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LOGARITHMIC ORDER AND DUAL LOGARITHMIC ORDER

ﬁﬁﬂﬂk#‘@’?’%ﬂ HHZ#Z (Takayuki Furuta)

Abstract. We shall define the following four orders for strictly positive operators A and B on
a Hilbert space H such that 1 ¢ o(A),o(B).

I —
Strictly logarithmic order (denoted by A >4 B) is defined by A > B-1 .
logA =~ BlogB
. . . A-I _ B-~1I
Logarithmic order (denoted by A >; B) is defined by > .
log A log B

Alog A S Blog B
A-1 B-1"
log A
Dual Logarithmic order (denoted by A =g B) is defined by /;()_g 7 > B;ng.
Firstly we shall show direct and simplified proofs of operator monotonicity of logarithmic

. t— tlogt
function f(t) = Tog{ o1

In what follows, let A and B be strictly positive operators on a Hilbert space H such that

Strictly dual logarithmic order (denoted by A >4 B) is defined by

and dual logarithmic function f*(t) =

1 ¢ o(A),o(B). Secondary we shall show the followimg:
(x)  log A >log B = there exists 3 € (0, 1] such that A% >, B* holds forall a € (0, B).

() logA>logB = there exists B € (0, 1] such that A* >4 B* holds for all a € (0, 3).

By using these two results (x) and (}), we summarize the following interesting contrast among
A>B>0,A>B>0,logA >logB and log A > log B.

(Fi) A> B > 0 = there exists 8 € (0,1] such that A* >4 B® holds for all a € (0, 3).
(i) A> B >0 = A% =, B* for all a € (0, 1].

(Liii) log A > log B = for any & € (0, 1], there exists 8 = 5 € (0, 1] such that (e® A)* >4 B
holds for all a € (0, 3). '

(Fiv) log A > log B = for any p > 0 there exists K}, > 1 such that K, — 1 as p — +0 and
(K,A)P> = BP* for all o € (0,1).

(dli) A > B > 0 = there exists 3 € (0, 1] such that A% =4 B* holds for all a € (0, 8).
(dhii) A> B >0 = A® =4 B> for all a € (0, 1].

(dkiii) log A > log B == for any é € (0, 1], there exists 8 = fs € (0, 1] such that (e* A)* > ,q4; B*
holds for all a € (0, ).
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(dliv) log A > log B == for any p > 0 there exists K, > 1 such that K, — 1 as p — +0 and
(Kp)P™ =g BP* for all a € (0, 1].

Finally we cite a counterexample related to (Fiii) and (dkii).
1. Introduction

A capital letter means a bounded linear operator on a complex Hilbert space H. An operator
T is said to be positive (denoted by T' > 0) if (T'z,z) > 0 for all z € H and also an operator
T is said to be strictly positive (denoted by T > 0) if T' is positive and invertible. The strictly
chaotic order is defined by log A > log B for strictly positive operators A and B.

It is well known that the usual order A > B > 0 ensures the chaotic order log A > log B
since logt is operator monotone function.

Also it is known by [Theorem,6] and [Example 5.1.12 and Corollary 5.1.11, 5] that
A-1T S B-1

A>B
1 > B > 0 ensures TogA = Tog B

and

Alog A S Blog B

A-I1 — B-1

) -1 tlogt A

since f(t) = Togt (t>0,t#1) and f*(t) = — (t > 0,t # 1) are both operator monotone
t—

1
functions (see Theorem A underbelow). The function f(t) = Togt (t > 0,t # 1) is said
: 0
to be “logarithmic function” which is widely used in the theory of heat transfer of the heat
tlogt
" Ogl (t > 0,t # 1) is said to be

“dual logarithmic function”. Related to these two operator inequalities, we shall define the

‘A > B > 0 ensures

A

‘engineeriﬁg and fluid mechanics. Also the function f*(t) =

following four orders for strictly positive operators A and B such that 1 ¢ o(A), o(B).

Definition 1. Let A and B be strictly positive operators on a Hilbert space H such that
1 ¢ o(A),o(B).
. o . A-I B-1
(d1) Strictly logarithmic order (denoted by A > B) is defined by > .
log A log B

. A-1 _B-1
) 7 i > .
(d2) Logarithmic order (denoted by A >; B) is defined by g A > Tog B

AlogA BlogB
(d3) Strictly dual logarithmic order (denoted by A >4 B) is defined by Ao_g 7 > Bo_g T
Alog A > Blog B
A-I1 =~ B-1°

(d4) Dual Logarithmic order (denoted by A >g B) is defined by

2. Simplified proofs of operator monotonicity of logarithmic function and dual

logarithmic function
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We shall show a direct and simplified proof of the following result [Theorem , 6] and [Example.
5.1.12 and Corollary 5.1.11, 5] without use of Lowner general result.

Theorem A. The function f and f* given by

tb;t (t>0,t#1)
f) =41 (t=1)
0 (t=0)
" tfliglt (t>0,t#1)
frty=41 (t=1)
0 (t=0)

are operator monotone functions satisfying the symmetry condition:
1 1
76 = £F(5) and (1) = f° ().
Proof. Let A and B be strictly pyositiv'e operators such that 1 ¢ 0(A),o(B). We have only

to show the follov&ing (i) and (ii) since the latter half is obvious.

A-1T B-1T
i If A> B, the > .
() = 2, hhen logA =~ logB
log A Blog B
(i) If A > B, then Alog A Blog

A-I1 = B-1"
First of all, we cite the following obvious result;
(1) T—1=(T% —I)(T*"% +T' % +...4+T» +I) for T >0 and for any natural number 7.
(2) lim n(’]‘% — I) =logT holds for any T > 0. ,
n—00
(3) If A> B > 0,then A* > B® holds for any o € [0,1]. (Lowner-Heinz inequality)

. A-1T 1
i) —a——==-
'N,(A n — I) n

1
> (B % + B 4.+ B* + I) by (3) for any natural number n
n

v
= _BoT for any natural number n by (1)

(A% + A% 4 ..+ A% + 1) by (1) for any natural number n

n(Bw — I
tending n to 0o, so we obtain (i) by (2).
n(A= —I)A n
ii). = by (1) for any natural number n
() A-1 (A% + A% +..+ A7) y (1) Y
n
> by (3) for any natural number n
T (BT +B % +..+ B v () Y
n(B= —I)B
=— 7 _b
57 @)

tending n to oo, so we obtain (ii) by (2).

Remark 1. It is well known that (i) is equivalent to (ii) in Theorem A. Alternative proof of

(i) in the proof of Theorem A is cited in [5]. Related to Theorem A, we remark that the following
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result in [Corollary 2.6, 4], [Theorem 2, 7] and [Corollary 5.1.11, 5]: let g(t) be a continuous
positive function such that (0,00) — (0,00). Then g¢(t) is operator monotone function if and

t .
only if ¢*(t) = ——= is operator monotone function. Actually, f(¢t) and f*(t) in Theorem A

g9(t)

satisfy this condition f*(t) = —.

f(t)

3. Strictly logarithmic order A >, B and logarithmic order A >; B

Let A and B be strictly positive operators such that 1 & o(A),o(B). Firstly we shall give

Theorem 1 asserting the following
(%) log A > log B = there exists § € (0, 1] such that A% >4 B* holds for all a € (0, f).

Secondary, we shall give Corollary 2 showing that there exists an interesting contrast between
A>B >0and A > B > 0 related to A =4 B and A >, B. Thirdly, we shall give some
applications of two characterizations (Theorem A and Theorern B under below) of chaotic

order to A =4 Band A>; B in Corollary 3.

Lemma 1. Let A and B be invertible self adjoint operators on a Hilbert space H. If A > B,
then there exists B € (0,1] such that the following inequality holds for all a € (0, ) ;
A—T _e*P -1
aA > aBb
Proof. There exists € such that A — B > ¢ > 0. Choose o and [ such that

(4) 0<a<M7n{ e +E[—I—BJ B 1}=p
Ar s

, Le., e = B,

By an easy calculation, we obtain

4

aA_I
A

&

3|Q

00
Y
_.TI

;1|Q:

An 1 Bn—l)

_.az A B — a” An—l n—1
= oy(A- HZE( —-B"")

n=3

Z—(HAII" LBl 1)}
n=3
2[5 clIAll euBn

a-Oartsp| > @
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()(}'.A -7 (,(xB
so that —

oA abB

-1
holds,i.e., there exists 8 € (0, 1] such that e » . B holds for all
a € (0,0) and the probf is complete. ' ‘

Theorem 1.Let A and B be strictly positive operators such that 1 € o(A),o(B).
If log A > log B, then there exists 8 € (0,1] such that A* =4 B* holds for all o € (0, 53).

Proof. We have only to replace A by log A and also B by log B respectively in Lemma 1.
Corollary 2. Let A and B be strictly positive operators such that 1 & o(A),0(B). Then

(i) If A> B > 0, then there exists B € (0,1] such that A* >4 B* holds for all a € (0, 5).
(ii) If A> B > 0, then A* >=; B holds for all oo € (0, 1].

In Corollary 2, It is interesting to point out the contrast between A > B > 0and A > B > 0.
Proof of Corollary 2. (i). We cite the following obvious and fundamental result (5)
(5) If A> B >0, then log A > log B.

In fact if A> B > 0, then A > B +¢ > B for some € > 0, so that log A > log(B + ¢) > log B,
that is, (5) holds. (i) follows by (5) and Theorem 1. |

(ii). If A > B > 0, then A* > B* for all « € (0,1] by Léwner-Heinz inequality and (ii) follows
by the result that the function f(t) = —ia_é—{ (t > 0,t # 1) is an operator monotone function
by Theorem A,i.e., f(A%) > f(B%) for all a € (0,1] , so we have (ii).

Corollary 3. Let A and B be strictly positive operators such that 1 ¢ o(A),o(B) and
log A > log B. Then
(i) For any & €°(0,1] there exists B = Bs € (0,1] such that (e5‘A)°‘ =st B* holds for all
ac (0:, B).
(ii) For any p > 0 there exists K, > 1 such that K, — 1 as p — +0 and (K,A)?* = BP* for
all o« € (0,1].

We cite the following two results in order to give a proof of Corollary 3.

Theorem A [1)[3].Let A and B be invertible positive operators on a Hilbert space H. log A >
log B holds if and only if for any & € (0,1] there exists o = a5 > 0 such that (e A)* > B>.

Theorem B [8].Let A and B be invertible positive operators on a Hilbert space H. log A >
log B if and only if for any p > 0 there exists a K, > 1 such that K, — 1 as p — +0 and
(K,A)? > BP.
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Proof of Corollary 3.
(i). AslogA > log B holds, then for any 6§ € (0,1], there exists o' = aj > 0 such that
(! A)* > B* by Theorem A. Then log e’ A > log B by (5), so that there exists 8 = f5 € (0,1]
such that (e® A)® >4 B* holds for all a € (0,8) by Theorem 1.

(ii). Aslog A > log B holds, then for any p > 0 there exists a there exists K, > 1 such that K,
— 1 as p — +0 and (K,A)? > B? by Theoren B, so we have (K,A)?* > B** for all « € (0,1]
by (ii) of Corollary 2

4. Strictly dual logarithmic order A ;4 B and dual logarithmic order A >4 B

Let A and B be strictly positive operators such that 1 € o(A),o(B). Firstly we shall give

Theorem 4 asserting the following
(f) log A > log B = there exists 8 € (0,1} such that A% >4 B holds for all a € (0,0).

Secondary, we shall give Corollary 5 showing that there exists an interesting contrast between
A>B>0and A> B > 0 related to A =, B and A >4 B. Thirdly, we shall give some
applications of Theorem A and Theorem B to A >4 B and A >4 B in Corollary 6.

Lemma 2.Let A and B be invertible self adjoint operators on a Hilbert space H. If A > B,
then there exists 3 € (0,1] such that the following inequality holds for all a € (0,0) ;

aAe®A > aBe*B
etA 7 eaB T’

Proof. As —B > —A holds, by applying Lemma 1 , there exists § € (0, 1] such that

ie., e*4 > 4 e*B.

P S e A _ |
—aB —aA
CeB T AT _ adAe*A aBe*B .
holds fo}" all a € (0,0). That is, oo > Ao A holds iff Y- > B ] hqlds Jde.,

there exists 3 € (0,1] such that e*4 >4 e®B holds for all « € (0, 3) and the proof is complete.

Theorem 4.Let A and B be strictly positive operators such that 1 € o(A),o(B).
Iflog A > log B, then there exists 8 € (0,1] such that A* »,q B* holds for all a € 0,8).

Proof. We have only to replace A by log A and also B by log B respectively in Lemma 2.

Corollary 5. Let A and B be strictly positive operators such that 1 ¢ 0(A),o(B). Then

(i) If A> B > 0, then there exists 8 € (0,1] such that A* ».q B* holds for all & € (0,0).
(ii) If A> B > 0, then A® >4 B* for all o € (0,1].
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In Corollary 5, It is interesting to point out the contrast between A > B > 0and A > B > 0.

%

Proof of Corolléry 5. By the same way as a proof of Coroilary 2, we shall give the following
proofs of (i) and (ii).
(i). If A> B > 0, then log A > log B holds by (5), so that (i) follows by Theorem 4.
(i). If A > B > 0, then A* > B for all @ € (0, 1] by Léwner-Heinz inequality. The function
fx@) = ilc—)g 1t (t > 0,t # 1) is also an operé.tor monotone function by Theorem A, so that
[*(AY) > f*(B®) for all a € (0,1}, so we have (ii).

Corollary 6. Let A and B be strictly positive operators such that 1 ¢ o(A),0(B) and
log A > log B. Then
(i). For any & € (0,1] there exists B = Bs € (0,1] such that (e?A)* »sqr B* holds for all
a € (0,5).
(ii). For any p > O there exists K, > 1 such that K, — 1 as p — +0 and (K, A)P* >—,jl Bre
for all « € (0,1]. ’

Proof of Corollary 6. We shall obtain Corollary 6 by the same way as one in Corollary 3.

(i). As log A > log B holds, then for any § € (0,1], there exists &' = oj > 0 such that
(e?A)* > B* by Theorem A. Then loge® A > log B by (5), so that there exists 8 = 5 € (0, 1]
such that (¢4 A)* g B holds for all a € (0, 3) by Theorem 4.

(ii). As log A > log B holds, then for any p > 0 there exists a there exists K, > 1 such
that K, — 1 as p — +0 and (K,A)? > BP by Theorem B, so that (K,A)P® >4 BP* for all
a € (0, 1] by (ii) of Corollary 5.

5. An example related to strictly logarithmic order A >~ B and strictly dual
logarithmic order A >4 B

Related to (i) of Corollary 3, we consider the following problem:
(Q1) “Docs log A > log B ensure that there exists an o > 0 such that A% >, B*?”
Also related to (i) of Corollary 6, we consider the following problem too;

(Q2) “Does log A > log B ensure that there exists an o > 0 such that A% >4 B*?”

In fact, we cite a counterexample to (Q1) and (Q2) as follows.
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Example 1. Take A and B as follows:

oga = ( 2) i logB (1 “)
g T = .
o8 2 -1 ¢ 6 0 -5

Then log A > log B holds , but

(1) A® =, B™ does not hold for any a > 0.
(ii) A% =g B* does not hold for any o > 0.
(iii) A® > B does not hold for any a > 0.

. 1 -1 2
In fact, log A is diagonalized by U = — as follows;
sty 1= (1)

U (log A)U (_2 0) d UAU (e—z 0)
= ,a'n = b
8 0 3 0

so that we have

e”2* 0 e” 0
A":U( U and B> = )
0 eSa 0 e—Sa

Put x = ¢* > 1 since a > 0. At first we show (i). By a slight elaborate calculation, we have

lt(A"‘—I B B"‘—[)
e log A log B

) 1 423 1 1 223

16T t0e2 "t TS
1 1 273 2 1 2 3

st52t 5 Bl 2T T
-1 1 1 4 2 3z 9r3 gzt

5027 + 6z5 bzt  25x? + oz 10 * 50 15

—(x — 1)8(102° + 33x* + 4823 + 3822 + 18z + 3) ,
= 5007 < 0 since x > 1.

Whence A® >; B* does not hold for any a > 0, so the proof of (i) is complete.

Next we show (ii). By more elaborate calculation than (i), we obtain

A%logA DB%log B
de ( Ac 1 Ba—.r)
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T3 + 952 +x - 2 2(3z% + 622 + 4z + 2)
5(x3 + 222 4+ 22 + 1) 5(x3 + 222 + 2z + 1)
2(3z% + 622 + 4z +2)  3x* + 32® + 822 + 8z + 8 5(x —1)
5(x® + 222 + 2z + 1) 5(x¢ 4+ 23 —x—1) —z8 425+ —1
o T2+ 92 4z —2 3z + 3z + 8% + 81 + 8 5(x — 1)
o\ B(x3 4222 + 22 +1) S5(t+23—2-1) —zb 4+ 25+ -1

2
[ 232 + 627 + 42 + 2)
5(x3 +222 + 2z + 1)

—(r — 1)%(325 + 18z* + 38z + 48x% + 33z + 10)

< 0 si >1
5+ 1)(x2+z+1)(zt+ 23+ +x+1) since

Whence A% =4 B* does not hold for any a > 0, so the proof of (ii) is complete.

Incidentally, we remark that this example also shows that log A > log B does not ensure

A% > B® for any « > 0. Actually we have

det(A* — B*)

1 4 2z - 1)
_ |52 """ 5 512
o 2(z% - 1) 8 + 423 -5
5x? 55
-1 ., 4 4 z*
57T T2 YT H

—(z =D+ 1) (= +x+1)(z* +22° + 42% + 20 + 1
o (xr = 1)*(z+1)(z +T“; Z(T+x+r+m+)<03incew‘>1,
xT

that is, A* > B® does not hold for any o > 0, so (iii) is shown. In [2], there is another nice

example that log A > log B does not ensure A* > B® for any a > 0. In fact, we construct

Example 1 inspired by an excellent method in [2].
6. Concluding remarks

Let A and B be strictly positive operators such that 1 ¢ o(A4),0(B). We can obtain the
following interesting contrast among A > B >0, A > B > 0, log A > log B and log A > log B

by summarizing our results in this paper.
(x)  log A > log B = there exists € (0, 1] such that A® >4 B* holds for all & € (0, 3).
(1) log A > log B = there exists 3 € (0, 1] such that A* >4 B* holds for all a € (0,03).

(L) A > B > 0 = there exists 3 € (0, 1] such that A* >4 B holds for all a € (0, 3).
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(Fii) A> B >0= A*»; B* for all a € (0,1].

(Liii) log A > log B = for any 6 € (0, 1], there exists 8 = 5 € (0, 1] such that (2 A)™ =4 B>
holds for all a € (0, ).

(Liv) log A > log B = for any p > 0 there exists K, > 1 such that K, — 1 as p — +0 and
(K, A)P* > BP* for all a € (0, 1].

(dki) A > B > 0 = there exists 3 € (0, 1] such that A* >4 B* holds for all o € (0, ).
(dkii) A> B> 0 = A® =g B for all a € (0,1].

(dkiii) log A > log B = for any 6 € (0, 1], there exists 8 = B5 € (0, 1] such that (e’ A)* =4 B*
holds for all a € (0, 3).

(dLiv) log A > log B = for any p > 0 there exists K, > 1 such that K, — 1 as p — +0 and
(Kp)P* =4 BP* for all a € (0,1].
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7. Appendix

Simple proof of the concavity on operator entropy f(A) = —AlogA

A capital letter means a bounded linear and strictly positive operator on a Hilbert space.
Here we shall give a simple proof of the following well known and excellent result obtained by

[1] and [2] independently.
Theorem A. f(A) = —AlogA is concave function for any A > 0.
Proof. Firstly we recall the following obvious result

(* v lim (T_T1 — Dn = —logT for any T > 0.

n—00
As g(t) = t9 is operator concave for ¢q € [0,1], then for A > 0, B > 0 and a, 3 € [0,1] such

that o + 3 =1

1—1
> Al + ﬁBl_% for any natural number n

((yA + ﬂB)

so we obtain

(A + BD) ((aA +AB)* — I)n > qA(A™% — I)n+ BB(B~* — I)n

tending n. — oo, we have

—(aA + BB)log(aA + BB) > (—aAlogA — BlogB) by (*)
that is,

faA+BB) > af(A) + Bf(B)
so the proof is complete.
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