LOGARITHMIC ORDER AND DUAL LOGARITHMIC ORDER

東京理科大学理学部 古田孝之 (Takayuki Furuta)

Abstract. We shall define the following four orders for strictly positive operators A and B on a Hilbert space H such that $1 \notin \sigma(A), \sigma(B)$.

Strictly logarithmic order (denoted by $A \succ_{sl} B$) is defined by $\frac{A-I}{\log A} > \frac{B-I}{B \log B}$.

Logarithmic order (denoted by $A \succ_l B$) is defined by $\frac{A-I}{\log A} \ge \frac{B-I}{\log B}$.

Strictly dual logarithmic order (denoted by $A \succ_{sdl} B$) is defined by $\frac{A \log A}{A - I} > \frac{B \log B}{B - I}$.

Dual Logarithmic order (denoted by $A \succ_{dl} B$) is defined by $\frac{A \log A}{A - I} \ge \frac{B \log B}{B - I}$.

Firstly we shall show direct and simplified proofs of operator monotonicity of logarithmic function $f(t) = \frac{t-1}{\log t}$ and dual logarithmic function $f^*(t) = \frac{t \log t}{t-1}$.

In what follows, let A and B be strictly positive operators on a Hilbert space H such that $1 \notin \sigma(A), \sigma(B)$. Secondary we shall show the following:

- (*) $\log A > \log B \Longrightarrow \text{ there exists } \beta \in (0,1] \text{ such that } A^{\alpha} \succ_{sl} B^{\alpha} \text{ holds for all } \alpha \in (0,\beta).$
- (‡) $\log A > \log B \Longrightarrow \text{ there exists } \beta \in (0,1] \text{ such that } A^{\alpha} \succ_{sdl} B^{\alpha} \text{ holds for all } \alpha \in (0,\beta).$

By using these two results (*) and (‡), we summarize the following interesting contrast among A > B > 0, $A \ge B > 0$, $\log A > \log B$ and $\log A \ge \log B$.

- (*l*i) $A > B > 0 \Longrightarrow$ there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (*l*·ii) $A \ge B > 0 \Longrightarrow A^{\alpha} \succ_{l} B^{\alpha}$ for all $\alpha \in (0,1]$.
- (*l*-iii) $\log A \ge \log B \Longrightarrow$ for any $\delta \in (0,1]$, there exists $\beta = \beta_{\delta} \in (0,1]$ such that $(e^{\delta}A)^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (*l*-iv) $\log A \ge \log B \Longrightarrow$ for any $p \ge 0$ there exists $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p A)^{p\alpha} \succ_l B^{p\alpha}$ for all $\alpha \in (0,1]$.
- $(dl\text{-i}) \ A > B > 0 \Longrightarrow \text{there exists } \beta \in (0,1] \text{ such that } A^{\alpha} \succ_{sdl} B^{\alpha} \text{ holds for all } \alpha \in (0,\beta).$ $(dl\text{-ii}) \ A \geq B > 0 \Longrightarrow A^{\alpha} \succ_{dl} B^{\alpha} \text{ for all } \alpha \in (0,1].$
- $(dl\text{-iii}) \log A \ge \log B \Longrightarrow \text{for any } \delta \in (0,1], \text{ there exists } \beta = \beta_{\delta} \in (0,1] \text{ such that } (e^{\delta}A)^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.

 $(dl\text{-iv}) \log A \ge \log B \Longrightarrow \text{ for any } p \ge 0 \text{ there exists } K_p > 1 \text{ such that } K_p \to 1 \text{ as } p \to +0 \text{ and } k_p \to 1 \text{ and } k_p \to 1 \text{ as } k_p \to +0 \text{ and } k_p \to 1 \text{ as } k_p \to +0 \text{ and } k_p \to +0$ $(K_p)^{p\alpha} \succ_{dl} B^{p\alpha}$ for all $\alpha \in (0,1]$.

Finally we cite a counterexample related to (*l*-iii) and (*dl*-iii).

1. Introduction

A capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \ge 0$) if $(Tx, x) \ge 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by T > 0) if T is positive and invertible. The strictly chaotic order is defined by $\log A > \log B$ for strictly positive operators A and B.

It is well known that the usual order $A \geq B > 0$ ensures the chaotic order $\log A \geq \log B$ since *logt* is operator monotone function.

Also it is known by [Theorem,6] and [Example 5.1.12 and Corollary 5.1.11, 5] that

$$A \ge B > 0$$
 ensures $\frac{A-I}{\log A} \ge \frac{B-I}{\log B}$

and

$$A \ge B > 0$$
 ensures $\frac{A \log A}{A - I} \ge \frac{B \log B}{B - I}$

since $f(t) = \frac{t-1}{\log t}$ $(t>0, t \neq 1)$ and $f^*(t) = \frac{t \log t}{t-1}$ $(t>0, t \neq 1)$ are both operator monotone functions (see Theorem A underbelow). The function $f(t) = \frac{t-1}{\log t}$ $(t > 0, t \neq 1)$ is said to be "logarithmic function" which is widely used in the theory of heat transfer of the heat engineering and fluid mechanics. Also the function $f^*(t) = \frac{t \log t}{t-1}$ $(t > 0, t \neq 1)$ is said to be "dual logarithmic function". Related to these two operator inequalities, we shall define the following four orders for strictly positive operators A and B such that $1 \notin \sigma(A), \sigma(B)$.

Definition 1. Let A and B be strictly positive operators on a Hilbert space H such that $1 \notin \sigma(A), \sigma(B).$

- (d1) Strictly logarithmic order (denoted by $A \succ_{sl} B$) is defined by $\frac{A-I}{\log A} > \frac{B-I}{\log B}$.
- (d2) Logarithmic order (denoted by $A \succ_l B$) is defined by $\frac{A-I}{\log A} \geq \frac{B-I}{\log B}$
- (d3) Strictly dual logarithmic order (denoted by $A \succ_{sdl} B$) is defined by $\frac{A \log A}{A I} > \frac{B \log B}{B I}$. (d4) Dual Logarithmic order (denoted by $A \succ_{dl} B$) is defined by $\frac{A \log A}{A I} \ge \frac{B \log B}{B I}$.
- Simplified proofs of operator monotonicity of logarithmic function and dual logarithmic function

We shall show a direct and simplified proof of the following result [Theorem, 6] and [Example, 5.1.12 and Corollary 5.1.11, 5] without use of Löwner general result.

Theorem A. The function f and

$$f(t) = \begin{cases} \frac{t-1}{\log t} & (t > 0, t \neq 1) \\ 1 & (t = 1) \\ 0 & (t = 0) \end{cases}$$

Theorem A. The function
$$f$$
 and f' given by
$$f(t) = \begin{cases} \frac{t-1}{\log t} & (t>0, t \neq 1) \\ 1 & (t=1) \\ 0 & (t=0) \end{cases}$$
 and
$$f^*(t) = \begin{cases} \frac{t \log t}{t-1} & (t>0, t \neq 1) \\ 1 & (t=1) \\ 0 & (t=0) \end{cases}$$
 are operator monotone functions satisfying the symmetry condition:
$$f(t) = tf(\frac{1}{t}) \text{ and } f^*(t) = tf^*(\frac{1}{t}).$$
Proof. Let A and B be strictly positive operators such that $1 \notin \sigma(A)$, $\sigma(B)$

$$f(t) = tf(\frac{1}{t}) \text{ and } f^*(t) = tf^*(\frac{1}{t}).$$

Proof. Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. We have only to show the following (i) and (ii) since the latter half is obvious.

(i) If
$$A \ge B$$
, then $\frac{A-I}{\log A} \ge \frac{B-I}{\log B}$.

(ii) If
$$A \ge B$$
, then $\frac{A \log A}{A - I} \ge \frac{B \log B}{B - I}$.

First of all, we cite the following obvious result;

- (1) $T I = (T^{\frac{1}{n}} I)(T^{1 \frac{1}{n}} + T^{1 \frac{2}{n}} + \dots + T^{\frac{1}{n}} + I)$ for $T \ge 0$ and for any natural number n.
- (2) $\lim_{n \to \infty} n(T^{\frac{1}{n}} I) = \log T$ holds for any $T \ge 0$. (3) If $A \ge B \ge 0$, then $A^{\alpha} \ge B^{\alpha}$ holds for any $\alpha \in [0, 1]$. (Löwner-Heinz inequality)

(i).
$$\frac{A-I}{n(A^{\frac{1}{n}}-I)} = \frac{1}{n}(A^{1-\frac{1}{n}} + A^{1-\frac{2}{n}} + \dots + A^{\frac{1}{n}} + I) \text{ by (1) for any natural number } n$$

$$\geq \frac{1}{n}(B^{1-\frac{1}{n}} + B^{1-\frac{2}{n}} + \dots + B^{\frac{1}{n}} + I) \text{ by (3) for any natural number } n$$

$$= \frac{B-I}{n(B^{\frac{1}{n}}-I)} \text{ for any natural number } n \text{ by (1)}$$

tending n to ∞ , so we obtain (i) by (2).

(ii).
$$\frac{n(A^{\frac{1}{n}} - I)A}{A - I} = \frac{n}{(A^{-\frac{1}{n}} + A^{-\frac{2}{n}} + \dots + A^{-1})} \text{ by (1) for any natural number } n$$

$$\geq \frac{n}{(B^{-\frac{1}{n}} + B^{-\frac{2}{n}} + \dots + B^{-1})} \text{ by (3) for any natural number } n$$

$$= \frac{n(B^{\frac{1}{n}} - I)B}{B - I} \text{ by (1)}$$

tending n to ∞ , so we obtain (ii) by (2).

Remark 1. It is well known that (i) is equivalent to (ii) in Theorem A. Alternative proof of (i) in the proof of Theorem A is cited in [5]. Related to Theorem A, we remark that the following

result in [Corollary 2.6, 4], [Theorem 2, 7] and [Corollary 5.1.11, 5]: let g(t) be a continuous positive function such that $(0, \infty) \to (0, \infty)$. Then g(t) is operator monotone function if and only if $g^*(t) = \frac{t}{g(t)}$ is operator monotone function. Actually, f(t) and $f^*(t)$ in Theorem A satisfy this condition $f^*(t) = \frac{t}{f(t)}$.

3. Strictly logarithmic order $A \succ_{sl} B$ and logarithmic order $A \succ_{l} B$

Let A and B be strictly positive operators such that $1 \notin \sigma(A)$, $\sigma(B)$. Firstly we shall give Theorem 1 asserting the following

(*) $\log A > \log B \Longrightarrow$ there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.

Secondary, we shall give Corollary 2 showing that there exists an interesting contrast between $A \geq B > 0$ and A > B > 0 related to $A \succ_{sl} B$ and $A \succ_{l} B$. Thirdly, we shall give some applications of two characterizations (Theorem A and Theorem B under below) of chaotic order to $A \succ_{sl} B$ and $A \succ_{l} B$ in Corollary 3.

Lemma 1. Let A and B be invertible self adjoint operators on a Hilbert space H. If A > B, then there exists $\beta \in (0,1]$ such that the following inequality holds for all $\alpha \in (0,\beta)$;

$$\frac{e^{\alpha A} - I}{\alpha A} > \frac{e^{\alpha B} - I}{\alpha B}$$
, i.e., $e^{\alpha A} \succ_{sl} e^{\alpha B}$.

Proof. There exists ε such that $A - B \ge \varepsilon > 0$. Choose α and β such that

(4)
$$0 < \alpha < Min\{\frac{\varepsilon}{2} \left(\frac{e^{||A||}}{||A||} + \frac{e^{||B||}}{||B||} \right)^{-1}, 1\} = \beta.$$

By an easy calculation, we obtain

$$\frac{e^{\alpha A} - I}{A} - \frac{e^{\alpha B} - I}{B} = \sum_{n=1}^{\infty} \frac{\alpha^n}{n!} A^{n-1} - \sum_{n=1}^{\infty} \frac{\alpha^n}{n!} B^{n-1}$$

$$= \sum_{n=2}^{\infty} \frac{\alpha^n}{n!} (A^{n-1} - B^{n-1})$$

$$= \frac{\alpha^2}{2!} (A - B) + \sum_{n=3}^{\infty} \frac{\alpha^n}{n!} (A^{n-1} - B^{n-1})$$

$$\ge \frac{\alpha^2}{2!} \varepsilon - \alpha^3 \left[\sum_{n=3}^{\infty} \frac{1}{n!} (||A||^{n-1} + ||B||^{n-1}) \right]$$

$$\ge \alpha^2 \left[\frac{\varepsilon}{2!} - \alpha \left(\frac{e^{||A||}}{||A||} + \frac{e^{||B||}}{||B||} \right) \right] > 0 \quad \text{by (4)},$$

so that $\frac{e^{\alpha A} - I}{\alpha A} - \frac{e^{\alpha B} - I}{\alpha B}$ holds, i.e., there exists $\beta \in (0,1]$ such that $e^{\alpha A} \succ_{sl} e^{\alpha B}$ holds for all $\alpha \in (0,\beta)$ and the proof is complete.

Theorem 1.Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. If $\log A > \log B$, then there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.

Proof. We have only to replace A by $\log A$ and also B by $\log B$ respectively in Lemma 1.

Corollary 2. Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. Then

- (i) If A > B > 0, then there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (ii) If $A \geq B > 0$, then $A^{\alpha} \succ_{l} B^{\alpha}$ holds for all $\alpha \in (0,1]$.

In Corollary 2, It is interesting to point out the contrast between A > B > 0 and $A \ge B > 0$.

Proof of Corollary 2. (i). We cite the following obvious and fundamental result (5)

(5) If
$$A > B > 0$$
, then $\log A > \log B$.

In fact if A > B > 0, then $A \ge B + \varepsilon > B$ for some $\varepsilon > 0$, so that $\log A \ge \log(B + \varepsilon) > \log B$, that is, (5) holds. (i) follows by (5) and Theorem 1.

(ii). If $A \geq B > 0$, then $A^{\alpha} \geq B^{\alpha}$ for all $\alpha \in (0,1]$ by Löwner-Heinz inequality and (ii) follows by the result that the function $f(t) = \frac{t-1}{\log t}$ $(t>0,t\neq 1)$ is an operator monotone function by Theorem A,i.e., $f(A^{\alpha}) \geq f(B^{\alpha})$ for all $\alpha \in (0,1]$, so we have (ii).

Corollary 3. Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$ and $\log A > \log B$. Then

- (i) For any $\delta \in (0,1]$ there exists $\beta = \beta_{\delta} \in (0,1]$ such that $(e^{\delta}A)^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (ii) For any $p \ge 0$ there exists $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p A)^{p\alpha} \succ_l B^{p\alpha}$ for all $\alpha \in (0,1]$.

We cite the following two results in order to give a proof of Corollary 3.

Theorem A [1][3].Let A and B be invertible positive operators on a Hilbert space H. $\log A \ge \log B$ holds if and only if for any $\delta \in (0,1]$ there exists $\alpha = \alpha_{\delta} > 0$ such that $(e^{\delta}A)^{\alpha} > B^{\alpha}$.

Theorem B [8].Let A and B be invertible positive operators on a Hilbert space H. $\log A \ge \log B$ if and only if for any $p \ge 0$ there exists a $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p A)^p \ge B^p$.

Proof of Corollary 3.

- (i). As $\log A \geq \log B$ holds, then for any $\delta \in (0,1]$, there exists $\alpha' = \alpha'_{\delta} > 0$ such that $(e^{\delta}A)^{\alpha'} > B^{\alpha'}$ by Theorem A. Then $\log e^{\delta}A > \log B$ by (5), so that there exists $\beta = \beta_{\delta} \in (0,1]$ such that $(e^{\delta}A)^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$ by Theorem 1.
- (ii). As $\log A \ge \log B$ holds, then for any $p \ge 0$ there exists a there exists $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p A)^p \ge B^p$ by Theoren B, so we have $(K_p A)^{p\alpha} \ge B^{p\alpha}$ for all $\alpha \in (0,1]$ by (ii) of Corollary 2
- 4. Strictly dual logarithmic order $A \succ_{sdl} B$ and dual logarithmic order $A \succ_{dl} B$ Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. Firstly we shall give Theorem 4 asserting the following
- (†) $\log A > \log B \Longrightarrow$ there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$. Secondary, we shall give Corollary 5 showing that there exists an interesting contrast between $A \geq B > 0$ and A > B > 0 related to $A \succ_{sdl} B$ and $A \succ_{dl} B$. Thirdly, we shall give some applications of Theorem A and Theorem B to $A \succ_{sdl} B$ and $A \succ_{dl} B$ in Corollary 6.

Lemma 2.Let A and B be invertible self adjoint operators on a Hilbert space H. If A > B, then there exists $\beta \in (0,1]$ such that the following inequality holds for all $\alpha \in (0,\beta)$;

$$\frac{\alpha A e^{\alpha A}}{e^{\alpha A} - I} > \frac{\alpha B e^{\alpha B}}{e^{\alpha B} - I} \text{ , i.e., } e^{\alpha A} \succ_{sdl} e^{\alpha B}.$$

Proof. As -B > -A holds, by applying Lemma 1 , there exists $\beta \in (0,1]$ such that

$$\frac{e^{-\alpha B}-I}{-\alpha B}>\frac{e^{-\alpha A}-I}{-\alpha A}\;.$$

holds for all $\alpha \in (0, \beta)$. That is, $\frac{e^{\alpha B} - I}{\alpha B e^{\alpha B}} > \frac{e^{\alpha A} - I}{\alpha A e^{\alpha A}}$ holds iff $\frac{\alpha A e^{\alpha A}}{e^{\alpha A} - I} > \frac{\alpha B e^{\alpha B}}{e^{\alpha B} - I}$ holds ,i.e.,

there exists $\beta \in (0,1]$ such that $e^{\alpha A} \succ_{sdl} e^{\alpha B}$ holds for all $\alpha \in (0,\beta)$ and the proof is complete.

Theorem 4.Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. If $\log A > \log B$, then there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.

Proof. We have only to replace A by $\log A$ and also B by $\log B$ respectively in Lemma 2.

Corollary 5. Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. Then

- (i) If A > B > 0, then there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (ii) If $A \ge B > 0$, then $A^{\alpha} \succ_{dl} B^{\alpha}$ for all $\alpha \in (0, 1]$.

In Corollary 5, It is interesting to point out the contrast between A > B > 0 and $A \ge B > 0$.

Proof of Corollary 5. By the same way as a proof of Corollary 2, we shall give the following proofs of (i) and (ii).

- (i). If A > B > 0, then $\log A > \log B$ holds by (5), so that (i) follows by Theorem 4.
- (ii). If $A \geq B > 0$, then $A^{\alpha} \geq B^{\alpha}$ for all $\alpha \in (0,1]$ by Löwner-Heinz inequality. The function $f^*(t) = \frac{t \log t}{t-1}$ $(t > 0, t \neq 1)$ is also an operator monotone function by Theorem A, so that $f^*(A^{\alpha}) \geq f^*(B^{\alpha})$ for all $\alpha \in (0,1]$, so we have (ii).

Corollary 6. Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$ and $\log A \geq \log B$. Then

- (i). For any $\delta \in (0,1]$ there exists $\beta = \beta_{\delta} \in (0,1]$ such that $(e^{\delta}A)^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (ii). For any $p \ge 0$ there exists $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p A)^{p\alpha} \succ_{dl} B^{p\alpha}$ for all $\alpha \in (0,1]$.

Proof of Corollary 6. We shall obtain Corollary 6 by the same way as one in Corollary 3.

- (i). As $\log A \geq \log B$ holds, then for any $\delta \in (0,1]$, there exists $\alpha' = \alpha'_{\delta} > 0$ such that $(e^{\delta}A)^{\alpha'} > B^{\alpha'}$ by Theorem A. Then $\log e^{\delta}A > \log B$ by (5), so that there exists $\beta = \beta_{\delta} \in (0,1]$ such that $(e^{\delta}A)^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$ by Theorem 4.
- (ii). As $\log A \ge \log B$ holds, then for any $p \ge 0$ there exists a there exists $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p A)^p \ge B^p$ by Theorem B, so that $(K_p A)^{p\alpha} \succ_{dl} B^{p\alpha}$ for all $\alpha \in (0,1]$ by (ii) of Corollary 5.
- 5. An example related to strictly logarithmic order $A \succ_{sl} B$ and strictly dual logarithmic order $A \succ_{sdl} B$

Related to (i) of Corollary 3, we consider the following problem:

(Q1) "Does $\log A \ge \log B$ ensure that there exists an $\alpha > 0$ such that $A^{\alpha} \succ_l B^{\alpha}$?"

Also related to (i) of Corollary 6, we consider the following problem too;

(Q2) "Does $\log A \ge \log B$ ensure that there exists an $\alpha > 0$ such that $A^{\alpha} \succ_{dl} B^{\alpha}$?"

In fact, we cite a counterexample to (Q1) and (Q2) as follows.

Example 1. Take A and B as follows:

$$\log A = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} \qquad and \qquad \log B = \begin{pmatrix} 1 & 0 \\ 0 & -5 \end{pmatrix}.$$

Then $\log A \ge \log B$ holds, but

(i)
$$A^{\alpha} \succ_{l} B^{\alpha}$$
 does not hold for any $\alpha > 0$.

(ii)
$$A^{\alpha} \succ_{dl} B^{\alpha}$$
 does not hold for any $\alpha > 0$.

(iii)
$$A^{\alpha} \geq B^{\alpha}$$
 does not hold for any $\alpha > 0$.

In fact, $\log A$ is diagonalized by $U = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$ as follows;

$$U(\log A)U = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$$
, and $UAU = \begin{pmatrix} e^{-2} & 0 \\ 0 & e^{3} \end{pmatrix}$,

so that we have

$$A^{\alpha} = U \begin{pmatrix} e^{-2\alpha} & 0 \\ 0 & e^{3\alpha} \end{pmatrix} U$$
 and $B^{\alpha} = \begin{pmatrix} e^{\alpha} & 0 \\ 0 & e^{-5\alpha} \end{pmatrix}$.

Put $x = e^{\alpha} > 1$ since $\alpha > 0$. At first we show (i). By a slight elaborate calculation, we have

$$\det\left(\frac{A^{\alpha} - I}{\log A} - \frac{B^{\alpha} - I}{\log B}\right)$$

$$= \begin{vmatrix} \frac{5}{6} - \frac{1}{10x^2} - x + \frac{4x^3}{15} & -\frac{1}{3} + \frac{1}{5x^2} + \frac{2x^3}{15} \\ -\frac{1}{3} + \frac{1}{5x^2} + \frac{2x^3}{15} & \frac{2}{15} + \frac{1}{5x^5} - \frac{2}{5x^2} + \frac{x^3}{15} \end{vmatrix}$$

$$= \frac{-1}{50x^7} + \frac{1}{6x^5} - \frac{1}{5x^4} - \frac{4}{25x^2} + \frac{2}{5x} - \frac{3x}{10} + \frac{9x^3}{50} - \frac{x^4}{15}$$

$$= \frac{-(x-1)^6(10x^5 + 33x^4 + 48x^3 + 38x^2 + 18x + 3)}{150x^7} < 0 \text{ since } x > 1.$$

Whence $A^{\alpha} \succ_{l} B^{\alpha}$ does not hold for any $\alpha > 0$, so the proof of (i) is complete.

Next we show (ii). By more elaborate calculation than (i), we obtain

$$\det\left(\frac{A^{\alpha}\log A}{A^{\alpha}-I}-\frac{B^{\alpha}\log B}{B^{\alpha}-I}\right)$$

$$= \begin{vmatrix} \frac{7x^3 + 9x^2 + x - 2}{5(x^3 + 2x^2 + 2x + 1)} & \frac{2(3x^3 + 6x^2 + 4x + 2)}{5(x^3 + 2x^2 + 2x + 1)} \\ \frac{2(3x^3 + 6x^2 + 4x + 2)}{5(x^3 + 2x^2 + 2x + 1)} & \frac{3x^4 + 3x^3 + 8x^2 + 8x + 8}{5(x^4 + x^3 - x - 1)} + \frac{5(x - 1)}{-x^6 + x^5 + x - 1} \end{vmatrix}$$

$$= \left(\frac{7x^3 + 9x^2 + x - 2}{5(x^3 + 2x^2 + 2x + 1)} \right) \left(\frac{3x^4 + 3x^3 + 8x^2 + 8x + 8}{5(x^4 + x^3 - x - 1)} + \frac{5(x - 1)}{-x^6 + x^5 + x - 1} \right)$$

$$- \left(\frac{2(3x^3 + 6x^2 + 4x + 2)}{5(x^3 + 2x^2 + 2x + 1)} \right)^2$$

$$= \frac{-(x - 1)^2(3x^5 + 18x^4 + 38x^3 + 48x^2 + 33x + 10)}{5(x + 1)(x^2 + x + 1)(x^4 + x^3 + x^2 + x + 1)} < 0 \text{ since } x > 1$$

Whence $A^{\alpha} \succ_{dl} B^{\alpha}$ does not hold for any $\alpha > 0$, so the proof of (ii) is complete.

Incidentally, we remark that this example also shows that $\log A \ge \log B$ does not ensure $A^{\alpha} \ge B^{\alpha}$ for any $\alpha > 0$. Actually we have

$$\det(A^{\alpha} - B^{\alpha})$$

$$= \begin{vmatrix} \frac{1}{5x^{2}} - x + \frac{4x^{3}}{5} & \frac{2(x^{5} - 1)}{5x^{2}} \\ \frac{2(x^{5} - 1)}{5x^{2}} & \frac{x^{8} + 4x^{3} - 5}{5x^{5}} \end{vmatrix}$$

$$= \frac{-1}{5x^{7}} + x^{-4} - \frac{4}{5x^{2}} - \frac{4}{5x} + x - \frac{x^{4}}{5}$$

$$= \frac{-(x - 1)^{4}(x + 1)(x^{2} + x + 1)(x^{4} + 2x^{3} + 4x^{2} + 2x + 1)}{5x^{7}} < 0 \text{ since } x > 1,$$

that is, $A^{\alpha} \geq B^{\alpha}$ does not hold for any $\alpha > 0$, so (iii) is shown. In [2], there is another nice example that $\log A \geq \log B$ does not ensure $A^{\alpha} \geq B^{\alpha}$ for any $\alpha > 0$. In fact, we construct Example 1 inspired by an excellent method in [2].

6. Concluding remarks

Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. We can obtain the following interesting contrast among A > B > 0, $A \ge B > 0$, $\log A > \log B$ and $\log A \ge \log B$ by summarizing our results in this paper.

- (\star) $\log A > \log B \Longrightarrow$ there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (‡) $\log A > \log B \Longrightarrow$ there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (*l*-i) $A > B > 0 \Longrightarrow$ there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.

- (*l*-ii) $A \ge B > 0 \Longrightarrow A^{\alpha} \succ_{l} B^{\alpha}$ for all $\alpha \in (0, 1]$.
- (*l*-iii) $\log A \ge \log B \Longrightarrow$ for any $\delta \in (0,1]$, there exists $\beta = \beta_{\delta} \in (0,1]$ such that $(e^{\delta}A)^{\alpha} \succ_{sl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (*l*-iv) $\log A \ge \log B \Longrightarrow$ for any $p \ge 0$ there exists $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p A)^{p\alpha} \succ_l B^{p\alpha}$ for all $\alpha \in (0,1]$.
- (dl-i) $A > B > 0 \Longrightarrow$ there exists $\beta \in (0,1]$ such that $A^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (dl-ii) $A \geq B > 0 \Longrightarrow A^{\alpha} \succ_{dl} B^{\alpha}$ for all $\alpha \in (0,1]$.
- $(dl\text{-iii}) \log A \ge \log B \Longrightarrow \text{for any } \delta \in (0,1], \text{ there exists } \beta = \beta_{\delta} \in (0,1] \text{ such that } (e^{\delta}A)^{\alpha} \succ_{sdl} B^{\alpha}$ holds for all $\alpha \in (0,\beta)$.
- (dl-iv) $\log A \ge \log B \Longrightarrow$ for any $p \ge 0$ there exists $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p)^{p\alpha} \succ_{dl} B^{p\alpha}$ for all $\alpha \in (0,1]$.

Acknowledgement. We would like to express our cordial thanks to Professor K. Tanahashi and Professor J.I. Fujii for giving useful comments after reading the first version.

References

- [1] M.Fujii, J.F. Jiang, and E. Kamei, Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc., 125(1997), 3655-3658.
- [2] M.Fujii, J.F.Jiang, E.Kamei and K.Tanahashi, A characterization of chaotic order and a problem, J. of Inequality and Appl., 2 (1998),149-156.
- [3] M.Fujii, J.F. Jiang, and E. Kamei, Characterization of chaotic order and its application to Furuta's type operator inequalities, Linear and Multilinear Algebra, 43(1998),339-349.
- [4] F.Hansen and G.K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann., 258(1982),229-241.
- [5], F.Hiai and K.Yanagi, Hilbert space and linear operators, (in Japanese) (1995).
- [6] F.Kubo, On logarithmic operator means, Tenth Symposium on Applied Functional Analysis (1987),47-61.
- [7] M.K.Kwong, Some results on matrix monotone functions, Linear Alg and Appl., 118(1989), 129-153.
- [8] T.Yamazaki and M.Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Scienticae Mathematicae, 2(1999),37-50.

7. Appendix

Simple proof of the concavity on operator entropy f(A) = -AlogA

A capital letter means a bounded linear and *strictly positive* operator on a Hilbert space. Here we shall give a simple proof of the following well known and excellent result obtained by [1] and [2] independently.

Theorem A. $f(A) = -A \log A$ is concave function for any A > 0.

Proof. Firstly we recall the following obvious result

(*)
$$\lim_{n \to \infty} (T^{\frac{-1}{n}} - I)n = -\log T \qquad \text{for any } T > 0.$$

As $g(t) = t^q$ is operator concave for $q \in [0, 1]$, then for A > 0, B > 0 and $\alpha, \beta \in [0, 1]$ such that $\alpha + \beta = 1$

$$\left(\alpha A + \beta B\right)^{1 - \frac{1}{n}} \ge \alpha A^{1 - \frac{1}{n}} + \beta B^{1 - \frac{1}{n}} \qquad \text{for any natural number } n$$

so we obtain

$$(\alpha A + \beta B) \Big((\alpha A + \beta B)^{-\frac{1}{n}} - I \Big) n \ge \alpha A (A^{-\frac{1}{n}} - I) n + \beta B (B^{-\frac{1}{n}} - I) n$$

tending $n \to \infty$, we have

$$-(\alpha A + \beta B)log(\alpha A + \beta B) \ge (-\alpha Alog A - \beta Blog B)$$
 by (*)

that is,

$$f(\alpha A + \beta B) \ge \alpha f(A) + \beta f(B)$$

so the proof is complete.

References

- [1] Ch.Davis, Operator-valued entropy of a quantum mechanical measurement, Proc. Japan Acad., 37 (1961),533-538.
- [2] M.Nakamura and H.Umegaki, A note on the entropy for operator algebras, Proc. Japan Acad., 37 (1961), 149-154.

Department of Applied Mathematics,

Faculty of Science,

Science University of Tokyo,

1-3 Kagurazaka, Shinjukuku,

Tokyo, 162-8601, Japan

furuta@rs.kagu.sut.ac.jp