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\S 1. Introduction

In the large-eddy $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{l}\rangle$ (LES) of incompressible turbulent flows, we require a subgrid-scale
(SGS) model for the SGS stress tensor $\tau_{ij}$ , which is classicaly decomposed into three parts, as

$\tau_{ij}\equiv\overline{u_{i}u_{j}}-\overline{u}_{i}\overline{u}_{ji}=Lj+C_{ij}+R_{ij}$. (1)

In the above expression, $u_{i}$ is the i-th component of the velocity vector, and the overbar $\overline{f}$ denotes
the grid-scale $(\mathrm{G}\mathrm{S})$ component of $f$ , which is resolved by a spatial filtering operation defined using
the filter function $G(\mathrm{x})$ as

$\overline{f}(\mathrm{x})=\int d\mathrm{x}’G(\mathrm{x}-\mathrm{X}’)f(\mathrm{x}’)$. (2)

Here, the three component parts, or the Leonard term $L_{ij}$ , the cross term $C_{ij}$ , and the SGS Reynolds
stress $R_{j}$ , are respectively defined by

$L_{ijji}\equiv\overline{\overline{u}_{i}\overline{u}}-\overline{u}\overline{u}_{j}$, (3)

$oij\equiv\overline{\overline{u}_{i}u_{j}+\prime u_{i}\prime j\overline{u}}$ , (4)

$R_{jj}.\cdot\equiv\overline{u_{1}’’.u}$, (5)

where $u_{i}’$ denotes the SGS part of $u_{i}$ , defined by

$u_{i}’\equiv u_{i}-\overline{u}_{i}$ . (6)

The Leonard term $L_{ij}$ , composed of the GS velocities, is resolvable; thus we require the SGS models
for the cross term $C_{ij}$ , and for the SGS Reynolds stress $R_{\dot{4}j}$ . The cross term is inherent in SGS
modeling, while the SGS Reynolds stress is analogous to the Reynolds stress in the Reynolds stress
closures.2) Therefore, the neglect of the cross term with the direct evaluation of the Leonard term
appears to be a way of modeling, and has in fact been performed in some large-eddy simulations.3,4)
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However, $\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{Z}}}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{e}^{5)}$ pointed out that this approximation violates the Galilean invariance of the

Navier-Stokes equation, though the neglect of the sum of the Leonard and the cross terms,

$L_{ij}+C_{ij}\simeq 0$ , (7)

is possible from the viewpoint of Galilean invariance. In this context, $\mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{o}^{6)}$ proposed a new

decomposition of $\tau_{ij}$ , where each component term is Galilean invariant. It is composed of three

terms again, the modified Leonard term $L_{ij}^{M}$ , the modified cross term $C_{ij}^{M}$ , and the modified SGS

Reynolds stress $R_{ij}^{M}$ :
$\tau_{ij}=L_{ijij}M+C^{MM}+Rij$

’ (8)

$L_{ij}^{M}\equiv\overline{\overline{u}i\overline{u}j}-\overline{\overline{u}}i\overline{\overline{u}}_{j}$ , (9)

$C_{ij}^{M}\equiv\overline{\overline{u}_{i}u_{j}’+u_{i}’\overline{u}_{jj}}-\overline{\overline{u}}i\overline{u^{r}}-\overline{u’}_{i}\overline{\overline{u}}_{j}$, (10)

$R_{ij}^{M}\equiv\overline{u_{ij}^{\prime/}u}-uiu_{j}\overline{/}\overline{\prime}$ . (11)

Only from the viewpoint of Galilean invariance can the modified cross term be neglected. In fact,

the Bardina-type $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1^{7)}$ for the modified cross term should vanish by this constraint.8)

However, it is put forth in the present paper that the neglect of the modified cross term is also

inconsistent with the constraint of material frame indifference (MFI) in the limit of two-dimensional

turbulence, as pointed out by Speziale.9, 10) In the following, this constraint is referred to as the

asymptotic material frame indifference (AMFI). In the model expression for the Reynolds stress,2)

the lack of a term proportional to $(\partial u_{i}/\partial x_{a}-\partial u_{a}/\partial x_{i})(\partial u_{j}/\partial x_{a}-\partial u_{a}/\partial x_{j})$ is justified by the

constraint of AMFI. Hereafter, the summation convention is used for repeated subscripts.

In the folowing, it is claimed in SGS modeling of incompressible turbulent flows that none

of the (modified) Leonard terms, the (modified) cross terms, or their sums can be neglected, in

principle, due to the constraint of AMFI, and that the model of Clark et. $al^{11)}$ is consistent with

this constraint. Furthermore, a family of dynamic SGS models consistent with this constraint is

found, and specifically, a two-parameter dynamic SGS model is proposed as the most desirable

member, whose expression for the SGS Reynolds stress asymptotically disappears in the limit of

two-dimensional turbulence. These contents has been recently published in Shimomura.12) In the

present paper, the performances of the consistent dynamic SGS modek in the real large-eddy

simulations of rotating homogeneous turbulences are further reported.

In \S 2 the the frame difference of the SGS stress tensor is reviewed, and in \S 3 the impossibihity of

neglecting the (modified) Leonard terms, the (modified) cross terms, or their sums is proved based

on the AMFI. In \S 4 the consistent dynamic SGS models are proposed, and \S 5 their superiority

over the dynamic Smagorinsky $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1^{4)}$ is demonstrated in the large-eddy simulations of rotating

homogeneous turbulences. Finally in \S 6 the conclusions are summarized.
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\S 2. Review of the frame difference of the SGS stress tensor

Here, let us review the findings of $\mathrm{s}_{\mathrm{P}^{\mathrm{e}}}\mathrm{z}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{e}13$
) regarding the frame difference of the SGS stress

tensor $\tau_{ij}$ under arbitrary time-dependent rotations of the reference frame specified by

$x_{i}^{*}=Q_{ia}x_{a}$ , (12)

where $x_{i}$ is the position vector in an inertial frame, $x_{i}^{*}$ is that in a rotating frame, and $Q_{ij}$ is any

time-dependent proper-orthogonal rotation matrix. Hereafter, as in (12), we denote the quantities

in a rotating frame by adding the $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{P}\mathrm{t}*\mathrm{t}\mathrm{o}$ the notations of corresponding quantities in an

inertial frame. From (12), we obtain the relation between the velocity components $u_{i}$ in an inertial

frame and the velocity components $u_{i}^{*}$ in a rotating frame

$Q_{ia}u_{a}=u_{ii}^{*}+\epsilon ab\Omega^{*}X^{*}ab$
’ (13)

where $\Omega_{i}^{*}$ is the angular velocity of the rotating frame, and $\epsilon_{ijk}$ is the alternating tensor. From (13)

and the identity
$\overline{x_{i}^{*}}=x_{i}^{*}$ , (14)

we obtain
$Q_{ia}\overline{u_{a}}=u_{ib}^{\overline{*}}+\epsilon_{ib}a\Omega*Xa*$ , (15)

$Q_{iai}u_{a}’=u^{*\prime}$ . (16)

Accordingly, the modified Leonard term $L_{ij}^{M}$ , the modified cross term $C_{ij}^{M}$ , and the modified SGS

Reynolds stress $R_{ij}^{M}$ are respectively related to their counterparts as

$Q_{ia}L_{ab}^{M}Q_{b}TL_{i}=j+z^{L*}jM*ij$
’ (17)

$Q_{ia}c_{ab}^{M}Q_{b}T=jijjcM*+Z_{i}c*$ , (18)

$Q_{ia}R_{ab}^{M}Qb\tau Rj=ijM*$ , (19)

where $Q_{ij}^{T}$ denotes the transposed matrix of $Q_{ij}$ . In (17) and (18), the terms $Z_{ij}^{L\mathrm{r}}$ and $Z_{ij}^{C*}$ are

given by

$Z_{ij}^{L*}=\epsilon_{i}ab\Omega^{*}(abj-X_{b}X*\overline{u^{*}}*-\overline{u_{j}^{*}})+\epsilon_{jb}a\Omega*(a\overline{u_{i^{X}b}^{\overline{*}}*}-\overline{\overline{u_{i}*}}X_{b}^{*})+\epsilon iab\epsilon jcd\Omega_{a}^{*}\Omega_{c}^{*}(\overline{x_{b}^{**}Xd}^{-X_{b}x}d**)$, (20)

$Z_{ij}c*\Omega_{a}^{*}=\epsilon iab(Xu-bjbjx^{*}u)\overline{*\overline{*\prime}}\overline{\overline{*\prime}}+\epsilon_{ja}b\Omega_{a}^{*}(u_{i}^{*}x_{b}^{*}-u^{*}x_{b})\overline{\overline{\prime}}\overline{\overline{\prime}}*i$. (21)

From (8) and (17)$-(21)$ , the SGS stress tensor $\tau_{ij}$ is written as

$Q_{ia^{\mathcal{T}}ab}QbT*ij\tau ji^{*}=+Zj$
’ (22)

$Z^{*}ij=z_{i}^{L*}jz+ij=\epsilon_{ia}b\Omega c**(_{X_{b}u-}ajbX^{*}\overline{u_{j}^{*}})+\epsilon jab\Omega^{*}(a-u_{ib}x^{*}x_{b}\overline{u^{*}})+\epsilon_{\dot{\iota}}ab\epsilon jcd\Omega_{a}*\Omega_{C}^{*}(_{X_{b}}\overline{**}-x*\overline{*}**\overline{**}iXdb^{X}d)$ . (23)
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Relations (17), (18), (22), and (19) state that the modified Leonard term $L_{ij}^{M}$ , the modified cross

term $C_{ij}^{M}$ , and the modified SGS stress tensor $\tau_{ij}$ are frame different, but that the modified SGS

Reynolds stress $R_{ij}^{M}$ is frame indifferent.

Fureby and $\mathrm{T}\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{l}4$ ) found, using the principle of frame indifference, that the filter function

should possess spherical symmetry, i.e., $G=G(|\mathrm{x}|)$ . The Gaussian filter with the filter width $\overline{\Delta}$,

defined as
$G(|\mathrm{x}|)=(\overline{\frac{\alpha}{\pi}})^{3}/2\mathrm{p}\mathrm{e}\mathrm{x}(-\overline{\alpha}XaXa)$, (24)

$\overline{\alpha}\equiv\frac{6}{\overline,\Delta^{2}}$ , (25)

has this symmetry. For any filter function of the form $G=G(|\mathrm{x}|)$ , the terms $Z_{ij}^{L*},$ $Z_{ij}^{C*}$ , and $Z_{ij}^{*}$

satisq
$\frac{\partial Z_{ia}^{L*}}{\partial x_{a}^{*}}=\frac{\partial Z_{1}^{C*}a}{\partial x_{a}^{*}}.=\frac{\partial Z_{ia}^{*}}{\partial x_{a}^{*}}=0$, (26)

since the solenoidal conditions hold:
$\frac{\partial u_{a}^{*}}{\partial x_{a}^{*}}=\frac{\partial \mathrm{u}_{a}^{*J}}{\partial x_{a}^{*}}=0$. (27)

Essentialy, these are the findings of Speziale.13)

Here we note fiiom (17), (18), and (23) that the sum of $L_{ij}^{M}$ and $C_{ij}^{M}$ is frame different:

$Q_{ia}(L_{ab^{+}a}^{M}cM)bQ_{b}T(j.j+j)=L_{1}^{M}*\mathit{0}_{i}^{M*}+z_{ij}*$ . (28)

Since the SGS Reynolds stress $R_{j}$ is frame indifferent as a result of (16),

$Q_{ia}R_{a}bQ_{bjij}^{\tau*}=R$ , (29)

we find that the sum of $L_{ij}$ and $C_{ij}$ is also frame different, namely,

$Q_{ia}(L_{ab}+C_{a}b)Qb\tau(jij+ci*L*)=j+z_{ij}*$, (30)

which is derived from (1), (22), and (29). By virtue of (26) and (30), we determine

$Q_{ia} \frac{\partial}{\partial x_{b}}(L_{ab}+c_{a}b)=\frac{\partial}{\partial x_{a}^{*}}(L^{*}ia.a+C_{1}^{*})$ . (31)

This describes the frame-indifferent feature of the term $\partial(L_{ia}+C_{ia})/\partial x_{a}$ that contributes to the

filtered Navier-Stokes equation. $\mathrm{s}_{\mathrm{P}^{\mathrm{e}}}\mathrm{z}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{e}13$
) required the SGS models to be compatible only with

this feature and concluded that the neglect of $L_{ij}+C_{ij}$ , or (7), is a possible way of modeling

which is consistent with (31). However, this conclusion turns out to be fake if we consider that the

constraint of AMFI should be applied not only to the term $\partial(L_{ia}+C_{ia})/\partial x_{a}$ but also to the term

$L_{ij}+C_{ij}$ itself, based on (30).
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\S 3. Proof of the impossibility of neglecting $L_{ij}^{(M)},$ $C_{ij}^{(M)}$ , or their sums

Now, we are ready to theoreticaly prove that none of the (modified) Leonard terms, the (modi-
fied) cross terms, or their sums can be neglected, in principle, due to the constraint of AMFI.

As is true of the Reynolds stress closures,2) the model equation for the SGS stress tensor is
asymptotically required to not depend on the angular velocity $\Omega^{*}=\sqrt{\Omega_{a}^{*}\Omega_{a}^{*}}\mathrm{o}\mathrm{f}$ the reference frame
in the limit of $\Omega^{*}arrow\infty$ by the constraint of AMFI; this means that the dependence of velocity fields
on $\Omega^{*}$ tends to disappear as $\Omega^{*}$ increases. Although the modified Leonard term $L_{ij}^{M}$ is resolvable,
the model equation of the modified cross term $C_{ij}^{M}$ should not depend on $\Omega^{*}$ , neither should the
modified SGS Reynolds stress $R_{ij}^{M}$ , in the limit of $\Omega^{*}arrow\infty$ . If we denote the model for the modified
cross term as $\Gamma_{ij}^{M}(\simeq C_{ij}^{M})$ , the corresponding model in a rotating frame can be derived $\mathrm{h}\mathrm{o}\mathrm{m}(18)$

as
$C_{ij}^{M*}\simeq\Pi^{M}ij-z_{ij}*c*$ , (32)

where
$\Pi_{ij}^{M*}=Qia\mathrm{r}_{a}^{M}bQ_{bj}^{\tau}$ . (33)

If the model is neglected $(\Gamma_{ij}^{M}=0)$ , as in the Bardina-type model,8) then $\Pi_{ij}^{M*}=0$ , from (33).
Therefore, $C_{ij}^{M*}$ does not obey this constraint, because model equation (32) is reduced to $C_{ij}^{M*}\simeq$

$-Z_{ij}^{C*}$ , which indicates the explicit dependence of $C_{ij}^{M*}$ on $\Omega^{\mathrm{s}}$ . It is impossible to neglect it. This
logic, which proves the impossibility of neglecting the modified cross term, is not the same as, but
is similar to, that of neglecting the cross term by the constraint of Galilean invariance, as pointed
out by Speziale.5) The term $Z_{ij}^{C*}\mathrm{s}\mathrm{h}_{0}\mathrm{u}\mathrm{l}\mathrm{d}$ be canceled out by a part of the term $\Pi_{ij}^{M*}$ . In the same
way, approximation (7) is found to be incompatible with the AMFI from (30).

There might be an objection to the AMFI because of the possibility that the Taylor-Proudman
theorem does not hold in turbulent flows due to the survival of the non-negligible time-derivative
of the velocity in the limit of $\Omega^{*}arrow\infty$ , which violates the geostrophic balance in the equation of
motion. In this case, we have the following asymptotic equation instead of the geostrophic balance
in the limit of $\Omega^{*}arrow\infty$ :

$\frac{\partial \mathrm{u}^{*}}{\partial t}+2\Omega^{*}\cross \mathrm{u}^{*}=-\nabla p^{*}$ ,

where $p$ is the pressure divided by the fluid density. If we choose the $z$-direction as the direction of
$\Omega$ , then we have the plane-wave solution of the form

$\mathrm{u}^{*}=\mathrm{u}_{0}^{*}\exp[i(\omega t-k_{X}-ly-mZ)]$ ,

$\omega^{2}=4\Omega^{*}2m^{2}(k2+l^{2}+m^{2})-1$ .

This solution shows $|\mathrm{u}^{*}|$ remains finite even in the limit of $\Omega^{*}arrow\infty$ . Therefore, the above logic is
expected to be valid in turbulent flows.
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\S 4. Consistent SGS models

Most existing SGS $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{k}4,15- 17$) are not compatible with the constraint. Here, we derive a family

of consistent SGS models for large-eddy simulations using the Gaussian filter.

It has been pointed out by $\mathrm{H}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{u}\mathrm{t}\mathrm{i}^{18}$) that in the case of using Gaussian filter (24), the frame-

different part $Z_{ij}^{*}$ is analytically identical to

$Z_{ij}^{*}= \frac{1}{2\overline{\alpha}}(\epsilon_{iab}\Omega^{*}\frac{\partial\overline{u_{j}^{*}}}{\partial x_{b}^{*}}aj+\epsilon ab\Omega*\frac{\partial\overline{u_{i}^{*}}}{\partial x_{b}^{*}}a+\delta_{i}j\Omega^{*}\Omega*-aa\Omega_{i}*\Omega^{*}j)$, (34)

where $\delta_{ij}$ denotes the Kronecker delta. This identity is derived from the following formulae for the

filtering operation with (24):
$x_{i^{X_{j}xx+}}^{\overline{**}}=i*j* \frac{1}{2\overline{\alpha}}\delta ij$ , (35)

$\overline{x_{i}^{*}u_{j}^{*}}=x_{i}^{*}\overline{u_{j}}+\frac{1}{2\overline{\alpha}}\frac{\partial\overline{u_{j}^{*}}}{\partial x_{i}^{*}}$ . (36)

As a SGS model that exactly satisfies the constraint of AMFI in the case of Gaussian filter (24),

we turn to the model proposed by Clark et $al^{11)}$. (the Clark model) for the sum of the Leonard and

the cross terms. It completely cancels the term $Z_{ij}^{*}$ in (28) and is compatible with the AMFI. The

model equation is given by
$L_{ijij}+^{c} \simeq\frac{1}{2\overline{\alpha}}\frac{\theta\overline{u_{i}}}{\partial x_{a}}\frac{\partial\overline{u_{j}}}{\partial x_{a}}$ . (37)

Since (12) and (15) give

$Q_{ia} \frac{\partial\overline{u_{a}}}{\partial x_{b}}Qbj\epsilon iajT=\frac{\partial\overline{u_{i}^{*}}}{\partial x_{j}^{*}}+\Omega_{a}*$, (38)

we find that the Clark model (the right-hand side of (37)) has the same transformation property
$\mathrm{a}\llcorner \mathrm{s}$ that of the sum of the Leonard and cross terms in (30), or

$Qia^{\frac{1}{2\overline{\alpha}}} \frac{\partial\overline{u_{a}}}{\partial x_{c}}\frac{\partial\overline{u_{b}}}{\partial x_{c}}Qb\tau\frac{1}{2\overline{\alpha}}j\frac{\partial\overline{u_{i}^{*}}}{\partial x_{a}^{*}}\frac{\partial\overline{u_{j}^{*}}}{\partial x_{a}^{*}}+Z^{*}j=i$ . (39)

As a result of (30) and (39), Clark model (37) is form invariant under arbitrary time-dependent

rotations of the reference frame, as well as under the extended Galilean group transformation.5)

$\mathrm{s}_{\mathrm{P}^{\mathrm{e}}}\mathrm{z}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{e}13)$ pointed out that the divergence of (37) is form invariant, but in the present paper, we
find that the Clark model itself is form invariant. We are the first to point out that the Clark

model is form invariant and consistent with the AMFI.

Here, we should be watchful of the terminology: ”frame indifference” and ”form invariance” are

different concepts. ”Frame indifference” is a property of a quantity such as the tensor $f_{ij}$ , for

example, which is related to the transformed quantity $f_{ij}^{*}$ by $Q_{ia}f_{ab}Q_{b}^{\tau}j=f_{ij}^{*}$ , whereas the ”form

invariance” is a property of an equation whose expression in a rotating frame has the same form

as in an inertial frame, such as the (Galilean) principle of relativity. Even if $f_{ij}=g_{ij}$ holds for

the frame-indifferent tensor $f_{ij}$ , the tensor $g_{ij}$ is not always frame indifferent, since the concept of
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$\mathrm{f}\mathrm{i}:\mathrm{a}\mathrm{m}\mathrm{e}$ indifference is not in the relation between $f_{ij}^{*}$ and $g_{ij}^{*}$ , but in that between $\mathit{9}ij$ and $g_{\dot{\iota}j}^{*}$ . If
$g_{ij}^{*}$ is frame indifferent, then the equation is form invariant, and if not, it is form variant for the
frame-indifferent tensor $f_{ij}$ .

The form invariance of the Clark model can be understood by noting that $Z_{ij}^{*}$ in (34) is $O(\overline{\Delta}^{2})$ ,
and that the Clark model is the leading-order $(O(\overline{\Delta}^{2}))$ approximation for $L_{ij}+C_{ij}$ of the same
order, which is derived from a Taylor expansion of the velocity with respect to the centerpoint of
the filtering domain.8) In this sense, the Clark model can be interpreted as the model for the sum
of the modified Leonard and the modified cross terms, because the order of the last term $\overline{u’}_{i}\overline{u’}j$

on the right-hand side of (11) is estimated to be $o(\overline{\Delta}^{4})$ according to this Taylor expansion. The
compatibility with the AMFI and the Galilean invariance suggests that it is easier to model the
sum of the Leonard term $L_{ij}$ and cross term $C_{1j}$ than to only model the latter while having the

former directly calculated.

Because the Clark model relates to the sum of the (modified) Leonard and (modified) cross terms,

the linear combinations with a compatible model for the (modified) SGS Reynolds stress forms a
family of consistent SGS modek for the total SGS stress tensor $\tau_{ij}$ .

The classical model for $R_{ij}^{M}$ is the $\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{y}-_{\mathrm{V}\mathrm{i}\mathrm{c}\mathrm{o}}\mathrm{S}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y}-\mathrm{t}\mathrm{y}\mathrm{P}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1^{3}.’ 19$
) It is given by

$(R_{ij}^{M})_{\Sigma} \equiv R_{ija}^{M}-\frac{1}{3}R_{a}M\delta_{ij}\simeq-2(c_{s^{\overline{\Delta}}})^{2}|\overline{S}|\overline{S}_{i}j$, (40)

where $\overline{S}ij$ and $|\overline{S}|$ are the GS rate of strain tensor and its magnitude, defined as

$\overline{S}_{ij}=\frac{1}{2}(\frac{\partial\overline{u}_{i}}{\partial x_{j}}+\frac{i^{\ulcorner}u_{j}}{\partial x_{i}}),$
$|\overline{S}|=\sqrt{2\overline{S}_{ab}\overline{s}_{a}b}$ , (41)

and $C_{S}$ is the model parameter. Hereafter, the term $(f_{ij})\Sigma$ denotes the traceless tensor $f_{ij}$ –

1/3$f_{aa}\delta_{ij}$ . This eddy-viscosity-type model is compatible with the AMFI since the GS rate of strain

tensor $S_{ij}$ is frame indifferent. Both the $\mathrm{B}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}7$ ) and the filtered $\mathrm{B}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}20$) modek are ako

compatible. We note that the SGS algebraic model $(\mathrm{S}\mathrm{G}\mathrm{S}\mathrm{A}\mathrm{s}\mathrm{M})^{21})$ is another compatible model for
$R_{ij}^{M}$ , whose contribution systematically disappears as $\Omega^{*}arrow\infty$ .

In the framework of a dynamic SGS model,4) we can ako easily make SGS models consistent in

the same way. For example, Clark model (37) with the dynamic Smagorinsky model is the simplest

choice. It can reproduce a weakly compressible temporal mixing layer better than the dynamic

Smagorinsky model; this was found by Vreman et $al^{22)}$. However, we should note that the property

of the Clark model is not necessary but enough to be consistent with the AMFI that requires the

independence of the model expression from $\Omega^{*}$ in the asymptotic limit of $\Omega^{*}arrow\infty$ ; the Clark model

has no explicit dependence on any finite $\Omega^{*}$ . Therefore, it may be better, for universal applicability

of the model, to allow one more degree of freedom by introducing a modeling parameter as the

coefficient of the right-hand side of (37), taking advantage of its dynamic procedure to automatically

tune the modeling parameters.
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Finally, we propose a consistent dynamic SGS model for the sum of the modified Leonard and

modified cross terms as
$(L_{ij}^{M}+c_{*j}^{M}.)_{\Sigma} \simeq CLc^{\frac{1}{2\overline{\alpha}}}(\frac{\partial\overline{u_{i}}}{\partial x_{a}}\frac{Tu_{\overline{\mathrm{j}}}}{\partial x_{a}})_{\Sigma}$, (42)

where $C_{LC}$ is a dynamicaly determined model parameter. The counterpart of this model in a
rotating frame is derived from (28) and (39) as

$(L_{ijj}^{M*}+Ci)M*L \Sigma\simeq Cc\frac{1}{2\overline{\alpha}}(\frac{\partial\overline{u_{i}^{*}}}{\partial x_{a}^{*}}\frac{\partial\overline{u_{j}^{*}}}{\partial x_{a}^{*}})_{\Sigma}+(CLc-1)(z_{i}*)_{\Sigma}j$. (43)

In order to be compatible with the constraint of AMFI, the last term on the right-hand side of (43)

should be asymptoticaly independent of $\Omega^{*}$ in the limit of infinite $\Omega^{*}$ , since the term $Z_{ij}^{*}$ explicitly

involves $\Omega^{*}.\cdot$ . This is guaranteed by $\mathrm{L}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{y}’ \mathrm{s}^{23}$
) least squares method in the dynamic procedure for

optimizing the parameters, on the condition that we linearly combine (42) to model $\tau_{ij}$ with a form

invariant model for $R_{ij}^{M}$ , such as the dynamic Smagorinsky model,4) the dynamic (filtered) Bardina
model,7,20) or their linear combination. Thus, we can construct a family of dynamic SGS modek

which are consistent with the AMFI.

For example, let us formulate a two-parameter dynamic SGS model by combining (42) with the

dynamic Smagorinsky $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1^{4)}$ as the least complex model. It is given in a rotating frame with one
more parameter, $C_{R}$ , by

$( \tau_{ij}^{*})\Sigma L\simeq cC^{\frac{1}{2\overline{\alpha}}}(\frac{\partial\overline{u_{i}^{*}}}{\partial x_{a}^{*}}\frac{\partial\overline{u_{j}^{*}}}{\partial x_{a}^{*}})_{\Sigma}-2CR\overline{\Delta}^{2}|\overline{s*}|\overline{S^{*}}|.j+(c_{L}c-1)(Z_{i^{*}})_{\Sigma}j$ . (44)

In an inertial frame, the last term on the right-hand side of (44) disappears for $\Omega^{*}=0$ . If we apply
$\mathrm{L}\mathrm{i}\mathrm{l}\mathrm{y}’ \mathrm{s}^{23)}$ least squares method to (44), we obtain the formula for $C_{LC}$ and $C_{R}$ ,

$= \frac{1}{D}$ , (45)

where
$D=<\mathrm{M}^{2}>_{tt}<\mathrm{N}^{2}>_{tt}-<\mathrm{M}\mathrm{N}>_{tr}^{2}$ . (46)

In the above, $\mathrm{M},$ $\mathrm{N}$, and $\mathrm{K}$ denote the matrices $M_{ij},$ $N_{*j}$ , and $K_{ij}$ , respectively, and $<$ A $>_{tr}$

indicates the average of the trace of matrix A in the homogeneous domain. If we denote the test-

ffitexed component as $\tilde{f}$, the double-filter width as $\tilde{\overline{\Delta}}$, and the corresponding coefficient in (25) as
$\simeq\alpha$, they are defined by

$M_{ij}=2\overline{\Delta}^{2}|\overline{\overline{S^{*}}|\overline{s}}*.-2|j\overline{\Delta}|\sim 2\overline{S^{*}}--|\overline{S^{*}}ij$, (47)

$N_{ij}= \frac{1}{2\overline{\alpha}}(\frac{\partial\overline{u_{i}^{*}}}{\partial x_{a}^{*}}\frac{\overline{\partial}\overline{u_{j}^{*}}}{\partial x_{a}^{*}})_{\Sigma}-\frac{1}{2\alpha\simeq}(\frac{\partial\overline{\overline{u_{i}^{*}}}}{\partial x_{a}^{*}}\frac{\partial\overline{\overline{u_{j}^{*}}}}{\partial x_{a}^{*}})_{\Sigma}+(1-\overline{\frac{\alpha}{\simeq\alpha}})(\overline{Z_{ij}^{*}})_{\Sigma}$, (48)

$K_{ij}=\overline{u_{i}u_{j}^{*}}-*u_{i}u_{j}---*-\overline{*}(1-\overline{\frac{\alpha}{\simeq}})\alpha(\overline{Z_{ij}^{*}})_{\Sigma}$ . (49)
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Expressions (34), (48), and (49) show that $N_{ij}arrow(1-\overline{\alpha}/\tilde{\overline{\alpha}})(\overline{z^{*}})ij\Sigma$ , and $K_{ij}arrow-(1-\overline{\alpha}/\alpha\simeq)(\overline{Z_{i^{*}}})j\Sigma$ ,
as $\Omega^{*}$ tends to infinity. Therefore, formula (45) leads to $C_{LC}arrow 1$ and $C_{R}arrow 0$ as $\Omega^{*}arrow\infty$ .
As a result, in the limit of $\Omega^{*}arrow\infty$ , the dependence on $\Omega^{*}$ of model equation (44) for $(\tau_{ij}^{*})_{\Sigma}$

asymptotically disappears, which is consistent with the AMFI. Ako, the model expression for $R_{ij}^{M}$

is consistent with the two-dimensional turbulence.

\S 5. Comparison between SGS models in the large-eddy simulations of rotating ho-
mogeneous turbulences

In this section, we compare the performances of dynamic SGS models in the large-eddy simulation
of rotating homogeneous turbulences. The three modek are investigated: the dynamic Smagorinsky
model (DSMG), the Clark model (37) with the dynamic Smagorinsky model (DCL), and the two-
parameter dynamic model (44) (DTP). As shown in the previous section, both the DCL and the
DTP are consistent with the constraint of AMFI, but the DSMG is not. Here, we note that the
model expression of the DSMG in a rotating system is given by

$(\tau_{ij}^{*})_{\Sigma}\simeq-2c_{R}\overline{\Delta}|\overline{S*}2|\overline{S^{*}}ij-(Z_{ij)_{\Sigma}}^{*}$ . (50)

The numerical scheme is basically based on the spectral scheme though the second-order finite
difference scheme is used the model part. All the LES calculations are done with $21^{3}$ Fourier modes.
The time is advanced by the fourth-order Runge-Kutta method. The initial data at $t=1.10$ is
obtained by filtering the DNS data in an inertial frame, which is in a fully-developed turbulent
state with the Reynolds number based on the Taylor microscale 43.2. The rotation is abruptly
applied to this initial state with the rotation number $R_{o}=k\Omega/\epsilon=34.0$ at $t=1.10$, where $k$ and $\epsilon$

are the turbulent energy and its dissipation rate, respectively.

Fig. 1 shows the decays of GS turbulent energy in three models. The solid line is the result
of the DSMG, and the broken line is the result of the DCL and DTP. (The DCL and the DTP

shows the almost same results, whose difference is not resolved in the scale shown.) It is found
that the DSMG shows the unphysical oscillation of GS turbulent energy while both the DCL and

the DTP show monotonous decay. This is the fatal defect of the DSMG that is not consistent with
the constraint of AMFI.

\S 6. Conclusions

By the constraint of AMFI, we find that none of the (modified) Leonard terms, the (modified)

cross terms, or their sums can be neglected in principle in the SGS modeling of incompressible

turbulent flows and that the model of Clarket. $al^{11)}$ is consistent with this constraint. Furthermore,

a family of dynamic SGS modek consistent with this constraint is found, and specificaly, a two-
parameter dynamic SGS model is proposed as the most desirable member, whose expression for the
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Fig. 1. The decay of GS turbulent energy at $\Omega=50$:–, DSMG; $——$ , DCL&DTP.

SGS Reynolds stress asymptotically disappears in the limit of two-dimensional turbulence. Their

superiority over the dynamic Smagorinsky model4) is demonstrated in the large eddy simulations

of rotating homogeneous turbulences: the dynamic Smagorinsky model shows unphysical decay of

the GS turbulent energy under an abrupt rotation, while the consistent modek show a natural

monotonous decay.
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