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Introduction
Let G(F,) be a finite Chevalley group defined over the finite field F, with ¢
elements and ! a prime number with (ch(F,),!) = 1. In this note, we consider
the cohomology H*(G(F,), Z/1) by the étale method inaugurated by a mile-stone
paper of Quillen [Q1, Q2]. Friedlander has developed and published a book [F1].
Let GG be a Chevalley Z-scheme and G}, a scalar extension by an algebraically
closed field k with ch(k) = p. Let X be a k-scheme equipped with an Gj-
action and B(X, Gy). a classifying simplicial scheme. Then the Deligne spectral

sequence [D] is of the form
Ey = Cotoryr(@zn(H2(X), Z/1) = H*(B(X, G)o /1)

using the Lang isogeny [L]: G(F,)\Gj = G, the right Gy-action of G is given by
the F-conjuguation where F is the g-th Frobenius map. Then the above spectral

sequence takes the form
Ey = Cotorys(g,,zm (H(Gx, Z/1), Z/1) = H*(B(G(Fq)\Gk,'G).,Z/l’)).

We prove it in §1. The Lang map L induces a Galois covering G, — G(Fq)\Gk
and B(Gy, Gk)e — B(G(F¢)\Gk, Gx)s is considered as a Galois covering between
the simplicial schemes. Generally, let p: Y, — X, ‘be a Galois covering with its
Galois group. Then we construct the Hochschild-Serre spectral sequence. In the

above case, there is a spectral sequence such that
By = H?(G(Fy), HY(B(Gk, Gi)s, Z/1)) = HP'(G(F,), Z/1).

Applying the Deligne spectral sequence, it is easily shown that H*(B(Gk, Gk)e, Z/1)
is acyclic. Hence the above spectral sequence collapes at the Es-term. After all,
we get a spectral sequence which converges to the cohomology of a finite Chevalley

group. We call the spectral sequence Deligne-Eilenberg-Moore spectral sequence.



1. Deligne-Eilenberg-Moore spectral sequence

In this section, we introduce a spectral sequence of Eilenberg-Moore
type converging to H*(G(F,); Z/1). For general arguments, we refer to
Friedlander [F1)}.

First let us recall the simplicial scheme B(X,G) from [F1, 1. Exam-
ple 2]. Let S be a scheme, G a group scheme over a scheme S and X
a scheme over S equipped with a right G-action X xs G — X. Then
the simplicial scheme B(X,G) is defined by

n
(1.1) B(X,@)n=XxsG x5 x5G.

We define the face operators d; : B(X,G)n = B(X,G)p1for0 <i<n
by

dO(xagh N ,gn) = ($g1,gz, oo sgn) (1, = 0),
(1-2) di(m)glv . sgn) = (x?gl,-- +19i9i415 - - 1gn) (1 <iln- 1):
d"(x’gl"" ’gn):: (xigl"" agn—l) (z=n),

for z € X(T), g € G(T), where T is a scheme over S and X(T)
and G(T) are T-valued points defined by X(T') = Homg(X,T) and
G(T) = Homs(G,T).

Let X, T be schemes over S. Then we denote T' xs X by Xr, which
is considered as a scheme over T'.

Now we recall here the definition of the Lang map (see [L]). Let Gr,
be a linear algebraic group over F, and ¢ the Frobenius automorphism
defined by ¢(z) = z? for z € k, where k is an algebraically closed
field of F,. Then ¢ can be considered as a morphism of Gy, and Gy
which is a linear algebraic group over k. We consider the Lang map
L : Gy, = Gy which can be defined by £(z) = ¢~ (z)z for z € G(k).

Lemma 1.1 (Lang [L]). There holds £(z) = L(y) for z,y € G(k) if
and only if y = az for some a € G(F,).

Lemma 1.2 (Lang [L]). (1) The map £ : G(k) — G(k) is surjective.
Hence Gy, is a principal left G(F,)-space over Gy and £ induces an
isomorphism G(F,)\Gk = G. '
(2) If we define a right G,-action on Gy by
(1.3) z-z=¢(x) 2z for z,2 € G(k),
then there holds

2-(ay) = (z-2) -y z-l==z
Moreover, the induced isomorphism

L: G(]Fq)\Gk =] Gk
is a right equivariant Gy -map, that is, there holds
L(2]z) =2z
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for (2] € (G(F,)\Gk)(k) and z € G(k).

Corollary 1.3. The isomorphism in the above lemma induces an iso-
morphism '

B(G(Fo)\Gx, Gx) = B(Gx, Gi)

as a simplicial scheme, where the right Gy-action on Gy is given by
z-x = ¢(z) 2z for z,y € Gy.

Theorem 1.4. Let Gz be a Chevalley group scheme of Lie type over

Z. Then we have a spectral sequence {E,} of Eilenberg-Moore type
such that

Ez = COtOIH-‘(Gk;z/l) (H:t(Gk; Z/l), Z/l),

e

Eo = grH*(G(F,); Z/1),

where ! is a prime such that (I,g) = 1 and k is an algebraically closed
field of F,. The comodule structure of H}(Gs;Z/l) is induced from
(1.3) in Lemma 1.2.

The Eilenberg-Moore spectral sequence of a simplicial scheme for
complex algebraic groups is given by Deligne [D]. However, as his
proof seems not to be appropriate in our context, we give here a proof
following Friedlander [F1], and so we use his notations.

We recall a constant sheaf Z/l on the étale site Et(B(Y,G)). If we
denote by (Z/l),, a constant sheaf Z/l on Et(B(Y,G)), then a constant
sheaf Z/l is a collection of (Z/l), for n > 0 satisfying the following
property; if a* : X,, = X,, is a map induced from a simplicial map « :
A(n) = A(m), then it induces the identification o*(Z/l)m = (Z/1)n.

Proposition 1.5 ([F1] Proposition 2.2). Let X, be a simplicial scheme
and F an abelian sheaf on Et(X,). Then F — H R, (I;) is an injective

n=0
resolution in Absh(X,), where the function

R.() : Absh(X,,) — Absh(X,)
is defined by |
(Ba(@))m = [] e*G,

Alnlm

such that each restriction F, — I is an injective resolution on Absh(Xy). -

Moreover we have
Homy, (R.(G), F) & Homy, (G, Fn).

Proof of Theorem. Let us recall the complex defined in [F1, Proposition
2.4]; let L"( ) : Absh(X,,) — Absh(X.,) be defined by

L")m= P o'G,n20

a€A[m)n
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for G € Absh(X,). From the definition of a sheaf on a simplicial scheme,
we see that
Homy, (L"(G), E) = Homy, (G, F,)
for F € Absh(X,). We set
L™(Z|x,,) = Z{m)
for Z|x,, € Absh(X,,). From the definition of L™, we have
(Z(m)n = D Z
Alnlm
on X,. We define the augmented complex of sheaves
{C() = P z(m),8(m) : Z(m) — Z{m - 1)}
m=0

in the following manner. Restricting to Xn, an augmentation and a
boundary operator '

(€)n 2 (Z(0))n = (Z)n,
B(nn : (Z(m))n — (Z(m — 1))n
are given by the summation

P zv) - z(V),
[ﬂ]o
Z( 1)'8; : EB Z(U) — EB Z(U)
i=0 Alnlm Aln)m—1
for U — X, in Et(X.) respectively. O

. When we restrict the complex to X,,, we see that

C(n = Cu(Aln]),

where C,(A[n]) is the augmented chain complex of a simplex A[n].
Since the restriction functor ( ), (see [Fl]) is exact and since C,(A[n])
is acyclic, the complex C(-) is acyclic in Absh(X,). We denote for
simplicity C(m) and d(m) by C~™ and 0™ respectively.

Let F — I* be an injective resolution of F' in Absh(X,) and & :
I't! — T+ 3 difference. We denote

H Hom3pen(x,)(C™% I7H7)
g0
simply by Hom}, g x,)(C*, I *). We define that
Hom*(C*, I*) = @D Homyg(x.)(C*, I*)
n>0
and that
. (6nf)—q —_ 5—q+nf—q + (___1)n+1f—q+la—q
for f = (f-9) € Hom™(C~1,C~%*") = Hom™(C", I').



We consider a spectral sequence associated with the double complex
defined as follows. We define the first filtration by

= Hom*(C*, P I"),

n<p
where we define two kinds of differentials §; and &y respectively by
(Buf)0 = oS, |
(Ouf)™? = (=1)"H freHio7
and define :
‘ 6= 51 + (511.
Since C* is acyclic and since I* is injective, we see that.
E{p - H(FS/FI—I’ %) = {(I){om(Z, I°) g i g§
From the definition of the cohomology, we have
EY¥ = H?(Hom(Z, I), §;) = HP(X., F).
We see immediately that E; = E, which implies that
H"(Hom*(C*,I*)d) = H"(X.,F)
We define the second filtration by
FY=Hom"(HC™,I").
m<p
Then we see that (where ¢ = deg f — p):
EP? = H%Hom*(C?,I°),6) = H'(Hom" (L (Zx,),I®), é1)
= Hq(HOmX,(Z’ I.[p])»‘SII"Xp) = Hp+q(Xp’ Fp).

Proposition 1.6 ([F1], Proposition 2.4). We have a spectral sequence
{EP} such that

EP? = Hp+q(Xp§ Fp),
BP9 = grHPY(X,; F).
We apply this spectral sequence to
X, = B(Gy, Gy) & B(G(F,)\G¢, Gk)
with F = Z/I.
Lemma 1.7. We have a spectral sequence {E.} such that

B} = H':(Gk,Z/l)®®( (G Z/1)[1)),
Ey = grH*(B(G(F,)\Gk, Gy); Z/1).
Proposition 1.8. We have
E}* = Cotorfy, (.2 (Ha (X3 Z/ 1), Z[1).
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Proof. The non-decreasing function § : [p] — [p+1] such that i ¢ Im d,
induces a simplicial map 8; : A[p + 1] — A[p] defined by
a[0,1,...,p+1]=1[0,1,... ,i,...,p]
and the morphism d; : X,41 — X, defined by (1.2). So, the morphism
8: : Hom(Cl_)’épiIIXp) - Hom(CI—JI(’:pII.X,“)

defined by f8; is induced from the inverse image of a sheaf Z/l by
d; : Xp41 — X,. Hence we have

E, = H(E, 61)

and

p P
= (P S (=10 = (1P (-1 B B
1=0 =0
In this case, we can give an explicit representation of d; as follows;
let
Ax : Hy(X;2(1) — H(X;Z2/1) ® Hy(Gri Z/1)
and
A H'(GWZ/l) = H(Gr Z/1) ® H* (G Z/1)
be the comodule map and the coalgebra map respectively induced from
a right G-action X x Gy — X and a multiplication Gy X G — Gk.
Then we obtain

[Ax(m)®21®---®zp (i=0) .
Mz @ ® Ti1 ® Az:) Lo

BTit1® - QTp (l<i<p-1)
MRz ® -z, 1 (i =p).
Therefore we have shown that

E}" = Cotory,, (Griz/l) (He(X52/1),Z/1).

di(m®z1 ® -+ @ Tp) =
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2. Hochschild-Serre spectral sequence

In this section, we construct the Hochschild-Serre spectral sequence
for simplicial schemes in a little more direct way than in Milne [Mi).

Let X, and Y, be simplicial schemes over a field k. Then we call 7, :
Y, =+ X. a finite Galois cover with Galois group G if n;; : Y;, = X, is a
finite Galois cover with Galois group G for all n and if 7, is compatible
with the face and degeneracy operators.

Theorem 2.1. Let 7, : Y, = X, be a finite Galois cover with Galois
group G for simplicial schemes. Let F' be an abelian sheaf on Et(X,).
Then we have a Hochschild-Serre spectral sequence { EP?} such that

EP = H?(G, HY(X,; F)),
Ey = grtHPY(Y,; F). |
To prove the theorem, we prepare some notations.
Let (B.(G, G), 8.,0.) and (Y., d., s.) be simplicial schemes defined in

the section 1. Then we define a double simplicial scheme B(G, G). XY,
as follows; as schemes, we set

B(G,G), ®Y, = H Yoors
greGrtl

where Yy ., is indexed by g; € GP*! = B(G, ), and we have Y, 27,
as schemes.

We denote Y; 5, by grXY;. Then we define two kinds of faqe operators
6;; R1,: B(G,G), XY, =+ B(G,G)p-1 B Yy,
1,Rd, : B(G,G), RY, - B(G,G), RY,
by

(gﬁagl,”' agp—-lay) (i=p),
1}7 b2 df;((go, g1 .- 1gp’y)) = (g()agla e ’gmd{](y))

respectively, where we identify B(G,G), RY,(S) with G*P+) x Y,(S)
for a k-scheme S. Similarly we define two kinds of degeneracy operators

ot K1, :B(G,G), RY, - B(G,G)p1 BY,,
1,® s} :B(G,G), ®Y; = B(G,G), R Y4y

; ’ “oe (s Ceee OSiSp_l
6;@ lq((go,gl,... ,gp,y)) — {(90, 1 9iGi+1, ,gp,y) ( )

by
0’;; X 1‘1((90’ gy .- :gp)y)) = (907 cee 196165 ikl e oo 1 Gpy y)

]-p X Sf,((!]o,gl, e agpi y)) = (90191’ cev 3 9py s‘q(y))'
By abuse of notation we put

iR, =8, 1,Rd =d, o' R1, =0}, 1,Rs, = s



We define a G-action on B(G,G), ®Y, by

g((g()’gl"" 1gp’y)) = (ggﬂaglv"' ,gpay)v g€q.

Clearly we see that the G-action is compatible with all the face and
degeneracy operators, and we have the identities

i __ Jigt . — oJ At
Opdy = dqap, OpSy = Sh0p-

Remark 2.2. Let F be an abelian sheaf on Y,.;. Then we can consider
F as a sheaf on X,e, because Y, is a Galois cover over X,.

The Galois group G acts on F from the right hand side and on Y,
from the left one. Moreover H F,, is a sheaf on
greGrtl

B(G,Q)p R (Yeer) = H (Yeet)gr
greGrti

where F,, is a sheaf F indexed by g; € GP*1.
In the similar manner to before, we can associate the sheaf on

B(G,G)p B (Yeer)
to a sheaf F' on Y,.; and denote its sheaf by
2.1) | B(G,G), R F.
Now we descrlbe the face operators 8‘* induced on the sheaf F' explic-

itly. Let U — Y, be an étale map. Then we have the étale map induced
by it:

B(G,G),RU= "] Uy,— ][] Yau=B(G, G),,IY
greGrtl g1€GrH!
We also have
F(B(G,G),RU)= [] F(U,),
greGr+t
and denote its section by s = (sq,). The face operator
8:,* : F(B(G,R), RU) = F(B(G,Q)p1 BU)
is given by
s 5190y -+ 4 9iGi ey G OSZSP“l
(2.2) (8" 8) (g0 9p) = (g +1’ 2 ( = )
3(901917*" ’gp—l) (z _p)‘
We consider an injective resolution
0— F -5
of F on X,.; and define the sheaf complex

(C. d.) — ( @ @ Cp,q @ dpoq)
n>0 p+q=r n>0pgq
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CP = B(G,G) R IY,
&P = (—1)°0% + (—1)PdS.

* Then we have

Lemma 2.3. The G-free complex C® gives rise to also an injective
resolution on X,e::

0 F-L .
Proof. Since I? is injective and since B(G,G), & I9 is a direct product
of I, we see that B(G,G), ® I? is injective and C™ is injective on
X.et. Hence we will show that 0 — F — C* is acyclic. For a fixed
geometric point Z, it is enough to show that 0 — Fy — Cj is acyclic.

We calculate the homology of the double complex (Cz,d*) by using a
spectral sequence. We introduce filtration F"C3 by (P-C’g" for n and
p>n

consider the associated spectral sequence. From the injective resolution
of F, we see that :

B! = HY(B(G,G), R I, (—1)Pd%)

_ )0 (g >0)
| B(G,G),RF; (¢=0).

L2 L o
The differential d; is given by >,(—1)'9," from (2.2) in Remark 2.2."
i=0

Forgetting the G-action on Fj, we obtain
EP® = Homg(Z[G] ® B?(G), Z) ®z Fr,

where Z[G]® B*(G) is the standard bar complex of G over Z and Z[G]
is a group ring over Z [Mc|. Hence we obtain that

Ep,o - 0 p> 0
2 F5 p= 0. .
It is easy to prove that H*(C,d*) = F;. O

Lemma 2.4. Let 'y, and Ty, be the section functors of X, = {Xn}
and Y, = {Y,,} respectively. Then for a sheaf F' on Y,¢, we have

FXO (F) = PY. (F)G‘
Proof. From the definition of the section functor [F1, D] we recall that

0y, (F) = Ker(F (%) 5 F().

Since Y;/X; is a Galois cover with the same Galois group G, we have
F(X)) = F(Y:/G) = F(Y,)°.
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Observing that the face operators are compatible with the G-action,
we have

T'x,(F) = Iy, (F) NT(X, F) = Ty, (F) NT(Y,, F)¢ = Ty, (F)°.
From Lemmas 1.1 and 1.2, we summarize that

H™(X,; F) = H™(Ty,(C°)%).

Lemma 2.5. We have .
Ty, (CP) = Homg(Z[G] ® B*(G),I'},(I°)),
Iy, (CP)¢ = Homg(BP(G), T, (I%),
where Z[G] ® B?(G) is the standard bar complex of G over Z.

Proof. From the construction of CP9, we have
L) =Tv( [ )= ]I v
] 91€GPH1 g1€Grtl
where I7 = I9. Noting Remark 2.2, we see that I® is a right G-module
and so the left G-action is given by
g ls=sg

for g € G(k) = Gz(k) and s € I*(U), where U —'X,, is any étale map.
Hence the left action of G on [], ¢gr+1 I'v. (1] is given by

(2.3) 9 * S(g0,91,-19p) = gt (5(990:91,99)) .

for (sgl) € H FY.(ngI)v ar = (90, g1y ’gp) and 9,9 € G.
g91€GP+1 :

When we identify H Ty, (I3,) with Homg(Z[G]® B?(G), Ty, (1%))

greGgrtl

by
£(90,911- -+ 1 9p) = S(g0,91,-199) :
f)or f € Homgz(Z[|G) ® B?(G), Ty, (1)), the G-module structure is given
y
(95)(90:91,--- 1 9p) = 97 (990,91, -+ » 9p)-
Therefore we see that
Ty, (CP9)C = Homzg)(Z(G] ® B*(G),T'v.(I"))
& Homgz(BP(G), 'y, (I%).
O

Under these preparations, the construction of the spectral sequence

is a routine argument from the double complex. We define the filtration
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of the complex Ty, (C*)¢ by F" = p@nr‘y. (CP*)C. From Lemma 2.5, it
follows that
E}* 2 Homgg)(Z[G) ® B?(G), HU(Ty, (I'), dr))
= Homg(Z[G] ® B?(G), H'(Y,; F)).
As shown in the proof of Lemma 2.3, the differential d, is given by

P
dy =) (-1)'8f.
i=0
Hence we obtain that
B} = H?(G, H'(Y,; F)).
Thus we have the spectral sequence which converges to
Eyr =grH*(X,; F).

Now we apply the Hochschild-Serre spectral sequence in the following
form. Let G be an algebraic group defined over a prime field F, and
G(F,) the finite group consisting of its F -rational points with ¢ = p™.
Then according to Lang [L], the left coset G(F,)\Gy is a k-affine scheme
[Se, 111, 12] and G(IF,) is a finite Galois cover over G (F,)\Gj, with Galois
group G(FF,). So we can take B,(Gk,Gx) and B,(G(F;)\Gk,Gy) as Y,
and X, in the above argument. Under the present context, the spectral
sequence {EP?} takes the form
Eg,q = HP(G(]FQ)a Hq(B' (Gk’ Gk); F))

= Hp+q(B.(G(]Fq)\Gk, Gk); F)
Lemma 2.6 (Friedlander [F2]). For a reductive algebraic group Gy
defined and split over Fp,, we have

H"(B.(Gk,Gk); Z/l) =0 forn>0.
Proof. We consider the Deligne-Eilenberg-Moore spectral sequence
E?'* = H*(Bn(Gk,Gk); Z/l) = H*(B.(Gk,Gk);Z/l).

From Friedlander-Parshall [FP], we can apply the Kiinneth formula to
H*(B,(Gy,Gy); Z/1). We have

H*(Bn(Gka Gk); Z/l) & H:t(Gk; Z/l)®na-

which implies that the E;-term is the cobar complex of H}(Gy;Z/!)
over Z/l. Hence we have

(2.4)

EP* =0 exceptp=gq=0.
O

Theorem 2.7. For a reductive algebraic group Gj defined and split
over Fy, we have

H*(G(F,); Z/1) & H*(B(G(F,)\C, Gi) Z/1).
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Proof. That the spectral sequence (2.4) collapses follows from Lemma 2.6.

Then the rest of the assertion can be proved straightforwardly. O

Together with the Deligne—hEilenberg—Moore spectral sequence, we
can now state the main theorem. :

Theorem 2.8. For a reductive algebraic group G defined and split
over F,, we obtain the spectral sequence {E,} such that

Ez = COtoert(G;Z/l) (He't(G; Z/l), Z/l),
B = grH* (G(Ey), Z/1).
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