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INFORMATION THEORETICAL BASIS OF RANDOM
MATRIX DISTRIBUTIONS

Hiroshi Hasegawa
Atomic Energy Research Institute, Nihon University, Kanda Surugadai, Tokyo 101-0062
Japan

Abstract. A general expression of N joint level distribution used in random
matrix theory,

B=1,2and 4,

P(z1,29,..,2n5) = Cy gexp [ (Z¢ — T) Z‘“%))

i<k

is examined along Balian’s axiomatic strategy, namely, (A) P({z;}) H 1 dz; = tnvariant
under a specified class of unitary transformations on the basis of metric on matrix spaces,
and (B) P({z;}) satisfies a maximum entropy principle under two sorts of constraint,
i.e. a geometric constraint and a level-density constraint. An analogy to constructing
~ a canonical equilibrium state is employed for the so-called Hamiltonian level-dynamical
system. In this way, it is shown that the most general joint distribution must be of the
above form with a possible pair-potential function ¢ in a 2-dimensional space:

1 2 4
o(r) = ZLlog (1 + 2 (;—1) cos20 + (;) ) , parametrized by a > 0 and ¢; 0 < 6 < /2.

It excludes the possibility of many body interaction higher than the pair. A physical sig-
nificance of this description is discussed with an application to metal-insulator transition
in mind.

PACS numbers: 02.50.-r, 03.40.-t, 0365.-w, 05.20. -y, 05.90.4m, 71.30.+h
Key words: Riemannian metric on matrices, maximum entropy principle, palr-potentlal
metal-insulator transition.

1. Introduction

The standard form of N joint level distribution for the so-called Gaussian matrix ensem-
bles[1]( 8=1 for GOE, 2 for GUE, and 4 for GSE) is expressed as follows:

Pg(H)dH = Ce 2 ™H Hdﬁé”) a = (m <n)and v < f(to specify § fold degeneracy).
(1.1)



The quantum level statistics that uses distribution (1.1) will be called Wigner-Dyson
statistics, and it is characterized by the short range repulsion in the pair-potential

dwp(r) = —logr  (e7P*") =rP). (1.2)

A simple logic to deduce (1.1) and (1.2) is provided by a maximum entropy principle
stated as follows. Let any N x N hermitian matrix be expressed as a linear combination
of matrix units (emn) H = X n Hunemn S0 that a distribution P over N x N hermitians
may be specified by P({Hmns}). Then,

among all possible distributions P({Hnn}) possessing 1st and 2nd moments(this set of P
being denoted by £ ), distribution P (1.1) is the unique one that satisfies

A. unitary invariance P({({U*HU)mn}) = P({Hms})(U € invariant unitarygroup Gp).

B. mazimum entropy principle maxpeg h(P) = h(Pg)
under constraint

(Hpmn)p =0 <H12m>P = 2<len|2>P =0’, (1.3a)
(HmnHm)p =0 (mn) # (rs), (1.3b)

where ( * )p denotes an average over distribution P, and ‘ |
W(P) = [ ~P({Hun})ogP({Hpn}) [l dHrn(= (-log P)p)  (14)

( entropy functional of P).

Once distribution (1.1) is so constructed, the repulsion (1.2) can be seen to arise from a
change of variables (Hyn) — (z;) (N eigenvalues of H) and the other cyclic variables not
entering the Gaussian exponent of (1.1) so that

I dHmn o< ] |z — zil® (1.5)
m<n i<k
It is remarkable that the special constraint (1.3b) expresses statistical independence be-
tween any different matrix units, implying that a correlation between different eigenvalues
arises totally from the repulsion facter (1.5), i.e. from a purely geometrical origin.

Balian’s paper in 1968[2], aiming to extract the above geometrical aspect of random
matrices, proposed summarizing postulates (A) and (B) as two guiding prescriptions for
construction of a more general form of distributions:

(A) ds* = Tr(dMdM*) (metric between two matrices M and M +dM) that ensures the
unitary invariance
(B) for a hermitian M = H, I{P[H]} = [d[H]P[H]logP[H](= —h(P)), and
minpee I{P[H]} under constraint (f;)p = [d[H|P[H]f.[H]=C,
(typically, fo[H]= Tré(z — H) for agiven level density C; = p(z))
to get P, so that minpeg [{P[H|} = I{P,[H]}.
In the present paper, we aim to find out a most general form of P, by performing
the above program, in particular, by specifying more detailed conditions on the Rieman-

nian geometry of matrix spaces, following the recent work by Petz[3], to clarify the actual
context of (A).

69



70

2. Possible Riemannian Metrics and Gaussian Distributions
on Random Matrix Spaces

2.1. Unitary Covariant Bilinear Form

We introduce a Riemannian metric into the space of matrices according to Balian’s pos-
tulate (A) concerning the distance between two infinitesimally separated matrices. A
Riemannian metric tensor (g,,) can then be defined as the coefficient tensor of the dis-
tance ds? with respect to a quadratic form of an infinitesimal parameter set, or of a
velocity vector called tangent vector. Let us denote, following Petz[3], the space of N x N
complex matrices by My on which a sesqui-linear form K (B, A)(linear with respect to A
and anti-linear to B; A, B € My) is defined. The Hilbert-Schmidt inner product defined
by Kg-s(B,A) = TrB*A gives a simple example that satisfies the unitary invariance,

namely ‘
K(U*BU,U*AU) = K(B, A). (2.1)

Here, we seek a more general class of sesqui-linear form K, not satisfying the unitary
invariance, but still yields a useful tool for our purpose: we need a Gaussian distribution
on My whose quadratic variables in the exponential play a role of heat reservoir(called a
reservoir variable) against the system we are interested in(called an object variable), and
after disposing the reservoir variables by integrating them out the result may recover the
desired strict invariance(for a detail, see [4]). We shall show that such a situation may
arise for a class of those K's which depend on another hermitian matrix H representing
the system of interest, and which satisfy the property of unitary covariance (the unitary
invariance of A, B, andH all together). It is desirable to classify such inner products under
a system of axioms. Denoting the set of all hermitian matrices in My by M3, we list
up the properties of the expected K-form as follows.

(a)symmetry Ky(A*, B*) = Kg(B,A4); He€ M}y, A,Be My. When A and B
are restricted to hermitians, the form K becomes real and symmetric, and hence it
is a bilinear form. !

(b)positive definiteness Ky(A,4) >0, and the equality holds only when A = 0.
(c)continuity of the map H — Ky : the continuity holds for every A in Ky (4, A).

(d)unitary covariance Ky.yy(U*BU,U*AU) = Kg(B, A): this relaxes the condition
of unitary invariance in the strict sense to the same condition but with an inclusion
of the subsideary matrix H, and hence the bilinear form Ky belongs to much wider
class than the Hilbert-Schmidt inner product.

This last condition (d') is essential in the present context, and actually is weaker than
the condition (d) below of monotonicity which Petz proposed, setting it up for a density
matrix D that is more restricted than just a hermitian H. (A density matrix D in My
is a special hermitian matrix, positive and TrD = 1.)

(d)monotonicity Krpy(T(A4),T(A4)) < Kp(A, A), where T, a super-operator(a linear
map) M, > M,,, in which a positive matrix is mapped to a positive matrix(called
stochastic map).

1 The K-form with this symmetry is equivalent to Petz’s K': K'(4, B) = 1(K(4, B) + K(B*, 4*)) [3].



An intuitive understanding of the monotonicity of T is that by any coarse-graining
of the pertaining matrices in Kp, i.e. both A and D, the metric represented by Kp must
be a non-increasing quantity. When 7 is a unitary map, the above monotonicity inequal-
ity becomes the equality, because now T' can be an invertible super-operator from My
onto itself. Therefore, condition (d) includes (d')( (d) is more stringent than (d'): if (d) is
valid for a form K, (d') is also valid for the same form, but the converse is not necessarily
true).

Condition (d’) enables one to take the representation of the pertinent matrices
where H is diagonal, and to exhibit the form of K in terms of the matrix elements Aj
with H = diag()\l, )\2, ey )‘N)

KH(A,A) = Z C(/\j, /\k)lAjk|2 Ae M?V (22)
J<k
Petz[3] showed that, under more stringent condition (d) than (d') on Kp(4, A) with D
diagonalized, the real function c(\, 1) above satisfies that

C(/\, :u’) = C(U, )‘)7 C(/\a /\) = 1/)‘a C(t/\a t/,l,) = t_lc()‘a /J')' ’ (23)

Thus, only a single, continuous function ¢(z) is enough to represent a monotone metric
on a matrix space, as far as the dimensionality is finite, which is related to an operator-
monotone function [3] to characterize a quantum mechanical Fisher metric[5]. We will
seek the same kind of representation of Ky(A, A) under condition (d'). For this purpose,
let us adopt another condition (d"):

(d")translational invariance with respect to H  Kpy.r(B, A) = Ky (B, A).

It is straightforward to show that, under conditions (d') and (d") with H = diag(A1, .., An)
of Ky(A, A) in (2.2), the real function c(A, ) satisfies that

e =cA—pu)>0 A#p and c(A A) = (independent of\) > 0. (2.4)

We have just obtained a Riemannian metric form g,,v*v” with metric tensor g,
and a tangent vector v* on a matrix space My under conditions (a) ~ (d') and (d"),
where the quadratic quantity |A;|* indexed by IN(N + 1) pairs (4, k)(= p) represents
the square of a tangent vector component.

Remarkl. The above formulation of the metric form with complex tangent vector
applies directly to the unitary ensemble(U E) with 2 degrees of freedom for each pair (j, k).
It also applies to the orthogonal ensemble(OFE) by restricting each vector to a real quantity
with 1 degree of freedom for each pair, and to the symplectic ensemble(SFE) by restricting
each vector to a quaternion real ? with 4 degrees of freedom for each pair. It is also
remarked that the metric tensor g,, here is a diagonal tensor that stems from our choice
of H-diagonalized representation under the unitary covariance.

71

2 An{N x N) quaternion-real matrix @ is defined by the one whose every matrix element is of the form
g = qo +qr with 3-component quaternion 7 and real coefficients ¢;;¢ = 0,1,2,3 so that it satisfies the
time-reversal symmetry for a symplectic system conditioned by Q% = Q' [6] (cf.[1]).



72

2.2. - Complexitized Riemannian Metrics

Here, we discuss a generalization of the above formulation of the real metric by means of
complexitizing the c-function: this is because, if we ask ourselves whether the expression
(2.2) yields the most general form of physically meaningful, unitary covariant metrics, the
answer must be no, since the restriction to a hermitian tangent vector A € M3, enforces
the c-function to be real by virtue of symmetry (a).

If we allow a general vector A € My under conditions (a) ~ (d') and (d") for
K#(A, A), expression (2.2) should read, with a generally complex function c(\ — p),

Ku(A, A) = 3 (e(h; = M) AR + (N — M) ApAly) (2.2))

i<k
(AT and A' denote the transpose and the hermitian conjugate of A, respectively)

and the positive-definiteness condition (b) requires
Re ¢(A — ) > 0. (2.4")

The argument applies in its form to U E, also to SE by pairing two components of the four
arising from a product of the two quaternions in a given site (j, k) where the reality of the
components is removed, leading us to 2-sets of independent expressions of the form(2.2').
For OF, we do not use (2.2') directly, but discard one of the two terms there, and by
rewriting ¢(-) = |c(-)|e*¥, we absorb the factor ¢ into the tangent vector component,
which replaces the c-function by its absolute magnitude.

2.3. Maximizing the Entropy for a Gaussian Distribution under Geometric
Constraint

A Gaussian distribution in probability theory has a power of information property that the
covariance of its variables prescribed tells us that the muximmum of entropies of all prob-
ability distributions with a fixed covariance is attaind by that Gaussian distribution|[7].
Thus, we may regard a given covariance tensor as the constraint for the maximization
problem associated to a (multi-dimensional) Gaussian distribution Pg, and call this a
geometric constraint for the present problem.

We aim at a Gaussian-reservoir distribution on the matrix space My by means
of the so obtained metric with a d(= 1N(N + 1))-dimensional complex tangent vector
typically for UE. We adopt a new notation Y for a reservoir(r-) variable in a Gaussian
exponent, and z; for an object(o-) variable that replaces \;, an eigenvalue of H, and that
only enters the metric tensor of the Gaussian exponent. We identify the r-variables (Y;)
to be a cotangent vector rather than the tangent, as defined by

Yik =clzj —zp)Ajn j#k Y;;=0 (c(0) =0 assumed). (2.5)
Then,
1
Kp(AY), A(Y) =S ——— [V 5, - 2.6
(AW AD) = 5 s (2.6
or, more generally,
‘ 1 1 -
Ku(A(Y),A(Y)) = S, 7% ¢ N np— v % 2.6'
WA AV = 3 (Gt s th) . )



which is put in an exponential for a Gaussian distribution to write

1 1 o
Pg(z,Y) = —Zexp[m?—KH(A(Y),A(Y))] z=/, e Ku(AX) A/ 2gy, (2.7)

yielding, in general,
mean(Y) =0, Cov(Y,Y) = diag(..,c(z; — zx), c(z; — zx), ..) (2.8)
ie. (YixYin) = c(z; — k), ande(z; —zx) for (j, k) = (m,n); =0for(j,k) # (m,n).

Then, on the basis of the maximum entropy principle under constraint (2.8), the resulting
Gaussian distribution (2.7) expresses the following properties.

(i) statistical independence of different matrix units
‘fOI'(j, k) # (m7 TL), P()Ij,k) Ym,n) = P(}/J k) : P(Ym,n) (29)

(i1) identical distribution for all the matrix units with off-diagonal type

Cov(Y;,Yjx) dependson the pair (4, k) only through z; — z in a common function c(.).
(2.10)

2.4. Reduced Probability Distribution

Consequently, the normalization integral Z in (2.7) is simply the product of all the vari-
ances c(z; — zx), and we can get the reduced probability distribution for the object
eigenvalue system in a form

P(CEl,CEQ, ..,iEN) = CN H |c(33j e l’k)|ﬂ/2, (211)
i<k
where, ‘ ,
Cy = [/ I le(z; — z6)|P2dzy..dz,) B8=1,2 and 4, (2.12)
JD

the integer 3 being the multiplicity of the components of each cotangent vector Yjr(j # k)
i.e. B=1for OF, B=2for UF, and 8 = 4 for SE. Also, by regarding this index § as
a continuous parameter of inverse temperature, and apart from the pure numerical factor
log(2me)?/? to change merely the normalization factor, we can write the distribution of
N joint eigenvalue distribution in terms of the sum of pair potentials as follows.

P(z1,T2,..,28) = Cng [] exp [—ﬂ (Z P(x; — xk))} , o (213)

j<k j<k
where

é(r) = %log|c(r)} = %Re loge(r) if c(r) ‘is complex. (2.14)

This shows that level interactions are limited to a sum of pair potentials under our axioms
(a),(b),(c),(d") and (d”). At present, we assume an analogy to hold to statistical mechanics
of gases, postponing a detailed specification of the potential function ¢(r) to Sec.3.
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2.5. Maximizing the Entropy for the Eigenvalue Distribution under Level-
Density Constraint

An important application which Balian clarified to establish in the 1968 paper[2] was to
find a scheme of obtaining a matrix eigenvalue distribution so as to satisfy an agreement of
the single-level density deduced from it with a given, or observed level density by means of
maximizing entropy, where the identification between the deduced and observed densities
is expressed as a constraint. His treatment, which was specialized to the standard form
of the- geometric factor (1.5) of Wigner-Dyson, is entirely applicable to the foregoing
geometry of more general type, which is presented here.

A prototype scheme of maximum entropy principle in classical statistics[5] is sum-
marized: Let Cy,Co,..,Cn be a set of observables of our object system (C; = Ci({¢}); a
function of o-variables), and a (repeated) measurement of them ts supposed to show, with
a probability measure p multiplied by a hypothetized distribution P, [ Pdu =1,

(C,')p =1 1= 1,2,..,7?,. (215)

A mazimizing the entropy (—logP)p of the distribution P under constraint(2.15) yields
the most unbiased distribution called exponential family given by

P =explt:Ci - ({6:})]  »({8:}) = log/eXD[Gi@]du (2.16)

in terms of the Lagrange multiplier 6;s.

There exists one-to-one correspondence between parameter set {7;} and {6;}, and
under the satisfaction of so-called potential condition g—%L = gf, , a covariance to express
fluctuations of the measurement(2.15) is expressed as

om (. OV
89, \ 90,00;

((Ci = (Ci)p)(C; = (Cj)p))p = (2.17)

that is called Fisher metric associated to the measurement whose outcome is (2.15). This
is shown to yield the minimum of all covariances for any observables {C;} satisfying
(C;)p = m; (the so called Cramér-Rao bound|[5]).

The above stated scheme is now applied to the eigenvalue distribution presented
n (2.13) by associating the set of observables {C;} to the level-density observable p(z):

=20z — ) = Trd(z — H), (2.18)

where the free continuous parameter x plays the role of index 7 in(2.15) that is assumed
to be discrete there. The corresponding Lagrange multiplier is denoted by V(z) so that
the exponential family may be written as

exp[—p /V z)dz + (V)] = exp [-0 (TrV(H) — (V)] (satisfying invariance)

which is multiplied by (2.13) as the coefficient of the starting measure p to get

(2.19)

P(o1,. ) = cwexp{ (z¢ —xk>+z:v<mj>)

i<k



A usefulness of the argument is that it provides a concise basis, from a viewpoint
of statistics (parameter estimation theory), of functional derivative method developed
by Beenakker[8] and used frequently for discussions of 2-point correlation functions for
nuclei, mesoscopic systems and quntum transport, quantum chaos and so on[9]. Namely,
the Fisher metric (2.17), when applied to the level-density function p(z) (2.18), represents
just the 2-point density correlation function in random matrix theories so that expression
(2.17) offers Beenakker’s basic functional derivative

5(p(x)) (: 6<p<x’>>) _
3V (') 5V (z)

B ({p(z)p(z")) — (p(z))(p(z))) - (2.20)

We shall come back to an issue about 2-point correlation functions in Section 4, after
establishing the precise form of the pair potetial in (2.19).

3. Canonical Equilibrium States of Hamiltonian Level Dynam-
ical Systems

In a previous paper[10], we have treated two types of Hamiltonian level dynamics, gen-
eralized Calogero-Moser and generalized Calogero-Sutherland systems. Here, we only use
the former system whose Hamiltonian is given by

1 Z Hf.?lc“2 (3_1)

2 % (z; — zx)?

QCM Z ]

in terms of N-canonical conjugate variables (z;,p;)Y; and df(d = N(N —1)/2,8 =
1, 2and4) multi-dimensional angular-momentum variables (f;<x): these satisfy the follow-
ing three sets of Poisson bracket relations. Namely,

{ﬁj,Pk} = Ojk; {wj,ﬂﬂk} = {Pj,Pk} =0, (3.20,)
{ ch ’ (V) Zcpku,rsu (/\)’ | (3'2b)
pgc ‘

(¢’s represent  structure constants of the underlying Lie algebra) 3

and
{2, frs} = {pj, frs} =0 (separation of o and r variables). (3.2¢)

Superscript 4, v, A. denotes the 2-components of a complex number i.e. real and imaginary
part for UE and the 4-components of a quaternion for SE, respectlvely, and

1 Fill? = Zl 1P | (3.2d)

These angular momentum variables, present in the Hamiltonian (3.1), are essential
ingredient playing the role of the Gaussian-reservoir variables in Sec.2. It is well known in
mechanics that an angular moentum vector arises as the conjugate variable to an angular
velocity vector, and that is a cotangent vector versus the latter tangent vector as regards

3 For OF where the (-fine structure is absent, the relation is given explicitly by {fjk, frs} =
(1/2)(8js fric + Ojr frs + Oksfir + 8krfs;). The relations for UE and SE are discussed in [11].
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the pertinent Riemannian metric form that corresponds to (2.6), or more generally to
(2.6').

We have used in [10] a canonical equilibrium distribution of the g-CM system with
Hamiltonian (3.1) to write a Gaussian distribution of the form

« 1 |
Pg = Z—QXP[ BHeem — 79l (3.3)
N,B
where
Q= 3 > IIfikl>  square of angular momentum vector, (3.4)
<k

and @ and +y are real constants(§ here is different from the one usd for the 3-symmetry
class). Then, the form in the exponential, BHgem +7Q, provides a typical metric form
(2.6) in terms of the two cotangent vectors, (p;) and (f;z) with a real c-function. We may
remark that the choice of the linear combination of Hycp and Q is necessitated because
these provide the only two constants of motion of the gCM system written in the metric
form of the angular momentum vector[12]. However, the choice of two coefficients, # and
v to be real and positive, appears to be too restrictive: more precisely, a real, pos1t1ve B
is necessitated for the reason of the variance relation

<p?>PG = 18—1’ ‘ (3.5)

but another positivity of the variance relation involving v must be different from the

positivity of v. Hence, let us allow the constant 7 a generally complex number to write a

possible variance function ¢(r) to be put in (2.8). This can be written in accordance with
Sec.2.2 as

c(r) =1+ =)™ al="r, Rec(r) > 0 ensured byg > 0. (3.6)

jo)

(]

>
= |

(A non-zero complex constant is absorbed to the normalization factor, Zng ).

Writing v = |7y|e®??, we are now led to the most general form of the potential function in

(2.13), ¢(r)(= ¢(r;a,8)) = tlog|c(r)| parametrized by a and 6:
2 8\
o(r) = —log (1 +2 ( ) cos26 + (%) ) d=a"®a>0 and0<0<7n/2. (3.7)

The specification of the pair potential (3.7) in the Gibbs type distribution (2.18)
now provides us with a concrete framework of equilibrium statistical mechanics to treat
quantum level statistics. Here, we show some feature of the potential function ¢(r).

(1)short- and long range properties. For 0 < r < a, the inverse quartic term in
logarithm dominates to yield ¢(r) — éwp(r) = —logr-+const.(1.2) irrespective of
8, whereas for r — oo, ¢(r) — 55a’cos20, the universal inverse square decay, but
from positive or negative side depending on 6.

(2)long-range attractiveness for 7/4 < § < w/2. Under this circumstace, the poten-
tial function ¢(r) has a unique minimum in a positive finite range of r at r, =
a/v/—cos26, and the attractive range is specified by

Tm < T < 00. (3.8)

V2



(3)Fourier transform of ¢(r)(seeAppendix).— regularity and stability of ¢(r).

o _ _ __ p—alk|cosf krsind
Fo(k) E/ P(r)e* dr exists = ml=e cos(krsind)) >0 —oco<k<oo.

|k|
(3.9)

This together with propertyl shows that ;|1 — e (" |dr < co (regularity), and that
Yk ®(@; —xx) 2 —nB, B > 0 for any n variables z, .., z, (stability)[13].(The positivity
of Fy ensures that ¢(r) can be represented as a sum of a positive function and a function
of positive type— the Fourier transform of a bounded positive function, which admits
the latter inequality.) These two properties provide an analytic method of treating the
present level gas, in particular, the assurance of thermodynamic limit[13]. ‘

4. On 2-Point Correlation Functions for Level Statistics

The present work has been motivated by several recent papers [14],[15](and references
therein) which seem to converge to an idea that in a metallic state a pair of energy levels,
repelling to each other by Wigner-Dyson repulsion (1.2) when short-ranged, are in fact
subject to a long range attractive force that is evidenced by studies of a pertinent 2-point
density correlation function. As a last topic of the present paper, we argue this point
rather briefly leaving our detailed report elsewhere.

Let us denote the quantity (p(z)p(z')) — (p(z))(p(2)) in (2.20) by K(r), where the
function K is supposed to depend on the single variable r = z — z’. This supposition can
be regarded as legitimate, when the one level potential V' (z) in (2.19) is weak for a given
density p(z) so that Beenakker’s functional derivative is treated by perturbation:

1 [ |

p(z) = ~3 K(z,z")V(z')do, K(z,2') = K(z — 2') independent of V.  (4.1)
On the other hand, the relation between the one level potential V and the one level density
p via an integral kernel was an important subject in early random matrix theories: for
the case of Wigner-Dyson repulsion (1.2) it has been expressed as

V(z) = — / log|z — 2|p(z")dz’ + const. (D represents support of p) (4.2)
D

which can be verified in the limit N — oo (for the standard Gaussian statistics (1.1) with
the parabollic V(z) and the Wigner semicircle p(z), a discussion is given at length in
[1]). This led Beenakker to suppose that the validity of the relation (4.2) to hold for any
pair potential(¢(z —z') for our case), and to propose a universal relationship between the
kernel K'(z —2') and the inverse of the potential kernal so that [9]

1 inv __ 1
B¢ (T)a or, fK(k) - ,de,(ki)

Remark 2. There exists another definition of 2-point density correlation func-
tion (denoted by R(z — z')) used first by Dyson[l]: K(z — z’) to denote the variance
of p(z) in (2.20) includes the self correlation 6(z — 2’). Hence, both are related by
K(r) =6(r)+ R(r) =1 =46(r) =Y (r) (Y(r) is called the cluster function).

K(r) =

(4.3)

7
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However, an explicit investigation of the exact spectral form factor (Fourier transform
of the 2-point cluster function Y'(r)), first obtained by Gaudin for UFE in case of § = 0
(see [10]), indicates that Beenakker’s identity(4.3) is not generally valid, but limited to
a vicinity of the Wigner-Dyson form(2.1). In other words, within this limitation we may
have a good approximate formula for the 2-point correlation function by using (3.9).
Namely, for a > 1

‘ || .. v
faad k < 2 P k k )
7rh) pr(1 — e~aelkleosdcos (krsing) ) [kla < 2m; =0 |kla > 2n (4.4)

The usefulness of this formula in contrast to those presented in the literature ([14],[15])
should be emphasized from the standpoint of equilibrium statistical mechanics, which will
be demonstrated shortly.

Appendix. Fourier transform of the potential function ¢(r) (3.9)

oo 1 ; a2 20 ik 0 | ’ —|k|acosf ;
— + —e ¢ Wy — — — €OS¢ S 3 < —. )
/ Re[log(l 26 )]e d Il I (.l e COS(/CCLSIII@)) y 0 0 < (AJ.)

derivation We set & = ae~%, and show that

~2

I = L log(1 + &Q)eikrdr =L log(1 + 2 )cos(kf)dr . (1 ~Ikla A2
—'2/“‘50 sl 2 ”2/—00 & 2 k| e Ay

Then, the real part of [ yields the desired result (Al). The proof of (A2) is as follows.
By an integration by part, we can write

~2 eik:'r

b a
= (49)

which we can perform by means of a contour integration on the complex r(= z)-plane:

1 &2 eikz
I = — / ———dz I = 2nlp in the sense of pricipal value A4
“TomiJcat+ 2 k2 ( R pricip ) (44)
where the contour C' comprises a large and a small semicircle and two segments on the
real axis: Ic = Ip + Isemicircle + {Semicircle Whose radius of the Semicircle and the semicircle
are denoted by R and p, respectively. Since the only singularity of the complex analytic
function of the integrand in (A4) inside C is the simple pole at z = 1a,

, ; 1 e~ lkla
Ic = Res[z = ia)(Im[ia] > 0) = —-2—f-|7€—|—, and (A5)
C
1
;(3 IR = IC’ - Isemicircle - ISemicircle - IC + —Q—Res [2: = O], as
R V/ig\ R Igemicircle - 0) and IsemiC'u'cle - —ERGS[Z = O] = —L (A6)
S - 2 20k|’

when R — oo and p — 0, respectively. Multyplying (A5) and (A6) by a factor 2m and
~ adding them up, we get the desired result (A2) and so (A1) .
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Abstract

We study two-level correlation function Xj(r) a.nd spectral number vari-
ance $%(L) by means of Gaussiaﬁ. matriz ensemble with preferential basis

- (GMEPB) to see its effectiveness on level statistics involving metal-insulator
Lra‘nsil,iori. The generalized scheme oka‘z'MEPB admits an attractive as well

as a repulsive potential between distant pair of levels. The attractiveness

is responsible for an “ovcrslloot,”' of Xa(r) above unity and a non-monotone
increase of the $%(L) curve that conform to the prediction by another type
of corrclation function for matrix dynamics H = Hy + AH;. In contrast,
the equilibrium nature of GMEPB captures an intermediale comﬁressibiliiy
of the level gas, which ensures a static crossover between the metallic and the

insulating phases.
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In recent years, there have been considerable efforts in condensed matter physics and
random matrix theories (RMT) to formalize the metal-insulator transition phenomena as
regards the pertinent electron energy level statistics. These efforts seek a powerful and
unified method to generalize the standard Gaussian ensembles initiated by Wigner, Dyson
and Mehta (see a comprehensive review on the recent development [1] ). Indeed, literatures
tell us that a framework exists for computing the two-level correlation function, as a function

of r = x — 2/, of the level density p(z):

Xo(r) = ~6(r) + {p(@)p(&')), w

(1‘l—l—+r§:> Xa(r) = 1,and (p) = 1 assumed) (2)

which depends on an external parameter A such that X;(r;\) represents a correlation for a

pair of eigenvalues z and z’ of a perturbed N x N hermitian,
H = Hy + \H;. (3)

Here, Hy and H; are assumed to belong to Poisson and Gaussian (typically, unitary)
ensemble, respectively. One thus expects the resulting X3(r; A) to describe properly a tran-
sition from the uncorrelated eigenvalue sequence(A = 0) to that of the full correlation with
Wigner-Dyson repulsion (A = co) continuously. The study was initiated by Leyvraz and
Seligman [2] who treated expression (3) as a perturbation of the pure uncorrelated sequence
by the weak A part, and later developed by Guhr [3] for the whole range of this parameter
by means of supersymmetry. A characteristic feature of the X, function obtained was the so
called “overshoot” implymg that X,(r;A), normalized as unity at co as in (2), goes beyond
unity peaking in a finite range, the feature already noticed in the perturbation ﬁreatment
[2]. The latest two papers [4] and [5] have clarified more detailed aspect of this effect on
long-range level statistics manifest in the number variance curve Y2(L) (the variance of the

number of levels lying in an interval of length L, see [6] ) that

(A) this curve exhibits a change of its 2nd derivative from minus to plus at a point denoted

by ag, slightly smaller than A, that may be called the transition point, and
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(B) its asymptote for L — oco(i.e. ap < L) is a straight line but with coefficient unity

corresponding to the Poisson line having a large, positive intersection on the L-axis.

According to a statement by Kunz and Sha.pirfo [4], these two characteristics may be ex-
pressed as: (A) the inter-level interaction, when represented as a pair potential (denoted by
@(r) here), must be attractive around the overshooting point ag and ag < r — co, and (B)
the total area surrounded by the cluster function Y3(r)(= 1 — Xa(r)) [6] on abscissa vanishes
due to the precise cancellation of the positive (repulsive) and negative (attractive) parts of
the cluster function i.e. [%_ Ya(r)dr = 0, which also allows one to express it in terms of the

spectral form factor (the Fourier transform of the cluster function) that
B(0) =0, where B(i) = /Oo Ya (r)e® ™ dr, (4)

Another paper by Frahm et al [5], in agreement with [4] by their numerical computation of
¥2(L), argued that these features of the curve could be regarded as the characteristics of level
statistics in metallic states that undergoes a transition to insulating states accompanied by
localization (or, at least, ‘weak localization’), discussed first by Al’tshuler and Shklovskii {7
who expected and aimed to clarify an intermediate nature of the long-range level statistics [8].
Al'tshuler et al.’s studies were inherited by successors [9], and finally provided a conclusion
that in an intermediate situation between metallic and insulating states, called mobility
edge, the asymptote line of ©?(L) must be expressed as a straight line x L with coeficient x
generally 0 < x < 1 [10]. We shall call this an intermediate cémpressibility, because x can
be expressed, when the assembly of electron levels in a metal is treated as (1-dimensional)

gas as a statistical mechanical object, in a form of the density-pressure relation for the gas

[11]:

_L1(dp :
X_ﬁ<3p>ﬁ’ (5)

where [ is the number in RMT to specify the three symmetry classes. Although the above
two author’s view [4,5] on the long range attractiveness of the level gas (A) would be correct

and new, the feature (B) contradicts with the conclusion of intermediate compressibility,
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and we attribute it to the “dynamical” nature of their approach expressed in (3) (here, by
“dynamical” we mean that one pursues a statistical quantity as a function of “time” ).

In this Letter, we wish to present a counter description of the long range level statistics
based on an analog to equilibrium statistical mechanics that conforms to the static nature,

or better to say “isothermal” nature as implied in Eq.(5), of the subject matter.

We employ the concept of Gaussian matriz ensemble with preferential basis(GMEPB)
proposed by Pichard and Shapiro [12] for the above purpose. Let us consider an ensemble
of N x N hermitian matrices and take one of them H for representing every one in the H-
diagonal representation. We suppose all matrix elements of any (another) H to be Gaussian

distributed but its H-diagonal elements biasedly weighted such that
1 & 2 |
W({Hjx}) < exp —3 SOHE — (14w Y [Hal*|, (6)
J=1 i<k :

where pu is presently an arbitrary real positive parameter. Upon changing the distribution
variables to {Ea} and {Ujo}, where E, is an eigenvalue of H and Ujab is a unitary matrix
element of connecting the original basis to the new diagonalizing basis, the distribution
becomes W ({ Ea, U j}) o expl=2 Ty B2~ S (Bam EL)? 55 UL USE) Tocor (Ba— FL)2.
By linearizing the quartic part in the exponential as U = 1+ A (an infinitesimal anti-
hermitian), we get W ({Ey, Ua;}) o exp[—4 Yaci B2 =1 Y o/ (Ba—EL)?|Aa | Tacar (Ba—
E')? that is a Gaussian distribution on {As«}. A maximum entropy principle under the

constraints

(trHQ) = Cn, (Z IAa,a’lz) = Cy,

and (Z(Ea - E;)Z Z(Ea - E;)2[Aa,a’|2> = Cs, (7)
then yields a solution that satisfies
(O_[L+ p(Ba = Bl Aaw [*) = Co + uCs. (8)

a,o’
Although the three constants C;(¢ = 1,2,3) must be positive, the constraint condition

(8) does not require the parameter p to be a positive quantity, but it does require that

Ca + 2C3 > 0, to ensure integrability of W({Aqa«})-



84

An integration of the distribution W({Eu},{Aa}) over the auxiliary vari-
ables Anqo yields the N-joint level distribution of the form P(zy,---,zy) =
Cn gexp [—[3 Yk Pz — mk)] ,z; = E;, where the pair potential for z; — 3 = r is given by

1
1+ —.
ur

(r) = Slog )

For the reason stated above, the real parameter p could be negative as far as the inside of
logarithm is positive, which may provide an attractive potential for the range rqo = 1/ \/2[7 <
r < co, as shown in Fig.1(inset). But it has a logarithmic singularity at r. = 1/ \/\—m I we
adopt an ad hoc postulate that the parameter p may be complex- valued by an analogy to
Breit-Wigner width in a line-shape function, then we can remove this logarithmic singularity
to write

1 a® . at
Zlog(l + QﬁCOSZH + 7—5),

‘where 1/p=a’ a>0;0<0<n/2 (10)

1 1
o(r) = —Z-Re log(1 + /;5) =

We can show that the ad hoc postulate of this complex parametrization is justified, if the
GMEPB is properly generalized (See [13]). The potential function ¢(r) is plotted in Fig.1

for three cases, namely,

(a)attractive region : m/4 < @ < 7/2, and on the positive r axis, g = rpn/V2 < 1 < 00,

where 7, = a/+/—co0s26 is the unique potential minimum there.

(b)repulsive regeion : ¢(r) is always repulsive(> 0) for 0 < r <« a (Wigner-Dyson
repulsive region), but for 0 < @ < /4, there is no potential minimum, and it is always

repulsive.

(c)boundary between the two regions : § = 7/4

(cos28 = 0), for which r,, = co.

The three cases in Fig.1 represent our view on the spectral statistics of solid states,

namely (a) the metallic states, (b) non-metallic(including the insulating) states, and (c) the
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boundary between a metal and an insulator, i.e. the mobility edge situation. It may be
remarked that in both situations (a) and (b) the long range tail of the potential as well

as of the lowest-order approximate correlation function Eq.(11) retains the r=2

universality,
though in the opposite direction to each other as regards (a) vs. (b). It should be pointed
out that the Gibbs type distribution P(zy,---,2x) with pair potential so specified has its
physical origin of the canonical equilibrium state of the Hamiltonian system (so called “g-

CM system” [11]) whose trajectories are identified with (3).

In order to see the difference between the metallic and the non-metallic phases in a mea-

surable quantity, we have computed the resulting number variance curves for two regimes
of the transition parameter a. In small a regime, the correlation function and the number
variance is provided by the 1st order virial expansion of the distribution P(z1,2s, -, zn)
ie.

7‘2

Xo(r;a,6) = — 11
2(r;a,6) Vat + 2a?r2cos20 + rt (11)

(L —r1)r?
2a2r? cos 20 + rt

(12)

L
S2(L: a, 0 :L-—L2+2f

For large parameter a regime, they can be derived via Beenakker’s relation [14] between
the Fourier transform of the potential $(see [15)) and the spectral form factor B(k) =
1 — (BFs(k))~?, hence

Xa(r;a,0) =1 — /oo B(t)cos(2nmrt)dt

' lt]
‘/—l( 1 — e—27r|t|acosﬁcos(2ﬂ-|tlasin0))COS(ZTFTt)dt’ (13)
] i sin(rtL)\?
(L;a ) —l( 1 — e_%'tlacosgCOS@?T]t|asin(9)) ( = > dt (14)

The asymptotic evaluation of the integral in Eq.(14) for L — oo where (-)2dt becomes

L x §(z)dz yields

1

x=1-B(0)= Bmracosd’

(8 = 2; GUcase). (15)
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We draw X, (r) for two different values of a at a fixed 6 = 7/2.8 (in metallic regime) in
Fig.2. The “overshoot” is clearly seen at small @ = 0.22: this is similar to that obtained by
Guhr{3] with A = 0.1 (see Fig.1 in [3]). The “overshoot” at large a = 5 is also demonstrated
by magnifying the figure around X, = 1 (shown in the inset).

Very interesting things are shown in the curves of number variance ¥%(L). As can be seen
from Fig.3, a specific behavior, we call it non-monotone character, is common for all the

parameter values, although the overshoot becomes obscure in Fig.2 quickly as a increases.
The asymptotic form of these curves in the normal plot gives us the compressibility ¥,
namely, $2(L) = xo + xL. Indeed the linear asymptote of ¥2(L) at finite a is clearly
shown in Fig. 3, where the three curves of a = 0.22,5 and 10 in the large L fegime are
parallel and having slopes almost identical to unity. The best fit in normal scale gives rise
to: 1) a = 0.22,x0 = 0.46, x = 0.55; 2) a = 5,x0 = —6.83 x 1072, x = 7.13 x 1072; 3)
a=10,%0 = 8.88 x 1072, x = 3.45 x 1072, The latter two numbrs of x are consistent with
that from Eq.(15)(x = 7.32 x 1072 for a = 5 and x = 3.66 x 1072 for a = 10). As a goes
to infinity, Egs. (13) and (14) become the respective form of GUE, thus x goes to zero
smoothly in the metallic limit.

In summary, we have derived expressions for the two-level correlation function X;(r) and
the spectral number variance ¥:2(L) that have the same physical origin of dynamics as that
in previous version (Iq.(3) Refs. [2-5]), but via a different context. Here, first presenting
the dynamics in the Hamiltonian form, we put it in an orthodox equilibrium statistical
mechanics to compute every statistical quantity along the same line as the treatment in [11].
Therefore, it is not strange that the outcomes of some quantity by the both approaches, of

which compressibility of the level gas is a typical one, sharply differ.

We would like to thank T. Guhr and J.-L. Pichard for helpful discussions. HH thanks
Centre d’Etudes de Saclay for a visit there, and Y. Sakamoto for providing him important
references. BH, BL and JZM were supported in part by grants from the Hong Kong Research

Grants Council and the Hong Kong Baptist University Faculty Research Crants.
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FIGURES
FIG. 1. The ¢ function in Eq.(10) in different regimes. (a) 8 = /2.1, (b) 8 = 0.01, and

(c) 0 = m/4, which correspond to the metallic states, non-metallic states and the mobility edge

situation, respectively. The inset is for § = 7/2(y, = real negative; the singular case).

FIG. 2. The two-level correlation function Xy(r) Eq.(11) for small a, and Eq.(13) for large a
to simulate Guhr's Xa(r, A): 1) a = 0.22 (for A = 0.1); 2) a = 5 (for large \'s) § = /2.8 for both

cases in the unfolded scale of abscissa. The inset is a magnification of the curve inside box.

FIG. 3. The Number variance ?(L) for different values of the transition parameter a from
Eq.(12) for small a (=0.22) and Eq.(14) for large a (=5, 10)§ = 7/2.8 for all three cases in the
unfolded scale. Note that the compressibility x can be estimated from the intersection of each

asymptote line and the abscissa for £?(L) = 1.
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Part I1I

SUPPLEMENT TO HKBU-CNS-9815(Long-Range Level
Statistics...) 1.Perturbation Theory (H. Hasegawa Oct. 1998, revised May 1999)

J

.’II/C)

2
|/1jk|2 ,  with f(r) = |1 iruﬂl (hermitian case),

and hence o ]
= -log|l + —|.
() = glogl1 + ©

(r stands for z; — xx with any pair (j,k) ).

We use the notation a for the inverse square-root p: a = 1/,/f(p > 0). Then, the
variance and the potential function of the Gaussian distribution are rewritten as

7.2

a? + r?’

1 . a? .
flr) = #r) = glog(1 + %), (1)
that is identical to the linear gas model of Gaudin[1]. As noted by him, the variance
function f(r) above has a meaning of the lowest-order (virial expansion of) correla-
tion function for the interacting gas, and hence the corresponding cluster function(in
the RMTsense) Ya(r) = 1 — f(r) can be written simply as

Ya(r) = > 0, (52)

a? + r?
(showing no overshoot of the correlation function f(r)). Here, we discuss the mod-
- ified Gaudin model (with an imaginary parameter ia(a > 0) for which the pair
potential becomes attractive)in some detail:

60) = Hog( -1 Fl<a  Llog1—%) il 53
AR G st T e (53)
“with the attractive range % < |r] < 0. (S4)

It is quite easy to write the corresponding (low density) correlation function as

72 r? r?
0=l = o Il<a =5 bl>a (59
and the cluster function, Ya(r) = 1 — f(r) as
a? — 2r? Ca®
Ya(r) = 22 Ir| <a; R S Ir| > a. (56)

The overshoot of f(r) (the negativeness of Y3(r)) on the same range as (54) can
be seen readily from these expressions. Note that the figures exhibit a strong diver-
gence reflecting the logarithmic divergence of the potential function (S3) that may
be regarded as unphysical. Accordingly, we will discuss a treatment of eliminating
this divergence by means of introducing a Breit-Wigner type broadening factor in
the next page.



Let us recall Forrester’s paper [2], where a useful representation of the N-level
distribution (z1, T2, .., Tn) is given by means of the Cauchy double alternant identity:

; L -N -’Lk)
de*’[x—ak—uw/wlﬂ] I Y e s

Forrester assumed the positiveness of the parameter 3/ throughout, and we

want to generalize his treatment by replacing i(8/ v)¥? by a complex parameter,
o+ i6(a real; 6 real and positive) so that

1 — (a4 18N | (l‘jr_xk)z
de‘“[w"awawé} IR 1§ oy ey e o

o i<k
Defining . .
§+ia = ae®, (S8)
where
a=+va?+ 8, 0 = Arctan (/$), , (59)

and taking the absolute magnitude of the right hand side of the above equality to
provide it with positivity for probability, we can write

I 2 = o) :aN|det{ L _.} ]
ion @y — @)t 202 (x; — zx)%cos26 + a4]V/? zj—zptiae |y

(S10)
We can see that the left hand expression defines the distribution of an interacting
level gas with a pair potential

1., _a® a* :
d)('r) — Zlog(l -+ 2;5(30829 + ;Z), (Sll)

and that it is repulsive or partially attractive, respectively, according to the condition
0 < 260 < /2 (repulsive); 7/2 < 20 < m (partially attractive) (S12)

or,
§ > o (dissipation dominates); & < a(Thouless energy dominates). (S12")

In the latter case the unique maximum of the variance function f(r) in a finite range
of r(the potential minimum) exists at

rm = a/V —cos20 (S13)

that is located in the attractive range, \@rm < r < oo(cf.(54)), where

2
T ;
f(r) = N e T > 1 (Guhr's overshoot). (S514)

It should be noted that the last statement is under the restriction of lowest-

order Mayer expansion theory for which more exact analysis is required by means
of performing the grand canonical series of Forrester(SUPPLEMENT2).
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‘Number variance curve and Compressibility by the perturbation theory

(L) = L 2/ r)dr, )/2(7'):a_2T O§r<a;:——'——a———5,a§7',
2 —q
(S195)
To avoid the singularity of Ya(r) at 7 = daq, it is assumed thal Y2(r) = constant
for 7 € (—¢ -+ da,a -+ €) with a small ¢, and the constant is determined by the
condition

/OO Yo(r)dr = 0. (S15a)
0

(i) % curve inside the critical point a: L < a

2 L [J
L— 2/ (L—r)(2— ¢ )dr = L—2L%1-2 &'—————)———Ch 0<L<axl

a? —r? 0 a?—r?
Hence,
. + L - L _
z?@):L~2B-4a—LmbgC” )42#mg(' ). (516)
‘ a—1L a
This satisfies in the limit ¢ — 0
d _, a+ L d* _,
e s) = - 1 1 . ls] = —25/ s [J L. L,
(1) =1 H’a%<mﬁ) (L) (L) L <a (S17)

(i1) ©? curve outside the critical point a:a < L

~2/ L —7)Ya(r d7:L 2/ / L — 7)Y,y (r)dr

2
= Y%(a) + (L — a)| 1—2/ Ya(r)dr] -+ 2 / (L—1) 2(L sdr
a T —qQ
(-2 Y( )dr = 2/ Ya(r)dr in the [ ] above by (S15a)), hence
0

: L—a , L+a
_12 - 32 L)\ L—a 14 Iroua— - 2 — < v ]
LH(L) = %(a)-(L—a) [14 alog(L_*—cJ] 2a log< 5 ) a<L, (518)

where [rom (S16)  $%(a) = a — 2a*(1 — log2). (S19)

This satisfies, under the condition (S15a),

ey = 1+abg(

L—a d?
dlL >

I T a dL2 EZ(L) = _'2}/2(1;) a< L. (1920)

Remark The function (L) is continuous everywhere on the L axis(even for e = 0),
but its first derivative is not at the critical point S = a, where (d/dL)S%(L) is
logarithmically divergent as ¢ — 0.
T}%e function £2(L) is illustrated: Z\Z(j_,, )
(a<xi) "
Note that the point a/+/2 is an inflec-
tion point of L?(L) from negative to
positive, and, at the same time, at the
singular point a the $?(L) changes

its slope from steep to slow so that an ,
s-shape behavior can be seen. 4 ’ S

0 a-3e) aiz a L—




SUPPLEMENT TO HKBU-CNS-9815(Long-Range Level
Statistics...) 2.Grand Canonical Formulation (H. Hasegawa May.1999)

I. Forrester’s formulas for computing the two-point
correlation functions

o0

_ CN L/2 - W B l '
=(a) = Z (H/ dTﬂ(“»l)) NZ, N2 = det [xj — I+ a+ i5]j,k—1, ’

(with a complex parameter o + ¢6) (52.1)

It is related to the Fredholm determinant det(1 + (K) of the integral operater K
with kernel K(z,y) = i/(z —y+ a+16). The n-point correlation function is defined

by ,
11 /m )Wm}, (52.2)

l=n+1 L/2

1 o0
p(.’l’1,-, ﬂ)_E()liZ (

and can be computed from

p(21, .., zn) = det|G(z), T)|jk=1,.n, G(z,y) =Gz —y), (52.3)
where (K | ‘
11K (¢ : to be replaced by 27( after (52.5)) (52.4)

Remark. Forrester’s treatment is restricted to the case a = 0 for which the integral
operator K is self-adjoint(K(y,z) = K(z,y)*) on the function space of a finite
domain (—L/2, L/2). The Fredholm theory is known to be valid for non-self adjoint
integral operators, and this fact is essential here for the treatment of case o # 0.

Accordingly, Forrester’s solution of the Green’s function G(z) for G can be ex-
tended to the present case by a simple replacement of his parameter by a general
complex parameter, i. e. i(8/7)"? — o + 18, namely, under a thermodynamic-limit
situation

vy ™ 2m{exp[—2m(6 — ia)t] ,
G(r) = /0 dt1 o Cexpl—2n(6 — i)l exp(2mirt), 6> 0. (52.5)

In particular, for n = 1 in (52.3)

log(1+2m¢)  €” 0

G(0) = (6 —ia) 27Talog(l +27(). (§—ta=ae™, a>0) (52.6)

Kgs.(52.5,6) are our starting formulas in the present analysis, and we will obtain the
two-point correlation function in sevral situations. Because of the above complex
parametrization, the Green function G(r) does not satisfy the hermiticity condition
unless a = 0, i. e.

G(~r) = G(r)* only when o = 0. | (52.7)

Consequently, the basic quantity for statistics, p(z1,..,2,) in (52.3), is in general
complex-valued, and it is necessary to take its absolute magnitude in order to assign
it as a probability distribution. ~ From (52.6), the fugacity ¢ can be real-valued.
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We may write the level density and the 2-point correlation function as follows.

‘ - 1
G(O) = pe?, p= %log(l + 2m(), (52.8)

or,

o = e — 1, (S52.9)

and for the normalized 2-point correlation function as

el = '1 - coF | GOF

- \I1 —9Re {G(r)G(“r)} L EOGENE g9 1)

Note that, if the hermiticity condition (52.7) holds, then the phase angle § = 0, and
Xa(r) reduces to

1—|G(r)/pl, (S2.11)

implying that there is no overshoot of the 2-level correlation function(the positive
cluster function in the RMT sense ).

From (52.9), we can see that the fugacity ( is represented by a function of the
single product pa =(ratio of the characteristic length a(absolute magnitude of the in-
troduced broadning factor) vs the mean level-spacing), and hence that the situations
of low, or high density can be represented by smallness, or largeness, respectively,
of the parameter a while the density p is kept at a fixed value. Accordingly, we can
classify the situation into 3 different regimes: A. pa <1, B. pa > 1, C. pa >~ 1.

II. Outline of Results

A low fugacity limit ( < 1(pa <'1).
In eq.(52.5), ¢ term in the denominator of the integrand is ignored so that we obtain

G(r) = /O°° dt2nCexp|—2m(0 — i — ir)t}: 5—_7%0-:—;7 ¢ >~ ap, (52.12)
and . ap .
G(-r) = .
"= 5t
Hence,
G(r)G(-r) r? : ' r? _
1- _ N _
G(0)? P20 4 72 Xa(r) ety e (independent ofp)

(52.13)
in agreement with the previous Supplementl, (S14), with an overshoot of Xj(r)
above unity for 7 < 26 < m. It satisfies

short-range property X(r) ~r?/a®> 1 < a (Wigner-Dyson repulsion)
long-range property X,(r) ~ 1—a?%cos20/r* r > a (inverse-square universality).

Note that the latter also results from the approximation X (r) ~ 1—ReG(r)G(—r)/G(0)2.



B. high fugacity case ( > 1(pa > 1).

The spectral form factor associated with the 2-point cluster function Ya(r) is
2mir

defined as the Fourier transform of Y,(r), given by(cf. Gaudin(4.18): here e is
in place of e**" there)

t) = p/ (r)e®™ dr, and then Ya(r) = / e 2L, (52.15)
We assume that the cluster function Y5(r) is an even function of r so that
Yao(—r) = Ya(r) then, b(t) = p/ 2Y,(r)cos(2nmtr)dr = b(—t). (S2.1%)
0

We may utilize a simple formula of the variance function for the Fourier component,
. 2

namely 2 [ (L — r)cos(2ntr)dr = (ﬂn—(g—l’—)) . Hence, in terms of the form factor

B(t)(= B(-1)) = ;b(t),

sin(wtL) o &2 -
= L — /oo < ; ) dt (satisfying —d—ZEZQ(L) = —2Y,(L)). (S2.16)

The asymptotic evaluation of this function for L > p~! can be obtained by the
property (sinmtL/mt)* — §(t)L as L — co so that

SAL> o) = (1-BO)L  (B(0) = lim B(1). (52.17)
In the original Gaudin model, the form factor B(t;a) is explicitly given by
. | . 1 1 - ~2m|tlay 2mwap - —27|t|a - - e—27rpa
B(t;a) = s <2ﬂaplog[l +e (e D] —e =1 Srap
for ¢ = 0. (52.18)

Accordingly, the compressibility is given by x = 1—[5° 2Ya(r)pdr = (1—e=2"%) /2map.

(52.18))
A simplification of B(t;a) for a > 1 can be made by taking the dominant part of
log[ Jabove so that B(t;c0) = 1 —|t|/p(a = o), |t] < p; 0 otherwise, providing the
Bgug(t). Up to the next dominant part, thus
|| ’ 1

[t| < p, then x(=1— B(0)) = T (52.19)

B(t; )=1- e
( ,a > ) [)l e—27rlt[a map

Remark 1—B(t;a > 1) above, setting p = 1, is identical to the inverse of the Fourier
transform of the potential function B¢ (r)(B = 2), indicating that Jalabert,Pichard,
Beenakker’s way[3] of constructing the potential function from the form factor can
be validated here, but only for the large parameter regime a > 1.

The above remark suggests that in order to draw the variance curve for a > 1
with an attractive potential(n/4 < 8 < mw/2), we may use the generalized form factor
B(t : a > 1,0) that can be derived easily from the potential function ¢(r;8)(S11)
with the result:  B(t;a > 1,0) = 1 — |t|/[1 — e"?"tacofcog(27|t|asing)], (S2.20)
under the unfolded scale p = 1, then

_ L—/l (1- |t] ) (sin(th)) dt and x = 1
J-1

1 — e~2mltlacostcos(27 |t]asind) it

(52.21)

2macosf
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C. an approximate X,(r) for a general value of fugacity

In order to investigate the asymptotic behavior of X,(r), in paricular, to get the
number variance curve ¥2(L) and the compressibility x for an arbitrary fugacity, we
make use of the following approximation for (52.10):

G(T)G(——T‘)}

G0 (52.22)

Xo(r) =1— Re [

which is valid for a < r (because it is correct up to O(r~2%) in the inverse-power
expansion of X3(r) ). This is equivalent to an approximation Y2(r) = Re [G Q(Gog{ ) ],
and enables us to apply the treatment of foregoing B. by means of the spectral form
factor for this (approximate) cluster function: here, the above form of fG—(TG)—(C(%E—Q] is
generally complex, but still it is a symmetric function of r taking the value unity at
r = 0 so that egs.(52.15, 15') are applicable.

We first show an exact result:

—2macosd

oo G(r)G(-r) B l1—e
/_oo Re [W} pdr = cosf <1 - W) . (52.23)

It implies that the unfolding scale for a non-zero §(but still cosd > 0) to be chosen
is p = cosf by which (52.23) becomes

o G(T)G(—T‘) _ 1— e~21racoso
/-oo Re [ G(0)? dr=1- 2macosf (52.24)

This yields the expression for compressibility x for an arbitrary transition parameter

a, namely
1 — e~27racos()

X = 2macosf (52.25)

A simple understanding of Eq.(52.25) is the previous result by HaMal[4] for § = 0
that it is obtainable by replacing the transition parameter a there is simply replaced
by acosf, and for large parameter regime 2mwa > 1 it reduces to (52.21).

Similarly, on a less rigorous basis we may have

B(t;a,0) = /oo Re [@_(i(—_ﬂ} cos(2mtr)dr = 1 !

—c0 ‘G(0)? 11— e~ 2mltlacost cog (27 [t asind) X

1 1 2macosf —2m|t|a
(l 27racos€Relog[1 + (e —1e ]) . (52.26)

This expression is shown to be valid under a legitimate inequality
Re(1—e 2™H8y > | Im(1 —e~2mHa)| = e~ 2mltlacos? i (97|t asing) |a = ae™*. (52.27)
For a > 1, Eq.(52.26) can be shown to reduce to Beenakker’s relation

lt]
1 — e~2mltlacosd co5(27r|t| asind)

B(t;a>1,0) =1 — t]<1; =0t > 1. (S52.28)



derivation of Eq.(52.23).

From (S52.6), we have two expressions concerning the Green function G(r) i.e.

dt dt

G(0) :A 7 (@nd) T and /_OOG(T)G(“T)CIT:[) (1 + (2mC)-Te2mat)2’
- (52.29)

for which we have exact identities(derivable in an elementary manner). Namely,

oo dt 1 R i
= — 2 = t 2.
(1) /0 T (@n0) T 27T&log(l + 27() a = ae (52.30)

dt !
(1+ (2m¢)~1e?me)2 — 27q

<1og(1 +2m0) - - i”;ﬁ C) | (52.31)

Eq.(52.30) gives rise to the fugacity-density relation (52.8) by the assignment G(0) =

pe~®. With this relation we may write
* G(r)G(=1) 1 - et
————"pd ]l - e ], 52.32
w (GO P Smap (52.32)
and, since (-) is a real quntity, taking the real part of both sides yields Eq.(52.23).
derivation of Eq.(52.26).

Consider the Fourier transform of the quantity GT%(—C(;))(T}) o g{g%%—{-cos (2mat) pdr

(which must be nessesarily a cosine transform). The explicit form of G(r)Eq.(52.5)
yields (after some manipulations) an exact result:

o0 G(T)G(—r) L
/;oo WCOS(QWat)pdr — oy

1 1 27wap 1\ ,—2malt| |

The quantity on the right hand side contains three imaginary factors e, but except
the first they are accompanied by the variable 27|t|a, and for small values of |t|a
the imaginary part of [t|a is small compared to unity, also for large values of |t|a it
can be neglected since it appears in the exponentially decaying part. This leads us
to (S2.28) and to neglect of the imaginary part of log| |. After taking the real part
of both side ofEq.(52.33) and the unfolding p = cosf, we arrive at Eq.(52.26).
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