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HOLDER TYPE OPERATOR INEQUALITIES

HHAEE B (MASARU TOMINAGA)

ABSTRACT. For commutative operators, we give the estimation of Hélder’s type operator
inequality which represents the complementary inequality on the difference derived from
Holder’s operator inequality, and show that its estimation is the best. As special cases, we
give some well-known difference and ratio inequalities by considering the 2-th power mean
or only one operator. Finally by using the geometric mean in the Kubo-Ando theory we
shall generalize Hélder’s type operator inequality for noncommutative operators.

1. INTRODUCTION

This paper is in continucation to our preceding paper [13]. In this note, an operator
means a bounded linear operator on a Hilbert space H. An operator T is said to be
positive (denoted by T' > 0) if (T'z,z) > 0 for all z € H.

The Holder inequality is one of the most important inequalities: If @ = (ay,...,a,)
and b = (by,...,b,) are n-tuples of real numbers, then for any real number p > 1, ¢ > 1
satisfying 1/p+1/¢ =1,

1 1
(1) Qoap)r(Q_bh)e = D arby.

In [13], we introduced out that the complementary inequality derived from (1), Holder’s
type inequality which represented the estimation for the difference of the p-th power mean
and positive scalar multiple of the usual arithmetric mean. We consider the operator
version of Holder’s type inequalities.

Now we consider the following difference on both sides of Holder’s operator inequality:
Let A, B be two commutative positive operators. Then for a unit vector z € H

(A”w,:c)%(Bqa:,x)% — (ABz,x).
Recently one of the upper bound of this difference was obtained in [10] and it was shown
that it’s estimation was the best bound in [11].

On the other hand, in [4, Theorem 3] the following interested ratio inequality which is

the complementary inequality of the Holder-McCarthy inequality [3]

Theorem A. Let A be a selfadjoint operator on H with 0 < m < A < M. Then for a
unit vector € H.
(2) (473, 3)7 < MAz, ),

1—aP
pl/rgl/a(1—a)l/P(a—ar)l/e "

. where \ =
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In this note, we attempt to unify these difference and ratio operator inequalities. To do
it, we define S(X) as follows: For positive operators A, B and any positive real number
A,

S()\) = (APz,z)7 (B2, z)s — N(ABz, 1),

and denote by F(A) the upper bound of S(A). Here we call the following inequality
Holder’s type operator inequality

SO) < F(A).

We note that Holder’s type operator inequality implies the estimation of the above differ-
ence for A = 1, and ratio inequality (1) for A = A\ with F'()\g) = 0. Moreover by putting
p=2or B — I (I is the identity operator) we induce some difference and ratio inequal-
ities, and point out that some of them are operator version of well-known inequalities.
The final result is a noncommutative operator version of Holder’s type operator inequal-
ity S(A\) < F()). For this, we use the s-geometric mean f; by viture of the Kubo-Ando
theory [14] which is defined by

Af,B = A3(A"TBA :)*A7 (0<s<1)

for all positive operators A and B. We note that B/, AP = AB if A and B commute.
Throughout this paper, we assume that p and ¢ are real numbers such thatp > 1,¢ > 1
and 1/p+1/¢=1.

2. AN OPERATOR VERSION OF HOLDER’S TYPE INEQUALITY

The purpose in this section is to present an extension to commutative operators of
the complemantary inequality derived from Holder’s inequality. For the sake of conve-
nience, we give some notations needed later. We denote by K,, K3, K, K, K s and K
respectively:

1—a? 1-07 K, PKs"/" K, Kg K

l—-a’ 1-48" pl/rgl/a > qp/a’  Ba/p and allagi/e’

(3)

where o and ( are real numbers with 0 < a<land 0 < < 1.
In our preceding paper [13, Lemma 2.3], we pointed out that for any positive real
number A, the equation

(4) (1-a)(A—K77) = (1—B)(A— Kr7)

has a (unique) positive solution (which we denote by 7 = 7). We define a constant c, as
follows:

Q o= (1=~ Krj) (= (1-p-Kr7)).

Furthermore in [13, Theorem 3.3], we showed the following theorem which gave the upper
bound of the difference of the p-th power mean and positive scalar multiple of the usual
arithmetric mean.



Theorem B. Let a = (ay,...,a,) and b = (by,...,b,) be n-tuples satisfying 0 < m; <
ar < My, 0 <my <b, <My (k=1,2,...,n), mi < M; and my < M,. Suppose that
a=my/M; and f = mg/M,. Then for any A > 0,

1 1
(6) S()\) = (Z aﬁ)v(z bZ)q — )\Zakbk S ’I’ZMleFO()\),

where Fy()) is a constant defined as follows:

4

aB(l— ) if max{%, Ef-} <A

{?{1:(§)p + % — B}ad iff? <A< Efi(z max{?f-, Eqﬁ})

fo + 55 (X)) — o)A if K < A < Ka(= max{ =, K2})
FO(A)=<(K10+,§ — o+ -1 FK<A<K .

{# ( )9 —1}A if%(zmm I;“,q )<)\<K

{7%—( )"’+——1}A if X2 (= min{£=, 22}) < A < K

[1-A zf0<)\<m1n{p,q

Furthermore for each A, the constant nM;MyFy(X) in (6) is the best bound of S()\) |

We call the inequality (6) Holder’s type inequality. 5
Moreover we pointed out the following facts; If A = 1, then by K <1 < K,

1 1 1 1
Fo(l)= —+-——1-— ~1
) V=% "%, Cl(l—ap+1-—ﬁq )
and so the following Izumino inequality [10, Theorem 2.2] is obtained
1 1
(8) (Do a)»Q_bE)7 — > abe < nMiMyFo(1),
and if Fy(\) = 0, then by [13, Theorem 3.4 and Lemma 5.1] there exists a unique solution
1 —aPBe _ :
(9) A= o= pl/rgt/e(3 — aB)l/r(a — arB)l/a (€ [K, K]),

and so the following Gheorghiu inequality ([7] and [17, p.685]) is obtained

(10) ()P (87 < MY aghs.

The constant (9) was intoroduced in [6].

Now we shall give Hélder’s type operator inequality which is an operator version of (6).
Moreover we consider cases of A = 1 and Fy(A) = 0 in it. To complete this, we use the
same method as [10, Theorems 4.1-4.3] or [4].

Theorem 1. Let A and B be two commuting positive operators on H satisfying 0 < m; <
A< M, 0<my <B< My, m <M, and my < Mz, and let Fo(X) be a constant defined
by Theorem B. Suppose that & = my/M; and B = mq/M,. Then for any A > 0 and any
unit vector x € H,

(11) So(N) 1= (APz,7)7 (B%, 7)1 — MABz,z) < My MyFo()\).



Furthermore for each ), the constant My MyFy()) in (11) is the best bound of Sp(A). In
particular, if A =1, then

(12) (APz, 7)7 (B'z,z)7 — (ABz,3) < MyMyFy(1),
“and if Fy(Xo) = 0, then

(13) (APz,3)% (B2, z)s < Ao(ABz, z),

where the constant Fy(1) and X\g are defined by (7) and (9), respectively.

Proof. Let a and b be n- tuples with the same conditions of Theorem B and w =

(ws,...,w,) be an n-tuple of nonnegative numbers with w = Y wg. Then by the same
method as [10, Theorem 4.1] , we hold the weighted version of Theorem B, for A > 0
(14) (> wea) s (3 wib?) T — A Y wiaghy < wMy My Fy(N).

Next let u be a positive measure on the rectangle X = [my, M7] X [mg, Ma] with p(X) = 1,
and let L"(X) (r > 1) be the set of functions f such that |f|" is integrable on X. Suppose
that f € LP(X) and g € L9(X) satisfying 0 < m; < f < M; and 0 < my < g < Mo.
Furthermore let X3, Xs, ... , X, be a decomposition of X and let z;, € X; (k=1,2,...,n).
Then from (14)

{Z f(l‘k)p Xk } {Zf l'k)q,U,(Xk }% - )\Zf xk xk),u Xk) < MlMQF()()\)

Taking the limit of the decomposition, we obtain

(15) (/ f”duf (/ g"du)% - A/fgdu < My My Fo(N).

Now A and B are commuting, so there exist commuting spectral families E4(-) and
Ep(+) corresponding to A and B such that for a polynomial p(A, B) (or a uniform limit
of polynomials) in A and B,

(p(A, B)z, ) :/ p(s,t)d(EA(s)EB(t):r,x) for =€ H,

—-00

[20, p.287]. Let du = d{E4(s)Eg(t)z,z) = d||E4(s)Ep(t)z||?>. Hence from (15) we have

(APz, 7)7 (Biz, )% — A(ABz, z) ( / / spd,u) ( //X th,u)% i\ / /X stdp < My MyFy()\).

Furthermore we easily see inequalities (12) and (13) from Theorem B and the remark
after it. O

We remark that the difference inequality (12) is given directly in [10, Theorem 4.3] as
operator version of (8) and the ratio inequality (13) is the same inequality as commutative
version in [4, Theorem 4].



3. APPLICATION TO DIFFERENCE AND RATIO OPERATOR INEQUALITIES

In this section as application of Theorem 1, we deduce three corollaries which consider
special inequalities as the cases of p = ¢ = 2 or f§ — 1, and give explicit expressions
of their estimations. In particular we shall show that for A = 1 they correspond with
difference inequalities given in [10]. Furthermore we point out that the obtained ratio
inequalities are the operator version of the well-known numerical inequalities.

Now we take 8 — 1 in Theorem 1. Then obtained inequalities in the following corollary
are the complementary operator inequalities of the arithmetic and power mean inequality.

Corollary 2. Let A be a positive operator on H satisfying 0 < my < A < My, my < M.
1

Suppose that « = my/M,. Put K| = (—I—;%); and K, = L. Then for any A > 0 and any
unit vector x € H,

(16) S1(\) == (APz, z)7 — MAz, 7) < M{Fi(\),
where F1()) is a constant defined as follows: \
(a(1-)) ifKP <X
£+ lE) o) f K <A< K}
)= (- DA+ 1) K <A< K,
q

{2 +:(B)T-1}) KT <A<K,
1—-A if 0 <\ < KY.
Furthermore for each ), the constant MiFy()\) in (16) is the best bound of Si(A). In

particular, if A =1, then
1(1-a? 7' a-—or
¢ |p(1-0a) l—or|’

and if Fy()\) = 0, then there exists a unique solution A = A\ = pl,pql/q(l_l;)‘i‘fp(a_ap)l/q (e
(K1, K1]) and the following inequality holds

(17) (A”a:,a:)i — (Az,z) < M,

LB

(18) (APz x)» < A\ (Az, ).

Proof. We obtain the inequality (16) by using the same method as [13, Theorem 4.1] in
Theorem 1. The difference inequality (17) is trivial by K; < 1 < K;. The constant
A = )\ with Fi()\;) = 1is in [K7, K;], so the ratio inequality (18) is hold by elementary
calculation. [

The inequality (17) is given directly in [10]. The inequality (18) is a complementary
inequality of Holder-McCarthy inequality [16] corresponds to Jensen’s inequality with
respect to the convex function f(z) = zP (p > 1) and is given directly in [4]. The
constant \; coincides with the p-th root of the constant defined by Ky Fan [1].

Next we take p = ¢ = 2 in Theorem 1. For the convenience of representation, we may
assume o < [ in it.



Corollary 3. Let A and B be two commuting positive operators on H satisfying 0 < m; <
A< M, 0<my <B< My, m <M and my < M,. Suppose that o = min %,—mM—Z

and 0 = max{™T*+, . Put Ky = Ate) QO g K, = ‘ﬁzﬁ Write ¢, the constant
Mo M 2 72377 A
of (5) with respect to p=q = 2. Then for any XA > 0 and any unit vector z € H,

(19) So(N) := (A2z, )2 (B%z,3)7 — AM(ABz, z) < MiMyF5()),

where F3()) is a constant defined as follows:

Caf(l— ) if b2 <\
(352 - 5) 82 i Ko <A< 42
—a 2252
BN = { ataress ~ S {5t ) K <A<k
(5 - 122) ) A
(1-A f0< < e

Furthermore for each ), the constant MyMoF5()\) in (19) is the best bound of Sa(A). In
particular, if A =1, then '

(1-ap)?
2(1+a)(1+ 8)’

(20) (A%, 2)7(B%5,3)? — (ABz,z) < MM,
and if F5(\) = 0, then there exists a unique solution A = Ay = %(6 (K, K3)]) and
the following inequality holds

(21) A (A2z, 2)7(B%z,z)? < M\y(ABz,z).

Proof. Let put p = ¢ = 2 in Theorem 1. Then we obtain these desired inequalities by

using the same method as [13, Theorem 4.2]. O

The inequality (20) is given directly in [10]. The inequality (21) is commutative operator
version of the Pdlya-Szego inequality [19]

My Ms + mimg)?
2 b2<( 14¥42 17762 b.)?
Z%Z k= A Mymyms (Zak k)

and Greub-W.Rheinboldt inequality [8]

Z 22 2 14vL2 1 2 Z
R it 4M1M2m1m2 Kk k

under the same assumptions of Theorem B.
In particular, we obtain the following corollary for p = ¢ = 2 in Corollary 2.

Corollary 4. Let A be a positive operator on H satisfying 0 < my < A < My, my < M.
Put o = my/M;. Then for any A > 0 and a unit vector z € H,

(SIS

(22) 53()\) = <A2.’17,£I7> — )\<A.’L’,.’E> S Mng()\),



where F3()\) is a constant defined as follows:

(a(1-2) <)
1
(5 — m¥a)A UG%QQ<ASH§1
BO= 5 - mar (597 <A< ()
(58 - )X Fe <A< (39
\1_)‘ 'if0</\<12—a,

Furthermore for each X, the constant MyF3()\) in (22) is the best bound of S3(X). In
particular, if A =1, then

(M —m)?

4(M —m)’

and if F3(\) = 0, then there ezists a unique solution A = A3 = 4% (E [(ﬁﬂ)%, (”—0‘)%])
and the following inequality holds ‘

(24) (A2z,1)% < As{Az,z).

(23) (A2, z)% — (Az,7) <

The inequalityies (23) and (24) are well-known inequalities related to the following
celebrated Kantorovich inequality
(M + m)?

amM

As application of Theorem 1 we shall show some operator inequalities without commu-
tativity. In [14], F. Kubo and T. Ando introduced the s-geometric mean Af,B defined
by

(Az,z){A 'z, 2) <

A4,B = AT(A"TBA"I)*A7 (0<s<1).
for positive invertible operators A and B.
By using it Corollary 2 implies the noncommutative version of Theorem 1.

Theorem 5. Let A and B be two positive invertible operators on H satisfying 0 < m; <

A< M,0<myg<B< M, m < M, and mg < M. Suppose that oo = mq/M;,

- -1 - K > K
B =my/My and v = af?™t = %E:T Put K, = 1170‘9‘5—2@1, Ky = (—57-)1/1’ and Ky = ia-

Then for any A > 0 and any unit vector x € H

1 1 M M.
(25) Si() = (APz,z)» (B3, 2)1 — N(BU1/pAPr, z) < 52_1214}(»,
where Fy()) is a constant defined as follows:
(¥(1—)\) if KP <X
{F + 15" — K <A<K
(26) B\ =9 (&~ DA+ :Gak)? if K <A< K
I -1 K] <A< K
(1A if0 <A< K},

Furthermore for each A, the constant MB%E—I%F“()\) in (25) is the best bound of Sy(N).



Proof. In Corollary 2, Fy(]\) is determined by A, @ (and p), and hence we may put Fi(A) =
Fi(\, a). Corollary 2 says that if C' is a positive operator such that 0 < m < C' < M,
then for o = ; and any vector z € H, ‘

(27) (CPz,3)7 (z,7)7 — M(Cx,z) < MFy (), 70)(, 7).

Here we remark that the constants K,, K; and K; in Corollary 2 are given as follows,
respectively,

1 1
1— p 1— p ? 1— p ?
(28) 70’ ( Yo ) a,nd ( Yo v >P )
-7 p(1 =) (1 =707’
We replace C by (B‘%APB“%)% and z by B2z in (27). Then we see that from ¢ — 1 > 0,
0< - TL. < (BoRAPB)ilp < J‘_q{_l_l_
; m

Hence we have for v = 7 = o377}

(AP, x)%(qu,xﬁ - A(B%(B_%APB"%)%B%:E, x)
299 M,

S 1
m3

M M.
R (B',7) < =5 R ).
Here we denote the constants vy, Ko, K; and K, by v, Ky, Ky and f(a respectively in
(28). Moreover putting Fy(A) = Fi(},), we obtain the desired inequalty (25) by the
definition of s-geometric mean. [

In Theorem 5, if A = 1, then (25) is equivalent to the following inequality which is the
noncommutative version of (12): For any unit vector z € H,

1 1 M1M2 1 1
(30) (APz, 2)»(Biz, )7 — (B p APz, x) < a1 {(E - 1) + gKg} .

This inequality is given directly in [10, Theorem 4.5]

Furthermore we see that if Fy(A) = 0 in (25), there exist a unique solution A = Ay
(€ [Ky, Kj)]) from Corollary 2. So we hold a ratio inequality in the following corollary
which is the noncommutative version of (13).

Corollary 6. Let A and B be positive invertible operators on H satisfying 0 < m; <
A < Ml, 0<my < B < MQ, my < M1 and mg < My. Put o :ml/Ml andﬂz mg/M2.
Then for any A > 0 and any unit vector x € H, v

(31) (A3, 7)7 (B'z,z)7 < Ao(BU/p APz, ),
where o € [Ky, Kj) is the constant defined by (9).
Proof. The equation Fy(\) = 0 has a unique solution A = )y (€ [Kjy, Ky]). So we have

from (25)
1 1K\
(E‘l)%*a(m) -



So, -

\ KK, 7 K, ~ 1 - a?pe
0= (K -1/ pl/rgt/a(K., — 1)1/4 o pPgt/a(B — af) VP (a — ap B)1/9°

Hence )y coincides with A which is the constant defined by (9). O

We remark that (31) is given the same inequality in [4, Theorem 4] and is the noncom-
mutative operator version of Gheorghiu’s inequality.

Remark 7. From the ratio inequalities (13) and (31),' these estimations are egivalent to
Ao and are the best, so the ratio inequalities derived from Hélder’s type operator inequality
have the same best estimations regardless of commutativity of operators A and B. On

the other hand, the differential estimations My MyFy(1) in Theorem 1 and qul‘{ Fy(1) in

Theorem 6 are not equivalent. Indeed, if p = q = 2, then M1 My Fy()\) = M1M2m§%,

TR0 = MlMg;l%(m%, and hence by 2(1+ o) (1 + ) > 48(1 + o) > 48(1 + aB) we

see that MiMoF()\) < Mt p A, 1,p). So the estimations of the difference inequalities
Bga-1

deried from Hélder’s type operator inequality depend on the commutativity of operators
A and B.
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