NORM ACHIEVED TOEPLITZ AND HANKEL OPERATORS

東北大学・理学研究科 吉野 崇 (Takashi Yoshino)

Let μ be the normalized Lebesgue measure on the Borel sets of the unit circle in the complex plane \mathbb{C} . For a $\varphi \in L^{\infty}$ the Laurent operator L_{φ} is given by $L_{\varphi}f = \varphi f$ for $f \in L^2$ as the multiplication operator on L^2 . And the Laurent operator induces, in a natural way, twin operators on H^2 called the Toeplitz operator T_{φ} given by $T_{\varphi}f = PL_{\varphi}f$ for $f \in H^2$ where P is the orthogonal projection from L^2 onto H^2 and the Hankel operator H_{φ} given by $H_{\varphi}f = J(I-P)L_{\varphi}f$ for $f \in H^2$ where J is the unitary operator on L^2 defined by $J(z^{-n}) = z^{n-1}$, $n = 0, \pm 1, \pm 2, \cdots$

The following results are known.

Proposition 1. If φ is a non-constant function in L^{∞} , then $\sigma_p(T_{\varphi}) \cap \overline{\sigma_p(T_{\varphi^*})} = \emptyset$ where $\sigma_p(T_{\varphi})$ denotes the point spectrum of T_{φ} and the bar denotes the complex conjugate.

Proposition 2. If φ and ψ are in H^{∞} , then $T_{\varphi}H^{2} \subseteq T_{\psi}H^{2}$ if and only if there exists a $g \in H^{\infty}$ uniquely, up to a unimodular constant, such that $T_{\varphi} = T_{\psi}T_{g} = T_{\psi g}$. And then $\varphi = \psi g$. Particularly, if φ and ψ are inner, then g is also inner.

Proposition 3. H_{φ} has the following properties.

- $(1) \quad T_z^* H_\varphi = H_\varphi T_z$
- (2) $H_{\varphi}^* = H_{\varphi^*} \text{ where } \varphi^*(z) = \overline{\varphi(\overline{z})}$
- (3) $H_{\alpha\varphi+\beta\psi} = \alpha H_{\varphi} + \beta H_{\psi}, \quad \alpha, \ \beta \in \mathbb{C}$
- (4) $H_{\varphi} = O$ if and only if $(I P)\varphi = o$ (i.e., $\varphi \in H^{\infty}$)
- (5) $||H_{\varphi}|| = \min\{||\varphi + \psi||_{\infty} : \psi \in H^{\infty}\}$

Proposition 4. $H_{\psi}^* H_{\varphi} = T_{\overline{\psi}\varphi} - T_{\overline{\psi}} T_{\varphi}$.

Proposition 5. For any $\psi \in H^{\infty}$, $H_{\varphi}T_{\psi} = H_{\varphi\psi}$.

Lemma 1. The following assertions are equivalent.

- (1) $\mathcal{N}_{H_{\varphi}} \neq \{o\}.$
- (2) $[H_{\varphi}H^2]^{\sim L^2} \neq H^2$.
- (3) $\varphi = \overline{g}h$ for some inner function g and $h \in H^{\infty}$ such that g and h have no common non-constant inner factor.

Proof. $(1) \rightleftharpoons (2)$;

$$\begin{split} H_{\varphi}f &= o & \rightleftharpoons & \varphi f \in H^2 & \rightleftharpoons & \varphi^*f^* \in H^2 \\ & \rightleftharpoons & H_{\varphi}^*f^* = H_{\varphi^*}f^* = o & \rightleftharpoons & f^* \perp [H_{\varphi}H^2]^{\sim L^2}. \end{split}$$

 $\underline{(1)} \to \underline{(3)}$; Since $\mathcal{N}_{H_{\varphi}}$ is a non-zero invariant subspace of T_z by Proposition 3, $\mathcal{N}_{H_{\varphi}} = T_g H^2$ for some inner function g. Hence, by Proposition 5, $O = H_{\varphi} T_g = H_{\varphi g}$ and $\varphi g = h \in H^{\infty}$ by Proposition 3(4). Therefore $\varphi = \overline{g}h$. If $g = g_1g_2$ and $h = g_1h_1$ for some non-constant inner function g_1 and g_2 , $h_1 \in H^{\infty}$, then, by Propositions 2 and 5,

$$T_{g_2}H^2 \supset T_gH^2 = N_{H_{\varphi}} = N_{H_{\overline{g_2}h_1}} \supseteq T_{g_2}H^2$$

and this is a contradiction. Therefore g and h have no common non-constant inner factor.

$$\underline{(3) \to (1)}$$
; By Propositions 5 and 3(4), we have $H_{\varphi}T_gH^2 = H_{\varphi g}H^2 = H_hH^2 = \{o\}$ and $\mathcal{N}_{H_{\varphi}} \supseteq T_gH^2 \neq \{o\}$.

Theorem 1. The Toeplitz operator T_{φ} is norm-achieved (i.e., $\{f \in H^2 : \|T_{\varphi}f\|_2 = \|T_{\varphi}\|\|f\|_2\} \neq \{o\}$) if and only if $\frac{\varphi}{\|T_{\varphi}\|} = g$ for some $g \in L^{\infty}$ such that |g| = 1 a.e. and that $0 \in \sigma_p(H_g)$.

And, in this case, $\{f \in H^2 : ||T_{\varphi}f||_2 = ||T_{\varphi}|| ||f||_2\} = \mathcal{N}_{H_g}$ and it is invariant under T_z by Proposition 3(1).

Proof. $(\underline{\rightarrow})$; If $||T_{\varphi}f||_2 = ||T_{\varphi}|| ||f||_2$ for some non-zero $f \in H^2$, then we have, for $g = \frac{\varphi}{||T_{\varphi}||}$,

$$||f||_2 = ||T_{\frac{\varphi}{||T_{lg}||}}f||_2 = ||T_g f||_2 = ||PL_g f||_2 \le ||L_g f||_2 \le ||f||_2$$

because $||L_g|| = ||T_g|| = \frac{||T_g||}{||T_g||} = 1$. Hence $T_g^*T_gf = f$ and $PL_gf = L_gf$ and hence $H_gf = J(I-P)L_gf = o$ (i.e., $0 \in \sigma_p(H_g)$). Since, by Proposition 4, $H_g^*H_g = T_{|g|^2} - T_{\overline{g}}T_g$, we have $T_{|g|^2}f = f$ (i.e., $1 \in \sigma_p(T_{|g|^2})$) and, by Proposition 1, $|g|^2$ is constant and |g| = 1 a.e.

 $\underline{(\leftarrow)} ; \text{Since } ||T_g|| = \frac{||T_{\varphi}||}{||T_{\varphi}||} = 1 \text{ and since, by Proposition 4}, H_g^*H_g = I - T_{\overline{g}}T_g,$ we have $T_g^*T_gf = f$ for all $f \in \mathcal{N}_{H_g}$ and hence $||T_gf||_2 = ||f||_2$. Therefore $||T_{\varphi}f||_2 = ||T_{\varphi}|| ||T_gf||_2 = ||T_{\varphi}|| ||f||_2$.

The last assertion is clear. In fact, (\rightarrow) implies that

$$\{f \in H^2 : ||T_{\varphi}f||_2 = ||T_{\varphi}|| ||f||_2\} \subseteq \mathcal{N}_{H_a}$$

and (\leftarrow) implies the converse inclusion.

Corollary 1. T_{φ} is norm-achieved if and only if $\frac{\varphi}{\|T_{\varphi}\|} = \overline{q}h$ for some inner functions q and h such that q and h have no common non-constant inner factor.

And, in this case, $\emptyset \neq \sigma(T_{\varphi}) \cap \{\lambda \in \mathbb{C} : ||T_{\varphi}|| = |\lambda|\} \subseteq \sigma_c(T_{\varphi})$ where $\sigma_c(T_{\varphi})$ denotes the continuous spectrum of T_{φ} .

Proof. By Theorem 1, T_{φ} is norm-achieved if and only if $\frac{\varphi}{\|T_{\varphi}\|} = g$ for some $g \in L^{\infty}$ such that |g| = 1 a.e. and that $0 \in \sigma_p(H_g)$. And then, by Lemma 1, $\mathcal{N}_{H_g} \neq \{o\}$ if and only if $g = \overline{q}h$ for some inner function q and $h \in H^{\infty}$ such that q and h have no common non-constant inner factor. Since |g| = 1 a.e. if and only if |h| = 1 a.e. and h is also an inner function.

It is known that $\sigma(L_{\varphi}) \subseteq \sigma(T_{\varphi})$ and since L_g is unitary because |g| = 1 a.e., we have $\sigma(T_{\varphi}) \cap \{\lambda \in \mathbb{C} : ||T_{\varphi}|| = |\lambda|\} \neq \emptyset$. If $T_g x = e^{i\theta} x$ for some $\theta \in [0, 2\pi)$ and non-zero $x \in H^2$, then

$$||x|| = ||T_g x|| = ||T_q^* T_h x|| \le ||T_h x|| = ||x||$$

and $e^{i\theta}T_qx = T_qT_gx = T_qT_q^*T_hx = T_hx$. Since $T_h - e^{i\theta}T_q$ is hyponormal, $(T_h - e^{i\theta}T_q)x = o$ implies $(T_h - e^{i\theta}T_q)^*x = o$ and this contradicts Proposition 1 and hence $\sigma(T_\varphi) \cap \{\lambda \in \mathbb{C} : ||T_\varphi|| = |\lambda|\} \subseteq \sigma_c(T_\varphi)$ because

$$\sigma_r(T_{\varphi}) \cap \{\lambda \in \mathbb{C} : ||T_{\varphi}|| = |\lambda|\} = \emptyset$$

where $\sigma_r(T_{\varphi})$ denotes the residual spectrum of T_{φ} .

In the case of Hankel operators, we have the following.

Theorem 2. The Hankel operator H_{φ} is norm-achieved (i.e., $\{f \in H^2 : \|H_{\varphi}f\|_2 = \|H_{\varphi}\|\|f\|_2\} \neq \{o\}$) if and only if $\frac{\varphi}{\|H_{\varphi}\|} = g + \psi$ for some $\psi \in H^{\infty}$ and $g \in L^{\infty}$ such that |g| = 1 a.e. and that $0 \in \sigma_p(T_g)$.

And, in this case, $\{f \in H^2 : \|H_{\varphi}f\|_2 = \|H_{\varphi}\|\|f\|_2\} = \mathcal{N}_{T_g}$.

Proof. $(\underline{\to})$; By Proposition 3, there exists a $g \in L^{\infty}$ such that $H_{\frac{\varphi}{\|H_{\varphi}\|}} = H_g$ and $\|H_g\| = \|g\|_{\infty}$. And then $H_{\frac{\varphi}{\|H_{\varphi}\|} - g} = O$ and $\psi = \frac{\varphi}{\|H_{\varphi}\|} - g \in H^{\infty}$ by Proposition 3. If $\|H_{\varphi}f\|_2 = \|H_{\varphi}\| \|f\|_2$ for some non-zero $f \in H^2$, then we have

$$||f||_2 = ||H_{\frac{\varphi}{||H_{\varphi}||}}f||_2 = ||H_gf||_2 = ||(I-P)L_gf||_2 \le ||L_gf||_2 \le ||f||_2$$

because $||L_g|| = ||g||_{\infty} = ||H_g|| = ||H_{\frac{\varphi}{||H_{\varphi}||}}|| = \frac{||H_{\varphi}||}{||H_{\varphi}||} = 1$. Hence $H_g^*H_gf = f$ and $(I - P)L_gf = L_gf$ and hence $T_gf = PL_gf = o$ (i.e., $0 \in \sigma_p(T_g)$). Since, by Proposition 4, $H_g^*H_g = T_{|g|^2} - T_{\overline{g}}T_g$, we have $T_{|g|^2}f = f$ (i.e., $1 \in \sigma_p(T_{|g|^2})$) and, by Proposition 1, $|g|^2$ is constant and |g| = 1 a.e.

 (\leftarrow) ; By Proposition 3, $||H_g|| = ||H_{\frac{\varphi}{||H_{\varphi}||}}|| = \frac{||H_{\varphi}||}{||H_{\varphi}||} = 1$. Since, by Proposition 4, $H_g^*H_g = I - T_{\overline{g}}T_g$, we have $H_g^*H_g f = f$ for all $f \in \mathcal{N}_{T_g}$ and hence $||H_g f||_2 = ||f||_2$. Therefore, by Proposition 3,

$$||H_{\varphi}f||_2 = ||H_{\parallel H_{\varphi}\parallel g}f||_2 = ||H_{\varphi}|| ||H_{g}f||_2 = ||H_{\varphi}|| ||f||_2.$$

The last assertion of the theorem is clear. In fact, (\rightarrow) implies that

$$\{f \in H^2 : ||H_{\varphi}f||_2 = ||H_{\varphi}|| ||f||_2\} \subseteq \mathcal{N}_{T_a}$$

and (\leftarrow) implies the converse inclusion.