0000000000 :
1140 0 20000 127-130 . 127

ON THE PRINCIPAL BLOCKS OF FINITE GENERAL LINEAR GROUPS
IN NON-DEFINING CHARACTERISTIC

Akihiko HIDA Hyoue MIYACHI
(FREAE) L (EHEA)
Faculty of Education Graduate School of Science and Technology
Saitama University Chiba University
e-mail:ahida@post.saitama-u.ac.jp, mmiyachi@g.math.s.chiba-u.ac.jp

1 Introduction

Let k be a field of characteristic £ > 0. In this note, we consider the /-modular
representation of a finite general linear group GLy(g) with abelian Sylow ¢-subgroup of
rank 2 where ¢ is a prime power which is not divided by £. We fix a positive integer e
such that 1 < e < £. Let e(q) be the minimal a > 0 such that £ | ¢ — 1. Let r(q) be the
maximal r > 0 such that £" | ¢?@ —1. We study the principal block of the group algebra
k GLg.(q) where e = e(g). Note that the Sylow £-subgroup of GLg(g) is isomorphic to
Cyp x Cpr where 7 = 7(q) and Cp is a cyclic group of order ¢7. On the other hand, the
Sylow ¢-subgroup of GLg._1(g) is isomorphic to Cp and the structure of k GLg.—1(g) is
well-known. Our main result is the following:

Theorem 1.1. Let g; be a prime power which is not divided by £ for i =1,2. Let B; be
the principal block of k GLae(g;) where e = e(q1) = e(ga). If r(q1) = 7(q2), then By and
By are Morita equivalent.

Remark The case £ = 3,e = 2,7(g;) = 1 is treated in [5]. The proof is essentially same as
in [5],[9]. See [5],[9] for the details. '
2 Stable equivalence

In this section, we state the outline of the proof of the main theorem. We keep the
notation as in §1. First, we define some subgroups.

Definition
L(g;) == {( )O( 1(2 ) ‘ X,Y ¢ GLe(qi)}’ H(g;) == L(gi){wi) where w; = ( (I) (I) ) -

Note that H(g;) is the normalizer of L(g;) in GLae(g;). By Broué’s theorem ([1]), B;
and the principal block By(kH(g;)) of kH(g;) are stable equivalent of Morita type. Since
Bo(kH(q1)) and Bo(kH(go)) are Morita equivalent, there exists a (B, By)-bimodule M
such that

- ® M :mod B; — mod B,

induces a stable equivalence.
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In order to show that M induces a Morita equivalence, it suffices to show that
S ®p, M is a simple By-module for every simple B;-module S by Linckelmann’s theorem
[6]. We construct (Corollary 4.3) By-module Y such that,

(1) Y/radY and socY are isomorphic simple modules.

(2) radY/socY is semisimple.

(3) Y ®p, M satisfies (1) and (2).

(4) T ® M is known (and simple) for every composition factor T' of ¥ which is
not isomorphic to S.

(5) The multiplicity of S as a composition factor of Y is one.

Using these properties of Y, we can show that S ® M is simple.

3 Representation theory of GL,(q)

In this section, we state some preliminary results on the representation theory of
GL,(q). First we recall some terminologies on partitions. If A is a partition of n, then
we write A F n.

Definition Let A = (A, Ag, ...), p = (1, pio, ...) F n. /
1. X > p if there exists k such that A; = p; (¢ < k) and A\ > pu.
2. X'+ n where (\), :=Card{ j | \; >1}.

3. By removing e-rim hooks from A as possible, we obtain a partition, which has no
hook of length e. This partion is uniquely determined by X and e, and called the
e-core of ).

4. (Littelwood-Richardson coefficient aq(1)»)
1 if )\ =a;+1 for some ¢

If o = (,00,...) Fn—1, then asq) = { 0 otherwise.

Let k be a field of characteristic £ > 0, £ { ¢. For each A F n, James defines some

k GL,(g)-modules, namely S(}) := Si(1,A),D(A) := S())/rad S()) ([3]), and Dipper

and James define Young module X (\) := X (1, A) ([2]). For every A - n, D()) is a simple

module and every composition factor of S()) is isomorphic to D(u) for some p - n. We
denote the multiplicity of D(u) in S(A) as compositon factors by d,.

Let U be a k GL,,_;(¢)-module. We may regard U as a module for a parabolic subgroup

P, where
X 0
P.={(* *)GGLn(q)

We define U 1 to be the induced module IndgL"(q)(U). If kK GL,(g)-module V has the
same composition factors as €D,,,, bxS(A), then we write V' | for @, or-pnq Br8a1)rS(@)-

Let A, = (du)aw Tn = (Ga@)n)an, (Uar)ap = AL T,A,. Then the following
holds. A

X € GLn—l(q)} ‘
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Theorem 3.1 (Dipper-James). ([2]) If p + n, then X (u') has the same composition
factors as @, druS(N).

Theorem 3.2 (James). ([4])
1. If \b n, then X(N') | has the same composition factors as @ y,_; UarX (/).

2. Ifatn—1, then D(a) 1 has the same composition factors as @, uarD(A).

4 Inductions of Young modules

Let B be the principal block of k GLg.(g) where e = e(q), char k = £,1 < e < L.
In this section, we determine the decomposition matrix Ay, and construct the modules
mentmned in the last part of §2.

Definition
1. A:={\F2e| (ecore of \) =0}, T':={ak 2e -1 G2 # 0 for some A € A}
2. o~ = min{\ € A | ag)r # 0}, ‘a = max{\ € A | gy # O} for o € T.
3. A4 :=max{a € [' | aq)s # 0} for A € A.

Then {D()\)|A € A} is a complete set of isomorphism classes of simple B- modules Using
these notation, we can describe Young module X (X) for A € A.

Theorem 4.1. If a €T, then X(a) 115 = X(a7).

If ) € A, ) # (2€), (€?), then A = o~ for some o € T'. Since GLy,-1(g) has a cyclic Sylow
¢-subgroup and the structure of the Young module X(a) (o € I') is known, we obtain
the decompositon number dy,(}, p € A) by Theorem 3.2. Since dy,(A & A or p gZ A) is
well known, we can know all the decomposition numbers.

Corollary 4.2. We can determine Dge.

( This means that by [2] we can determine the ¢-modular decomposition matrix of
GLse(g).) Using this result, we have the following result.

Corollary 4.3. Assume that A € A, X # (2e),(€®),(e,1°). Then the Loewy series of
D(A4) 1 -1p is as follows: .

( D)) ) |
DO tls=|C @ DM |.
D(()")

Here, C is a direct sum of some D(p) where p € A, > A
Example
1. Let A= (2¢ —1,1) € A. Then, Ay = (2e — 1), (A+)* = (2¢), and,

D(2e)
D(2e—1)1-1p= ( D(2e-1,1) ) .
D(2e)
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2. Let e=4and A = (4,2,1%) € A. Then A\, = (4,2,1),(A\)* = (4,3,1) and

D(4,3,1)

D(4,2,1) 1 1p = ( D(8) D(4?) D(4,2,12) ) .
D(4,3,1)

Remark (1) Let G,(q) be a finite group of Lie type over I, whose rank is n. Suppose
that e = e(q) = e(¢'),r(q) = r(¢'). By Theorem 1.1, the unipotent blocks of GLa.(g)
and GLy.(q') are Morita equivalent. We believe that the unipotent blocks of G,(¢) and
G.(q') are Morita equivalet if the types of G,(¢) and G, (¢') are the same. ([10])

(2) After the meeting, we found the paper by M.J.Richards [8]. It seems that some
results of this section are contained in his results [8](see also [7, p.126]).
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