_n , $f \in B[X]$, where $T \in B[X]$. If $f_n(T)$ converges strongly (or uniformly) then $f(T)f_n(T)$ converges strongly (or uniformly). We are interested in the converse problem. Under what conditions on f_n , f and T does the convergence of $f(T)f_n(T)$ imply the convergence of $f_n(T)$? Theorems describing this situation are in the nature of Tauberian theorems. The condition $(so)\lim_{n\to\infty} (I-T)f_n(T)=\theta$ appearing in Theorem 1 is just the case f(T)=I-T. Such Tauberian conditions are indispensable in discussing ergodic theorems. It should be noted that the strong regularity of summation methods has a very close connection with Tauberian conditions.

Now we consider the Dirichlet series of the following type

$$D[f,\mu;z](T) = \sum_{n=0}^{\infty} e^{-\mu_n z} f_n(T),$$

where z \in C, f = {f_n} \subset Φ (T) and μ = { μ _n}, $0 \le \mu$ ₀ $< \mu$ ₁ $< \cdots < \mu$ _n $\to \infty$ as $n \to \infty$.

THEOREM 2 ([6]). Let T ϵ B[X] and f_n ϵ $\Phi(T)$ be such that $\sup_n \| \sum_{k=0}^n f_k(T) \| > 0$ and define

$$a_{\mu}(f; T) = \limsup_{n \to \infty} \frac{\log \|\sum_{k=0}^{n} f_{k}(T)\|}{\mu_{n}}$$

with $f = \{f_n\}$ and $\mu = \{\mu_n\}$. Then the following statements hold.

- (1) If s>0 and $D[f,\mu;z](T)$ converges in the uniform operator topology for any $z \in C$ with z=s+it, $t \in R$, then $s \ge a_{\mu}(f;T)$.
- (2) The Dirichlet series $D[f,\mu;z](T)$ converges in the uniform operator topology for any $z \in C$ with $Re(z) > max(0,a_{\mu}(f;T))$ when $a_{\mu}(f;T) < \infty$.

If $0 \le a_{\mu}(f;T) < \infty$ in Theorem 2, we say that the number $a_{\mu}(f;T)$ is the abscissa of uniform convergence of the Dirichlet series D[f, μ ; z](T). This theorem plays a fundamental role in investigating ergodic theorems of Dirichlet's type.

COROLLARY 3. Let $T \in B[X]$ satisfy the conditions $\sup_{n} \| \sum_{k=0}^{n} T^k \| > 0$ and $(uo) \lim_{n \to \infty} T^n/n^\omega = \theta$ for some $0 < \omega \le 1$. Let $f = \{f_n\}$, $f_n(T) = T^n$ $(n \ge 0)$ and $\mu = \{\mu_n\}$, $\mu_n = n+1$ $(n \ge 0)$. Then $a_\mu(f;T) \le 0$ and $R(\lambda;T) = \sum_{n=0}^{\infty} \lambda^{-(n+1)} T^n$ converges in the

uniform operator topology for $\lambda \in C$ with $\log |\lambda| > 0$.

Proof. In view of Theorem 2, all that is required is to show that $a_{\mu}(f;T) \leq 0. \mbox{ For a sufficiently small } \epsilon \geq 0, \mbox{ there exists by assumption an integer } N \geq 1 \mbox{ such that}$

$$||T^n|| < \varepsilon n^{\omega}$$
 for all $n > N$.

Then we have

$$a_{\mu}(f;T) = \limsup_{n \to \infty} \frac{\log \left\| \sum_{k=0}^{n} T^{k} \right\|}{n+1}$$

$$\leq \limsup_{n \to \infty} \frac{\log(n+1) + \log \left\{ \max_{0 \le k \le N} \|T^{k}\| + \varepsilon n^{\omega} \right\}}{n+1} = 0,$$

as desired.

Let $\mu = \{\mu_n\} \ (n \geq 0)$ be a sequence of real numbers satisfying the following conditions:

(i)
$$0 \le \mu_0 < \mu_1 < \cdots < \mu_n \to \infty \text{ as } n \to \infty$$
;

(ii)
$$\inf_{n\geq 0} \{\mu_{n+1} - \mu_n\} = \delta \text{ for some } \delta > 0 ;$$

(iii)
$$\lim_{n\to\infty} \{\mu_{n+1} / \mu_n\} = 1;$$

(iv)
$$\lim_{s\to 0+} g(s) = +\infty$$
;

(v)
$$\sup_{s>0} \frac{1}{g(s)} \sum_{n=0}^{\infty} n \{ e^{-\mu_n s} - e^{-\mu_{n+1} s} \} < \infty$$
,

where $g(s) = \sum_{n=0}^{\infty} e^{-\mu_n s}$ which converges for s>0. Such a sequence $\mu=\{\mu_n\}$ determines a strongly regular method of summability. This new summation method will be called the (D,μ) -method (Dirichlet method of summability). Let H be a real Hilbert space and let C be a nonempty bounded closed convex subset of H. A mapping $T: C \to C$ is called asymptotically nonexpansive with Lipschitz constants $\{\alpha_n\}$ if

$$\|\mathbf{T}^{n}\mathbf{x} - \mathbf{T}^{n}\mathbf{y}\| \le (1+\alpha_{n})\|\mathbf{x}-\mathbf{y}\|$$
 for all $n \ge 0$ and all $\mathbf{x}, \mathbf{y} \in C$,

where $\alpha_n \ge 0$ for all $n \ge 0$ and $\alpha_n \to 0$ as $n \to \infty$ (see Goebel and Kirk [4]). In particular, if $\alpha_n = 0$ for all $n \ge 0$ then T is said to be nonexpansive. If T is an asymptotically nonexpansive mapping on C, then for any $x \in C$

$$\left\| \frac{1}{g(s)} \sum_{n=p}^{p+q} e^{-\mu_n s} T^n x \right\| \leq M_C \left(\frac{1}{g(s)} \sum_{n=p}^{p+q} e^{-\mu_n s} \right) \to 0$$

as p,q $\to \infty$, where M_C = $\sup(\|x\|: x \in C)$. This means that for any $x \in C$,

$$D_{s}^{(\mu)}[T]x = \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_{n} s} T^{n}x$$

is well defined for s>0. Furthermore, for each $x\in C$ there exists a unique point $x_0\in C$ such that

$$\lim_{\substack{n \to \infty}} \sup_{\infty} \| \mathbf{T}^{n} \mathbf{x} - \mathbf{x}_{0} \| = \inf_{\mathbf{y} \in C} [\lim_{\substack{n \to \infty}} \sup_{\infty} \| \mathbf{T}^{n} \mathbf{x} - \mathbf{y} \|].$$

Such a point x_0 is called the asymptotic center of the sequence $\{T^nx\}$ (see Lim [5] and Brézis and Browder [1]). We are particularly interested in the weak and strong convergence of $D_s^{(\mu)}[T]x$ when $s \to 0+$.

THEOREM 4 ([7]). Let C be a nonempty bounded closed convex subset of H and let T be an asymptotically nonexpansive mapping of C into itself. Let $\mu = \{\mu_n\}$ be the (D, μ)-method. Then for any x ϵ C, D_S^(μ)[T]x converges weakly to the asymptotic center of $\{T^nx\}$ as s \rightarrow 0+.

Following the idea of Brézis and Browder [1], we say that the $(D,\mu)-$ method is proper if for each $\{\beta(n)\}\in \ell^\infty$ with $\beta(\bullet)\geq 0$, $[g(s)]^{-1}\sum_{n=0}^\infty e^{-\mu_n s}\beta(n)$ converges to some δ as $s \to 0+$, then

$$\lim_{s\to 0^+} \left(\frac{1}{g(s)}\right)^2 \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} e^{-(\mu_n + \mu_k)s} \beta(|n-k|) = \delta.$$

For example, the (D,μ) -method $\mu=\{\mu_n\}$ given by $\mu_n=an+b$, where a>0 and b>0, satisfies the properness condition just mentioned.

THEOREM 5 ([7]). Let C be a nonempty bounded closed convex subset of H and let T be a nonexpansive nonlinear mapping of C into itself. Let $\mu=\{\mu_n\}$ be the proper (D, μ)-method. Suppose that

- (i) $0 \in C \text{ and } T(0) = 0$;
- (ii) For some c > 0, T satisfies for all $u, v \in C$ the inequality $|\langle Tu, Tv \rangle \langle u, v \rangle| \le c\{||u||^2 ||Tu||^2 + ||v||^2 ||Tv||^2\};$
- (iii) there is an element $\{\beta(n)\}\,\epsilon\,\ell^\infty$ with $\beta(\,\raisebox{.4ex}{\bullet}\,)\,\geq\,0$ such that for any $x\,\epsilon\,C$

$$| < T^{p}x, T^{q}x > -\beta(|p-q|) | \le \gamma_{\min(p,q)},$$

where $\gamma_{\min(p,q)}^{\rightarrow \infty}$ as $\min(p,q)^{\rightarrow \infty}$.

Then for each x ϵ C, $D_s^{(\mu)}[T]x$ converges strongly as s \rightarrow 0+ to the asymptotic center of $\{T^nx\}$.

Next we consider the convergence of the sequences $\{x_n\}\subset C$ generated by the iteration procedures (called Mann's type and Halpern-Wittmann's type) by the Dirichlet method.

THEOREM 6 ([7]). Let C be a nonempty bounded closed convex subset of H and let T be a nonexpansive nonlinear mapping of C into itself. Let $\mu = \{\mu_n\}$ be the (D, μ)-method. Define (the Mann's type sequence)

$$x_1 = x \in C$$

 $x_{n+1} = \alpha_n x_n + (1-\alpha_n)D_{s_n}^{(\mu)}[T]x_n \text{ for } n \ge 1,$

where $\{\alpha_n\}$ is a sequence in [0, a] for some 0 < a < 1 and $s_n \to 0+$ as $n \to \infty$. Then the sequence $\{x_n\}$ so defined converges weakly to the asymptotic center of $\{T^nx\}$.

THEOREM 7. Let C be a nonempty bounded closed convex subset of H and let T be a nonexpansive nonlinear mapping of C into itself. Let $\mu = \{\mu_n\}$ be the (D, μ)-method. Define (the Halpern-Wittmann's type sequence)

$$x_0 = x \in C$$

 $x_{n+1} = \beta_n x + (1-\beta_n) D_{s_n}^{(\mu)} [T] x_n \text{ for } n \ge 0,$

where $s_n \to 0+$ as $n \to \infty$ and $\{\beta_n\}$ is a sequence in [0,1] satisfying the conditions

$$\lim_{n\to\infty} \beta_n = 0 \quad \text{and} \quad \sum_{n=0}^{\infty} \beta_n = \infty.$$

Then the sequence $\{x_n\}$ so defined converges strongly to Px, where P is the metric projection of H onto Fix(T). Moreover, Px coincides with the asymptotic center of $\{T^nx\}$.

Proof. Note that $Fix(T) \neq \emptyset$ by Theorem 4 and let $z \in Fix(T)$. Then

$$\| x_{1}-z \| = \| \beta_{0}x + (1-\beta_{0}) D_{s_{0}}^{(\mu)}[T]x-z \|$$

$$\leq \beta_{0}\| x-z \| + (1-\beta_{0}) \| D_{s_{0}}^{(\mu)}[T]x-z \|$$

$$\leq \beta_{0}\| x-z \| + (1-\beta_{0}) \| x-z \|$$

$$= \| x-z \|,$$

and so, by the induction argument, $\|\mathbf{x}_n - \mathbf{z}\| \le \|\mathbf{x} - \mathbf{z}\|$ for all $n \ge 0$. This implies that $\{\mathbf{x}_n\}$ and $\{D_{\mathbf{s}_n}^{(\mu)}[\mathbf{T}]\mathbf{x}_n\}$ are both bounded. Next we claim that

$$\limsup_{n \to \infty} \langle x - Px, D_{s_n}^{(\mu)}[T]x_n - Px \rangle \leq 0.$$

Since $\{D_{s_n}^{(\mu)}[T]x_n\}$ is bounded, there exists a subsequence $\{n_i\}$ of $\{n\}$ such that

$$\limsup_{n \to \infty} \langle \mathbf{x} - \mathbf{P} \mathbf{x}, \ \mathbf{D}_{\mathbf{s}_n}^{(\mu)}[\mathbf{T}] \mathbf{x}_n - \mathbf{P} \mathbf{x} \rangle = \lim_{i \to \infty} \langle \mathbf{x} - \mathbf{P} \mathbf{x}, \ \mathbf{D}_{\mathbf{s}_{n_i}}^{(\mu)}[\mathbf{T}] \mathbf{x}_{n_i} - \mathbf{P} \mathbf{x} \rangle.$$

We may assume that (w) $\lim_{i\to\infty} D_{\mathbf{s}_{\mathbf{n}_i}}^{(\mu)}[T]\mathbf{x}_{\mathbf{n}_i} = \mathbf{z}_0$ for some $\mathbf{z}_0 \in \mathbb{C}$ (through a subsequence of $\{\mathbf{n}_i\}$, if necessary). Using Lemma 2 in [7] we have

$$\lim_{i \to \infty} \|D_{s_{n_{i}}}^{(\mu)}[T]x_{n_{i}} - TD_{s_{n_{i}}}^{(\mu)}[T]x_{n_{i}}\| = 0,$$

and thus, the demiclosedness of I-T at 0 yields $\mathbf{z}_0 \; \epsilon \; \text{Fix}(\mathtt{T}) \text{.}$ Hence

$$\lim_{i \to \infty} \langle x - Px, D_{S_{n_i}}^{(\mu)}[T]x_{n_i} - Px \rangle = \langle x - Px, z_0 - Px \rangle \le 0.$$

Now, given $\epsilon > 0$ sufficiently small, we can choose an integer $n_0 \ge 1$, no matter how large, such that for all $n \ge n_0$

$$\beta_n \| \mathbf{x} - \mathbf{P}\mathbf{x} \|^2 \le \frac{\varepsilon}{2}$$
 and $2 \le \mathbf{x} - \mathbf{P}\mathbf{x}$, $D_{s_n}^{(\mu)}[\mathbf{T}]\mathbf{x}_n - \mathbf{P}\mathbf{x} \ge \frac{\varepsilon}{2}$.

Therefore

$$\begin{split} \|\mathbf{x}_{n+1} - \mathbf{P}\mathbf{x}\|^2 &= \|\beta_n \mathbf{x} + (1 - \beta_n) \mathbf{D}_{\mathbf{s}_n}^{(\mu)} [\mathbf{T}] \mathbf{x}_n - \mathbf{P}\mathbf{x}\|^2 \\ &= \beta_n^2 \|\mathbf{x} - \mathbf{P}\mathbf{x}\|^2 + (1 - \beta_n)^2 \|\mathbf{D}_{\mathbf{s}_n}^{(\mu)} [\mathbf{T}] \mathbf{x}_n - \mathbf{P}\mathbf{x}\|^2 \\ &+ 2\beta_n (1 - \beta_n) < \mathbf{x} - \mathbf{P}\mathbf{x}, \ \mathbf{D}_{\mathbf{s}_n}^{(\mu)} [\mathbf{T}] \mathbf{x}_n - \mathbf{P}\mathbf{x} > \\ &\leq \beta_n \varepsilon + (1 - \beta_n) \|\mathbf{x}_n - \mathbf{P}\mathbf{x}\|^2, \end{split}$$

and inductively

$$\| \mathbf{x}_{n+} - \mathbf{P} \mathbf{x} \|^{2} \le \left\{ 1 - \prod_{i=n_{0}}^{n} (1 - \beta_{i}) \right\} \varepsilon + \prod_{i=n_{0}}^{n} (1 - \beta_{i}) \| \mathbf{x}_{n_{0}} - \mathbf{P} \mathbf{x} \|^{2}$$

$$\le \varepsilon + \exp \left\{ - \sum_{i=n_{0}}^{n} \beta_{i} \right\} \| \mathbf{x}_{n_{0}} - \mathbf{P} \mathbf{x} \|^{2}.$$

Hence since $\Sigma_{n=0}^{\infty} \beta_n = \infty$ we have

$$\lim \sup_{n \to \infty} \| x_n - Px \|^2 \le \varepsilon.$$

The final stage of the proof is to show that Px coincides with the asymptotic center of the sequence $\{T^nx\}$. From the definition of the sequence $\{x_n\}$ it follows that

Px
$$\varepsilon$$
 Fix(T) $\cap \left(\bigcap_{n\geq 0} \overline{co} \left\{ T^k x : k \geq n \right\} \right)$.

Let u be the asymptotic center of $\{T^nx\}$. Then $u \in Fix(T)$ (cf. Brézis and Browder [1]). We claim that Px = u. Suppose, for a contradiction, that $Px \neq u$. We define

$$\rho(x : z) = \liminf_{n \to \infty} ||T^{n}x - z||$$

for z ϵ C. Then there exists a subsequence $\{n_i\}$ of $\{n\}$ for which $\lim_{i \to \infty} \|T^{i}x - Px\| = \rho(x:Px)$. So, for any $\epsilon > 0$ we can find an integer $i_0 = i_0(x,Px,\epsilon)$, no matter how large, such that $\|T^{i}(x-Px)\| < \rho(x:Px) + \epsilon$. Therefore, since T is nonexpansive, we have

$$\|T^{n+n}_{i_0} x - Px\| \le \|T^{n_{i_0}} x - Px\| < \rho(x : Px) + \varepsilon$$

for all $n \ge 0$. This gives $\lim_{n \to \infty} \|T^nx - Px\| = \rho(x : Px)$. Similarly we get $\lim_{n \to \infty} \|T^nx - u\| = \rho(x : u)$. Hence

$$\rho(x : u) = \lim_{n \to \infty} ||T^{n}x - u||$$

$$= \inf \left[\lim_{n \to \infty} ||T^{n}x - y|| : y \in C \right]$$

$$< \lim_{n \to \infty} \sup ||T^{n}x - Px||$$

$$= \lim_{n \to \infty} ||T^{n}x - Px|| = \rho(x : Px).$$

Taking into account that H is a Hilbert space, let K be the closed convex set of all $z \in H$ such that $\|z-u\| \le \|z-Px\|$. Then one can find an integer m_0 for which $\{T^nx: n \ge m_0\} \subset K$, and hence

$$\overline{\text{co}} \left\{ \mathbf{T}^{n} \mathbf{x} : n \ge \mathbf{m}_{0} \right\} \subset K.$$

Whereas K does not contain Px, in reality Px belongs to $\overline{co} \{T^n x : n \ge m_0\}$. This is a contradiction and Px = u. This completes the proof of the theorem.

REFERENCES

- [1] H. Brézis and F.E. Browder, Remarks on nonlinear ergodic theory, Bull. Amer. Math. Soc. 82 (1976), 959-961.
- [2] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217.
- [3] N. Dunford and J.T. Schwartz, Linear Operators I: General Theory, Pure and Appl. Math. Interscience, New York, 1958.
- [4] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- [5] T.C. Lim, A fixed point theorem for families of nonexpansive mappings, Pacific J. Math. 53 (1974), 487-493.

- [6] T. Yoshimoto, Dirichlet series and uniform ergodic theorem for linear operators in Banach spaces, to appear.
- [7] T. Yoshimoto, Nonlinear ergodic theorems of Dirichlet's type in Hilbert spaces, Nonlinear Analysis Theory, Methods and Applications (to appear).