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Block branching Miller forcing and covering
numbers for prediction

Masaru Kada
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Abstract

We call a function from w<“ to w a predictor. A predictor =
predicts f € w* constantly if there is n < w such that for all i < w
there is j € [i,1 4+ n) with f(j) = 7(f1J). 0. is the smallest size of
a set P of predictors such that every f € w* is constantly predicted
by some predictor in P. @yp,q is the smallest cardinal « satisfying the
following: For every b € w* there is a set P of predictors of size x such
that every f € [],., b(n) is constantly predicted by some pledlctm
in P. We prove that ,,q is consistently smaller than 6. ‘

1 Introduction

Blass [2] introduced a combinatorial concept called “predicting and evading”.
There are some cardinal invariants associated with this notion, and the re-
Jations to well-known cardinal invariants, especially those which appear in
Cichoni’s diagram, were studied by Blass, Brendle, ghelah and others (See,
for example, (2, 3, 4].) -

Kamo [5, 6] mtloduced the notion of “constant prediction” and defined
cardinal invariants Ok for 2 < K < w. Throughout this paper, we call a
function 7 from w<* to w a predictor, and P denotes the set of all predictors.

Definition 1.1. For 7 € P and f € w*, we say m predicts f constantly
if there is n < w such that for all ¢ < w there is j € [z,7 + n) satisfying

fG) ==(f17).
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Definition 1.2. Let 2 < K < w. 0 is the smallest size of P C P such that
for every function f € K there is a predictor 7 € P predicting f constantly.

It is easily seen that 6, < 8; <-.- <46, <2v. »

Let us recall the definitions for several cardinal invariants from Cichon’s
diagram. cov(M) (respectively cov(N)) is the smallest size of a set of mmeager
(respectively null) sets of reals whose union covers the real line. non(M) is
the smallest size of a nonmeager set. cof(N) is the smallest size of a basis
for the ideal of null sets. For f,g € w¥, f <* g if f(n) < g(n) for all but
finitely many n < w, and 0 is the smallest size of a cofinal subset of w* with
respect to <*. It is known that w; < cov(M) < 0 < cof(N) < 2¢ and
wi < non(M) < cof(N). (See [1] for details.) '

Kamo [6] pointed out that cov(M) < 6, cov(N) < 6, and non(M) < 4,
Also, he proved the following consistency results.

Theorem 1.3. 1. [5, Theorem 2.1] It is consistent that cof(N') = w; and
()2 = Wy = 2%,

2. [6, Corollary 2.2] It is consistent that 6, = w; and 0 = wy = 2¥.

3. [5, Theorem 4.2) It is consistent that O = w; for 2 < K < w and
Ow = Wy = 2.

Here we introduce another cardinal invariant 6,,q by the following.

Definition 1.4. Let b € w¥. 0, is the smallest size of P C P such that
for every function f € [[; . 0(:) there is a predictor 7 € P predicting f
constantly. Let 0,,q = sup{6, : b € w“}.

It is easily seen that, 0x < Opq < 6, for 2 < K < w, and 6, <
max{0,pq,0}. :

In the model constructed in the proof of Theorem 1.3(3), cof(N) = w;
holds [6]. By the relations 0, < max{0ynq,?} and ¥ < cof (N), O,,q must be
wy in this model.” This shows the consistency of “Ox = w; for 2 < K < w
and O,j,q = wy = 2¥7.

In this paper we will prove the\consistency of “Ouqa = w; and 0, =
wy = 2%”. We introduce a new forcing notion called block branching Miller
forcing. The required model is obtained by countable support iteration of
block branching Miller forcing of length w, over a model of CH.

Our notation is standard and we refer the reader to [1] for undefined
notions.

Let PP be a forcing notion, p € P, and f a P-name for a function in w”. We
say h € w¥ is an interpretation of f below p if there is a decreasing sequence



(Pn 1 < w) of conditions in P such that py < p and p, IFp “f [n = h[n” for
each n < w. -
Here we review several notations concerning trees. For a tree T and s € T,

succr(s) is the set of all immediate successors of s in T. s € T is called a

splitting node in T if |succyp(s)| > 1. split(T') is the set of all splitting nodes
in T, and stem(T') is the least node of split(T).

Definition 1.5. For a tree H C w<%, let
1. Max(H) ={s € H :forall i <w, s™(i) ¢ H},
2. B(H) = {|s| : s € split(H) UMax(H)}, and
3. Lim(H)={few:foralli<w, f|i € H}.

Definition 1.6. We say a tree H C w<* is skip branching if for all s €
split(H), succg(s) N (split(H) U Max(H)) = 0.

In the following sections we use the following combinatorial lemmata.
Tor a € [w]¥, let I', € w* be the increasing enumeration of a.

Definition 1.7. Tor a € [w]* and g € w¥, we say a is g-thin if g(i) < [(4)
for all 1 < w. ‘

Lemma 1.8. [6, Lemma 2.3] For any g € w*, there is a countable sequence
(gi 1 @ < w) of functions in w* such that, for a sequence (a; : i < w) of infinite
subsets of w, if a; is g;-thin for all i < w, then Uico @i is g-thin.

The following is a slight modification of [6, Lemma 2.4] and proved in the
same way.

Lemma 1.9. Let I be a set of sirictly increasing functions in w* such that
for cvery g € w¥ there is f € F with f £* g, and (I,,,, : (m,n) € w x w) a
pairwise disjoint sel of intervals in w. Then there is f € F such that, for
each f-thin set a € [w]” and m < w there are infinitely many n < w with
L Na=10.

2 Block branching Miller forcing

Miller forcing, also called rational perfect set forcing, is the partial order of
subtrees of w<“ which have infinitely branching nodes cofinally. The following
definition is a modification of Miller forcing.

For each n < w, let B, = {W C ws" : W is order-isomorphic to an}_
For each t € w<¥ and W Cw<¥ let ¢« W = {{"s:5€ W}.
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Definition 2.1. Block branching Miller forcing BPT is defined as follows:
p € BPT if p C w<¥ is a tree and for every s € p and n < w there are t € p
and W € B,, suth that s Ct and t +* W C p. For p,q € BPT, p < qif pCq.

Definition 2.2. For p € BPT and 1 < n < w, let S,(p) be the set of nodes
s in p such that, s * W C p for some W € B, and s is minimal with this
property. Let S(p) = Ujcpcw Sn(p)-

Note that, in particular, S;(p) = {stem(p)}.

Definition 2.3. For p € BPT and 1 < n < w, let F,(p) = {s7t : s €
S,(p) and ¢t € w™ and st € p} ‘

Without loss of generality we can assume that, for any p € BPT, 1 <n <
w and s € F,(p) there is a unique ¢t € S,;(p) with s C ¢, because the set of
such conditions is dense in BPT.

Now we can introduce the following fusion order in BIPT.

Definition 2.4. For p,q € BPT, p <o qif p< gand stem(p) = stem(q), and
forl1 <n<w,p<,qif p<pqand F,(p) = F.(q).

Proposition 2.5. BPT satisfies Aziom A.
Proof. Easy. O

Proposition 2.6. Let G be the canonical name for a generic filter of BPT,
and ¢ be the BPT-name determined by lFgpy ¢ = | J{stem(p) : p € G'}. Then,

1. for any [ € w¥, lFgpr ¢ £* f, and
2. for any predictor m € P, lkgpr “m does not predict g constantly”.
Proof. Left to the reader. ' O

Corollary 2.7. Assume CH holds in the ground model V. Then d = 0, =
wy = 2% holds in the forcing model by the countable support iteration of BPT
of length wy over V.

Proposition 2.8. Ior p € BPT and a BPT-name h for a function in w*,
there are ¢ < p and [ € w* such that q ey [ £ h.

Proof. Almost the same as the case of Miller forcing ([1, Theorem 7.3.46(2)}).
O



Let My = {0}, Mpy1 = [[icic,w' forn > 1, and M = Ui cncw Ma.
Also, let My = {()}, Mpyy = {s7{) : s € M,y andt € w<"} for n > 1,
and M = Ui <nen M,. For each p € BPT we can define a natural order-
homomorphism I', from M to split(p). More precisely, for p € BPT we
define I', by the following induction: First, let T',(()) = stem(p). Suppose
[',(s) € Su(p) is defined for s € M,,. Fix W € B, satisfying [,(s) * W C p
and an order-isomorphism o from w™ to W. For each t € w", let T',(s™(t))
be the unique node of S,41(p) extending I',(s)"o(t) and for t € w<", let
I',(s7(t)) = [)(s)"o(t). Note that I'y(s) = [p(s™(())) for s € M, and so in
this sense we may identify s € M, to s™(()) € Mpy;.

For pe BPT and s € M, let pls={t € p:t C T,(s) or [,(s) C t}.

For h € w* and 7 € W< with 7 € h, let A(7,h) = min{s : h(7) # 7(¢)}.

Definition 2.9. ([6, Definition 2.7]) A function u from a countable set to
w< is called a type II function with limit h € w* if,

1. for all 7 € dom(u), u(z) € h and A(u(z),h) + 2 < |u(z)|, and
2. for all 7,7 € dom(u) with 7 # 7, |A(u(2), h) — A(u(y), h)| > 2.

Remark 1. Kamo [6] also defined the notion of type I functions, but now we
need only type II functions.

Note that, for a function b € w* and a set {f,; : (n,7) € w x w} of
functions in [], ., b(n), if fu; # fu e for any distinct (n,7),(n',i') € w X w,
then there are a € [w X w]* and a function ¢ from a to w such that

1. for all n < w, {I <w: (n,?) € a} is infinite, and
2. (fuile(n,1): (n,1) € a) is a type II function.

Here we call a subset T of w<% a quasi-tree. For a quasi-tree T' and s € w",
let Sucep(s) = {t € T : s C t and there is no v € T such that s C u C t},
predr(s) =t if t € T and s € Succy(t) (if such ¢ exists; otherwise pred (s) is
undefined) and dc(T) = {t € w<¥ : ¢ C u for some u € T'}. By identifying
(t1,... ,ty) € M to t;7... "t € w<¥ we also regard a subset X of M as a
quasi-tree. '

For a quasi-tree T' C w<* without maximal nodes, we define a function
Iz from w<¥ to T by the following induction: First, let I'r(()) = stem(T").
For s € w<¥, fix an enumeration (#; : i < w) of Succy(s), and for each 1 < w
blet FT(S’\<7:>) = ti.

Definition 2.10. (é;:s € T) is a quasi-tree of type Il functions if:

L. T is a quasi-tree,
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2. forallseT, 6, € w<v,

3. for all s € T~ Max(T'), (d; : t € Succy(s)) is a type II function with
some limit h € w* with §, C h.

For a tree T C w<¥ and s € T, we say T is w-branching above s if, for
any t € T'~ Max(T), if s C t then succy(t) is infinite.

Let b be an arbitrary but fixed function in w*.

The following is the main lemma to handle the successor step of the proof
of Theorem 4.1.

Lemma 2.11. Assume that p € BPT, 1 is a function from M tow, and f
is a BPT-name such that p lkgpr f € [[,c., 0(n) ~ V. Then there are ¢ < p,
a quasi-tree X C M and (6; : s € X) such that:

1. M CX,
2. (§; : s € X) is a quasi-tree of type II functions,

8. forallse X, qlslgprd, C f, and

o

. for all s € X, |8,] > n(s).

Proof. By induction on n < w, we will construct a fusion sequence (p, : n < w)
of conditions in BPT starting with pg < p, z, for s € M,,, and ds~qy for s € M,
and 1 € z;.
First, choose py < p and &y € w<* so that |dy| > n(()) and py IFgpr
oy C f. |

Suppose that

1. p._1 € BPT,
2. a for s € M,,_,, satisfying () € z, and w"™! C z,, and
3. ds~qy for s € M,y and 1 € z,

have been defined. Fix s € M, and let ds~)) = 05. Tor t € w", choose
ht € w* so that h® is an interpretation of f below p,_; [ (s™(t)). Note
that, for all t € w", &, = b,~(y C hi. Let yI = w". We will construct
yrt oy oL yY inductively.

Suppose m < n, y™t C{H{wF :m+1 <k <n}and {AY:u e y™t} C
w* have been defined. Fix t € w™.
Case 1. {hy :u € Succ,m+1(t)} is infinite. Then there are X} € [Succ, ms1(2)]”

and a function ¢! from X! to w such that



1. for any distinct u,v € XE, h¥ # hY,
2. (h‘s’ [t (u) : u € X!) is a type II function with limit A! € w*, and
3. dcl(X?) is w-branching above ¢.

By removing a certain finite part from each XY, we can assume that ran(ey )N
(¢h(u) +2) =0 for all u € Succ mt1(t) \ w™.
Case 2. Next we assume that {h¥ : u € Succy;nﬂ(i)} is finite. Note that in
this case Succ,m+1(1) Nw™ = (). We can find X; € [Succ,m+1(2)]”, h € w* and
Yyt € [Suce,mii(u))” for each u € X so that

1. for all u € X}, b = h,
2. (W Te*(v):u € X! and v € Y*) is a type II function with limit &, and
3. del(U{Y : v € X1}) is w-branching.

m
S

Now let y3* be the set of following nodes:

1. ¢t € w™ for which Case 1 is applied,

2. v € y™*! such that, there are ¢t € w™ for which Case 1 is applied and
u € X! satisfying u C v, and '

3. w € yI*! such that, there are t € w™ for which Case 2 is applied,
u € X! and v € Y satisfying v C w.

Finally, let y, = dcl(y?) and a; = I';}(y?). For each ¢ € y? Nw™, choose
Pt < puct 1(s™ (1)) so that pt IFgpr hL [@™(t) = f[%(t), where u = pred,o(?).
Let p, = U{p!. : s € M,, and t € y? Nw"}. Then p, € BPT and p, <,
Pn_1. For each s € M, u € y2 \ w" and v € Succyp(u) let v¥ = hY [ ¢¥(v),
and for each t € @, ~ () let d;~4y = vr,, (1) Then ¢ € Mpcw Py X = {t7(u) :
t€ M and u € 2} and (6, : s € X)) satisfy the requirement. ]

3 Iteration

In this section we present techniques to handle the iteration, which are due to
Kamo [6]. These techniques are developed for the countable support iteration
of Miller forcing. But they do not strongly depend on the shape of {forcing
conditions, and so we can apply them to the iteration of block branching
Miller forcing in almost the same fashion.
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We are going to prove Theorem 4.1 by induction on the length of iteration.
But the proof for a limit step is exactly the same as in the proof of [6,
Lemma 5.1]. So we will give only a proof for a successor step.

Throughout this paper, (P, : @ < wy) denotes the countable support it-
eration of block branching Miller forcing of length w,. For each o < wy, let
G, be the canonical P,-name for a P,-generic filter. For p € P,,, supp(p)
denotes the support of p. For € < a < w,, P¢y denotes the quotient forcing
P, /Pe. IFp, is abbreviated as IF,.

We introduce the notion of tentacle trees, which is defined in [6, Section 4].

Definition 3.1. Let T C w<* be a tree and § € w” N\ T. i
A(T,d) denotes the maximal node of TNdcl({d}) and A(T, §) = |A(T, §)].

d is adjoinable on T if

o

. A(T,8) +2 < |6] and |stem(T)| < A(T, 6),

2. A(T,9) ¢ split(T),
3. succp(A(T, 8)) N split(T) = 0, and
4. §[(A(T,8) — 1) ¢ split(T).

T is called a tentacle tree if there are a skip branching tree H without
maximal nodes and a function u from a countable set to w<¥ such that

1. for all i € dom(u), u(z) is adjoinable on H,
2. for all 7,5 € dom(u), if ¢ # 5 then |A(H,u(?)) — A(H,u(j))| > 2, and
3. T = H Udd(ran(u)).

In this case we say H and v make up T, or T' is made up of H and u.

Note that every tentacle tree is a skip branching tree.
Ior a tentacle tree T', ep denotes the enumeration of Max(T') such that,
if 1 < j <w then |er ()] < ler(5)|-

Definition 3.2. S denotes the set of all tentacle trees. For each g € w*, let

S(g) ={H € S : B(H) is g-thin}.
Definition 3.3. Let U be the set of functions U € (w”)* such that
L. for all « < w, U(7) is increasing, and

2. forall 2,7 <w, if + < 7 then, for all k < w, U(2)(k) < U(y)(k).



Definition 3.4. For K € S and U € U, let A(K,U) be the set of functions
@ from some a € [w]* to [];c, S(U(I';'(#)) such that, there is ¢ € [w]” such
that ex(I'.(7)) C stem(p(L4(2))) for all ¢ < w.

Lemma 3.5. [6, Lemma 4.2] Let g € w*, H a skip branching tree without a
mazimal node, and u, € (wW*)¥ for n < w. Assume that, for alln < w, H
and u, make up a tentacle tree. Then there is a function v from w to W<
such that

1. H and v make up a tentacle tree,

2. for all n < w there are infinitely many 1 < w such that u,(z) € ran(v),
and

3. {|v(})| 73 <w}U{A(H,v(j) : J < w} is g-thin.

Lemma 3.6. [6, Lemma4.3] Let K € § andU € U. Then, for any countable
subsct W of A(K,U), there is ¢ € A(K,U) such that, for all o € U there are
infinitely many 1 € dom(w) N dom(vp) satisfying ¢(¢) = (z).

From now on, X is a “sufficiently large” regular cardinal and H()) de-
notes the family of sets hereditarily of cardinality less than A. N denotes a
countable elementary substructure of H()) unless otherwise defined.

The following is a slightly strengthened version of [6, Lemma 4.4] and
proved in almost the same way as the original one.

Lemma 3.7. Let o < wy and P =P,.

1. Let H € N be a skip branching tree without a mazimal node, and v a
function from w x w to w<¥. Assume that H and v make up a tentacle
tree, and for any u € (W<¥)**“ NN, |

if H and w make up a tentacle tree, then for alln < w there
are infinitely many 1 < w with u(n,t) € ran(v).

Then for each p € PN N there is p < p such that p is (N,P)-generic
and forces the following:

Foranyu € (w<w)“’x“’ﬂN[Ga], if H and u make up a tentacle
tree, then for all n < w there are infinitely many ¢ < w with
u(n,i) € ran(v). ‘

2. Let K, € SON, U, € UNN, ¥, € A(K,,U,) forn < w, n < a,
P* =P, . and N* = N[G,]. Suppose that, in VP for alln < w,
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for all ¢ € A(K,,U,) N N*, if ran(p) C N then there are
infinitely many 1 < w with (1) = P, (2).

Then, in VF for any p € P* N N*, there is p < p such that p is
(N*,P*)-generic, supp(p) C N*, and for any n < w, p forces

for any ¢ € A(K,,U,)N N*[Gps], if ran(p) C N then there
are infinitely many ¢ < w with ¢(¢) = ¥,(7).

Corollary 3.8. [6, Corollary 4.5] Let o < wy, P =P, and g € w”. Then
the following hold in VF: Assume that

1. He Visa skip branching tree without a maximal node,
2. 4 is a type IT function with domain w X w and limit h € Lim(H), and
3. H and 4 make up a tentacle tree.
Then, there is a tentacle tree T € V such that:
1. T is made up of H and some type I function,
2. {|6] : 6 € Max(T)} U {A(H,$) : 6 € Max(T)} is g-thin, and

8. for each n < w there are infinitely many ¢ < w with u(n,1) € Max(T).

4 Proof of the main theorem

Now we are ready to prove the following theorem.

Theorem 4.1. Let o <wy, P=P,, g €w” and p -, f el
there are p < p and H C w<¥ such that

b(n). Then

n<w

1. H is a skip branching tree,
2. B(H) is g-thin, and
3. plFy f € Lim(H)

Proof. Induction on @ < wy. As mentioned in the last section, we only give
a proof for a successor step and refer the reader to [6] for a limit step.
Suppose that o = 3+ 1 and the lemma holds for all o < 8.

Claim 1. Let ¢’ € w”. Then the following holds in V¥8: For any type II
function u with domain w X w, there is a tentacle tree T € V such that



1. B(T) is ¢'-thin, and
2. for all m < w there are infinitely many © < w with u(m,1) € Max(T).

Proof. Work in VP8, Suppose that a function u from w x w to W< is a
type II function with limit A € w®. Take a pairwise disjoint set {Iln, :
(m,n) € wxw} of intervals in w so that for all (m,n) € w xw thereis1 <w
with [A(h,u(m, ) — 1), |u(m,i)| + 2) C I,,,. Using Lemmata 1.8, 1.9 and
Proposition 2.8, choose g; € w* NV so that, for any g;-thin sets a,c € [w]",

1. for any m < w there are infinitely many n < w with a N [,,,, = 0, and
2. aUcis ¢'-thin.

By the induction hypothesis, we find a skip branching tree H € V with-
out a maximal node such that A € Lim(H) and B(H) is gy-thin. By the
choice of gy, for all m < w there is a, € [w] such that, for all i € am,
[A(h,u(m, 1), |u(m,i)] +2) "N B(H) = 0. -

Now we define a function v from w X w to w<¥ by letting v(m,n) =
u(m, Iy, (n)) for each (m,n) € w x w. Then H and v make up a tentacle
tree. : -
By Corollary 3.8, there is a tentacle tree T' € V such that:

w

1. T is made up of H and some type II function,
2. {|8] : § € Max(T)} U {A(h,8) : § € Max(T)} is g;-thin, and

3. for all m < w there are infinitely many 7 < w such that v(m,z) €

Max(T").
Then T is as required. O

Using Lemma 1.8, take a set {g, : s € w<*} of increasing functions in w*
so that -

1. for {a, : s € w<¥} C [w])¥, if a, is g,-thin for all s € w<¥, then
(Has : s € w<¥} is g-thin,

2. for n < w and s, € w", if s(i) < (7) for all @ < n, then g,(2) < g,(2)
for all i < w, and

3. for 5,1 € w<¥, if s Ct, then ¢,(0) < ¢:(0).

Without loss of generality we may assume p I, f ¢ V¥, . )
We work in VP, Using Lemma 2.11, take ¢ < p(B), X C M and

<5s 18 € X> so that,
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1. M C X,

2. <59 (s € X> is a quasi-tree of type II functions,

Cforallse X, qlsl 6, C f,and

W~ W

. for all s € X, |6,] > Ir=1(5)(0).
X

Using Claim 1, for all s € w<* we can take a tentacle tree T, € V so that
for all s € w<¥,

1. B(T,) is g,-thin, and
2. there is a; € [w]¥ such that

(a) for all 7 € a, 53~<,;) € Max(T},), and
(b) del({T'y (s™(4)) : ¢ € as}) is w-branching above I'x(s).

Fix s € w<. Let {{; : j € w} be an enumeration of {predyy y)(t) :
t € Succy(s)} if this set is infinite; otherwise ¢; = s for all j < w. Let
al ={i € a5 :1; CT'x(s7(1))}. Note that al is infinite for every j < w. For
J<w, @l = <T5A<,~) 11 € a;> Then (,0; € A(Tg, U,) and ran(p?) C V.

Return to V. Take a countable elementary substrutcure N of H(X) so that

the above arguments were done in N. Using Lemma 3.6, for each K € SN N
and U € U N N take Yy € A(K,U) so that

1. forall ¢ € A(K,U) there are infinitely many 1 < w with ¢(2) = g (7)),
and
2. ran(¢yru) C N.

By Lemma 3.7, there is § < p [ such that, forall K €e SNNand U e UNN,
p forces

for all ¢ € 'A(K,U) N N[Gg], if ran(p) C N, then there are
infinitely many ¢ < w with ¢(¢) = Yru(7).

In particular, p forces
(*) for all s € W< and j < w, there are infinitely many 7 < w
with ¢?(2) = Y u(s).

Without loss of generality we can assume that p Ikg T() =T for some
T e N.
By induction, define C, C w™ and K; € N for t € C,, by



1. Co= {<>}7
2. Ky=T,

Cppy = {87 ( Y:s€ Cy,and i € dom(vi, u,)},

0 e

. l&"sm(.,;) = Q/)I\"S,Us(i) for all SA<?:> € Cn+1-
Let C'=J,, Cnand K = |J{K, : s € C}. It is easy to see that K is a skip

branching tree.
Claim 2. For all s € w<*, B(Kr(s)) is gs-thin.

Proof. Induction on the length of s. The case s = () is clear. Assume

s =17(1). Let &' = FC( ), t' =T¢(t), a = dom(vk, v, ), i’ =T.(i) and u =
z"ﬁ<i). Note that s’ = t'”‘("} and so Kr.() = Ky = Ky~uy = g, v, (¢').
Since g, v, (i) € S(Up(L71( ))) = S(gu), B(Kre(s)) 1s gu-thin. On the
other hand, s(7) < u(y) for all 7 < |u| and so gs(k) < gu(k) for all £ < w.
Hence, B([xpc (s)) 18 gs-thin. : O

Since B(K) C U{B(K;) : s € C}, B(K) is g-thin. ,
Work in VP8 below p. By induction on n < w, define D, CC, by

=1{0}

2. for s € D, and J <w, DI = {57 (i) € Cpy1 @i € dom(g,) and (1) =
Yr, v, (1)}, and Dn+1 U{D’ :s€ D, and 7 < w}.

Claim 3. For alln <w, plkg “for all s € Do, K, =1T,”.
Proof. Basy. O
By the above claim and the property (*), p forces

for all n < w and s € D,, and J < w, there are infinitely many
i < w with s7(i) € Di.

Define a Pg-name 7 by Ikg 7 = ﬂn<w U{¢1T4(s): s € D,}. By the con-
struction of D, for all n < w and s € D, dd({T'4(t) : t € Succp, , (8)}) is
w-branching above I ;(s), and hence p IF5 7 € BPT. Note that p forces

r < ¢and {¢]s:se D,} is predense below 7.
Since p forces

{(.55 05 € Unew Dn} C K and ¢q[s - b, C f for all s € w<v,
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we have i Iby “7 IF f € Lim(K)” and hence p~(#) IF, f € Lim(K). O

Corollary 4.2. Assume that CH holds in V. Then in VP2, for every b €
wY there is a set P C P of predictors of size w; such that, for any f €
[I.<. b(n) there is a predictor m € P predicting f constantly.

Proof. Choose 3 < w; so that b € VFs. Work in V¥s. Let p € Pgs,,, and f
be a Pg,,-name of a function in [, . b(n). Apply Theorem 4.1 to get ¢ < p
and a skip branching tree H so that ¢ k5., / € Lim(H). Now it is easy to
find a predictor 7 such that

q kg, “orall n < w, f(n) = 7r(f fn) or f(n +1) = 7r(f [(n +1))".
Since CH holds in V¥, P =P N VF # satisfies the requirement. O

By Corollary 4.2, 8,4 = w; holds in VPe2 . On the other hand, by Propo-
sition 2.6, 0, = wy = 2¢ holds in the same model.
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