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Abstract

We are interested in ramdom fields X(C) with parameter C, running through the class C= {C;C €
(2, diffeomorphic to §'}. Referring to the canonical representation theory of Gaussian processes, developed
by T. Hida, we generalize the theory to the case of our Gaussian random fields.

1 Introduction

We are interested in the way of dependency of random field X(C)
as a random complex system, where C runs through a class C =
{C; diffeomorphic to S}, convex}.

In particular, we consider a Gaussian random field X (C);C € C,
with a representation :

X(C) = /(C) F(C,uw)z(u)du, (1.1)

where z is an R?—parameter white noise.

According to our purpose, we introduce a notion of Markov Gaus-
sian random field which is a generalization of that of a Gaussian
process X(t) given by T. Hida (1960). Hida’s definition for mul-
tiple Markov Gaussian processes can be treated even to the non-
differentiable processes, different from the definition, given by J. L.
Doob. Its generalization to X (C) is possible because we can consider
an increaing family of the C, so that a direction of evolution can be
defined like in the case of linear parameter t € R!.
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2 Preliminary

Consider Ga_,ussian random ﬁelds
{X(C);C e C}
where

C = {C; C € C?, diffeomorphic to S!,(C) is convex},
(C) : being the domain enclosed by C.

Assume that
1. X(C) # 0 for every C, and E[X(C)] =0.

2. T'(C, "), for C > C', admits variation in the variable C' and that
['(C, C") never vanishes.

In particular, we consider the Gaussian random field {X(C);C €
C}, with a representation

X(C) = /(O)F(C, w)z(u)dy, (2.1)

in terms of R?—parameter white noise z(u) and L?( R?)—kernel F(C,u)
for every C.

Definition (Canonical representation for a Gaussian random
field)

Let Be(X) be the sigma field generated by {X(C),C < C'}. The
representation (2.1) is called a canonical representation if

E[X(C)|Bo(X)] = fiey F(C,wa(wydu, ' < C. (2.2)

Theorem 2.1 The canonical representation is unique if it exists.
Proof. See [7].

Definition(Martingale)
Let Be(z) = o{< ,& >;supp{¢} C (C)}. If
1. E|X(C)| < oo and

2. E[X(C)|Br(z)] = X(C"), for any C' < C
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then X(C) is a martingale w.r.t. Be(x).

Theorem 2.2 If a Gaussian random field Y (C), with mean zero,
has a canonical representation and is a martingale, then there exists
a locally square integrable function g such that

Y(C) = [, 9(wz(u)du. (2-3)
Proof. See [7].

Proposition If Y(C) is a martingale, never vanishes and Y (C,x)
is in the space (S), then Be(z) = Be(Y).
Definition (Markov property)

The Markov property for a random field X (C) is defined by

P(X(C) € B|Bx(X)) = P(X(C) € BIX(C")). (2.4)
Since {X(C)} is Gaussian, it is sufficient to define the Markov prop-
erty by |

E(X(O)|Ber(X)) = BX(O)X(C), C'<C. (25)

Theorem 2.3 Assume that X(C) satisfies the Markov property then

there exists f # 0 and Y (C) which is a martingale w.r.t. Bo(Y) such
that

X(C) = f(O)Y(O). (2.6)
Proof. See [7].

Corollary 1. If, in addition, Y (C,z) € (S) then Y(C) is a martin-
gale w.r.t. Bo(x).
3 Multiple Markov property

Assume that the expression (1.1) for X(C) is a canonical representa-
tion .
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Definition For any choice of C;’s such that Co < C; < --- < Cy <
Cn1, if E(X(C)IB(Co),i =1,2,---, N are linearly independent and
if E(X(C;)|B(Cqo),i = 1,2,--+, N+1 are linearly dependent then X(C)
is called N-ple Markov Gaussian random field.

Theorem 3.1 If X(C) is N—ple Markov and it has a canonical rep-
resentation, then it is of the form

X(C) = [ X HOs(w)z(wdu 3.1

where the kernel ¥ f;(C)gi(u) is a Goursat kernel and {f;(t)},i =
1,..-, N satisfies 1

det(fi(t;)) # 0, for any Ndifferent ¢; (3.2)
and {g;(u)},i=1,---, N are linearly independent in L3-space.

Proof. Let -
X(C) = /(C) F(C,u)z(u)du

be a canonical representation of X{(C) where F(C,u) is a proper
canonical kernel.

According to the assumption, X(C) is an N—ple Markov process,
we can prove that for any C; with €7 < --- < Cy, there exist coef-
ficients a;(C; C, -+ - O ) such that [X(C) — £ a;(C; Cy, - - - Cn) X (C))
is independent of X(C"),C’ < C,.

Thus we have

N

,/((;') F(C” u) {F(C7 u) - Z aj(C§ Cyy- -+, CN)F(CJ', U)} x(u)du

J=1

. , - °
Since F(C’,u) is a proper canonical kernel, we have

N
F(C,u) = El a;(C; Cy, - -+, Cy)F(Ch, u)z(u)du. (3.3)

Take N different {C} with C{ < Cj--- < Cl, arbitrarily in the
class C. Using the expression of F as is in (3.2), we obtain

N N
JLI%(C;C{,“' VF(Clyu) = 22 ar(C; Cy -+, Cy)
= =1
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The N —ple Markov property of X implies the linearly independency
of {F(C},u),j=1,---,N}.
Thus we have

N N
ai(C;Cy, -+, Cn)a;i(Ci; C1, Gy, -+ - Cy) = 3 a(C; C1, Gy, - - - Cy),
=1 j=1
(3.4)
for every j.
We can now prove that
det(a’j(ck; 017 Cé) T Cj,\) # 0, (35)

since F(Cjau) - El:\;l ak(Cj; Cia Cév Tt :V)F(Cllm ’lL), k=1,---,N are
linearly independent functions. Then (3.3) becomes
a(C,C) = a(C,C)B(C',C) (3.6)
where ~ ,
a(CaC_) = (aj(C; ClaC2a' ) 'aCN); ] — 1"' : 7N)
and |
B(C_agl) = {bjk(C17 : '>CN;C{7' Y 5\’)7 jak - 17 7N]7
with det(B(C,C")) # 0.
For any C} € C, j = 1,--+, N such that C} < C},
a(C,C) = a(C, Q,)B(QI?Q) - a(C’ Q,/)B(Q,,aQ/)B(Q,vQ)>
a(C,C") = a(C,C")B(C',C).
Hence
B(C',C)B(C,C) = B(C',0). (3.7)
Let us take fixed C}’s and define £(C),C’ = (C},Cj,---,Cy),by
fg’(C) — a(C7 Q’)B(—C—Ia Q)J fO’I"’C > C;V | ,
where C' is an N—ple (C},---,C%) such that Cy > Cy_; > -+ >
Cy > Cy > Cy_y > -+ > Cf, thus we can see that fon is an extension
of £,1(C) if C > Cy_y > ---,C] > Cf > C%_y,--- > C}. It shows

that there exists a common extension f(C) = (fi(C),---, fv(C)) for
all fCI(C)’s. Denote it by

£(C) = (fi(C), -+, fx(O)).
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We can see from (3.4) and the definition of f/(C) that f;(C) satisfies
(2.2). B
Let us take a fixed curve Co € C. If C > Cy > -+-- > C; > Cly >
-++> (O] > Cp then
N

F(Cyu) = Y a;(C;Cy,--+,Cn)F(Cj,u)

j=1
- fa(c, C)F(C, )"
f(C)B(C',C)'F(C, u)*
= f(O)g(u,C,C)%, |

where |
F(C,u) = (F(C1,u),---, F(Cy,u))
and .
g(u,C',C) =F(C,u)B(C,C)* .
For C>C}{ >--->Cf{ >C{ >--->CY, this is equal to
f(C)g(u7 g//f, gll)*,

so that |
f(C)g(u,C,C)* = f(C)g(u,C",C"),

for C > C%,Cly. Since f satisfies (2.2), we have
" g(u,C,C)" = g(u,C",C")".
Thus g(u) = g(u,C’,C) is well defined as a function of u, and

F(Cu) = £(C)g(u)” = z: F(C)i(w),

where {g;(u),i = 1,---, N'} are linearly independent since { F(Cj,u)}; 7 =
1,---, N, are linearly independent.

Corollary 3.1 If X(C) is a N—ple Markov Gaussian random field,
then the covariance function I'(C,C") = EIX(C)X(C")] can be ex-
pressed in the form

S° £ (C)5(CYh(C,C), (3.8

4,5=1
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where the matrix (h;;(C, C")) is a Gramian and h;;(C, C") is a function
of (C)N (C").

Remark Gramian is a matrix [(g;, 9;)] where (i, g;) is the inner prod-
uct of g; and g; in Lo—space.

Corollary 3.2 If N =1, then it is (simple) Markov.

Proof. It can be easily seen from the expression of canonical repre-
sentation.

4 Application

Let X (C) be a simple Markov Gaussian random field. The covariance
function is of the form ‘

[(C,C) = f(C)f(CHR(CC),
For Y(C) = F(X(C) the variation of Y (C) is obtained as

§Y(C)) = (z i %Lf(s)én(s)ds) Hy(Y(C),0%)
+3ar(CYHia (Y (C),0%) /( f(s)z(s)én(s)ds
Zf 2 2k
5 ( L %%(s)ﬁn(s)ds) raka}
converges.

which is an analogue of Ito’s formula. (see [7] for detail)

5 Concluding Remarks

1. Our definition is applied only for Gaussian case. A generaliza-

tion may be possible for Poisson case, but we need some additional
assumptions.

2. In principle, Markov property should be defined only by the way
of dependency according as the parameter deforms, but not on the



106

analytic property of X(C) in C, like as in the case of X (). Namely,
it depends only on the observed values of the past. In this case,
they are given by conditional expectation. For a field in question the
conditional expectation depends on the observed values as many as
N.

From the view point of prediction theory such a finite dependency
property is significant.
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